
 

Abstract— Broadspread use of medical imaging devices 

with digital storage has paved the way for curation of 

substantial data repositories. Fast access to image samples with 

similar appearance to suspected cases can help establish a 

consulting system for healthcare professionals, and improve 

diagnostic procedures while minimizing processing delays. 

However, manual querying of large data repositories is labor 

intensive. Content-based image retrieval (CBIR) offers an 

automated solution based on dense embedding vectors that 

represent image features to allow quantitative similarity 

assessments. Triplet learning has emerged as a powerful 

approach to recover embeddings in CBIR, albeit traditional loss 

functions ignore the dynamic relationship between opponent 

image classes. Here, we introduce a triplet-learning method for 

automated querying of medical image repositories based on a 

novel Opponent Class Adaptive Margin (OCAM) loss. OCAM 

uses a variable margin value that is updated continually during 

the course of training to maintain optimally discriminative 

representations. CBIR performance of OCAM is compared 

against state-of-the-art loss functions for representational 

learning on three public databases (gastrointestinal disease, skin 

lesion, lung disease). Comprehensive experiments in each 

application domain demonstrate the superior performance of 

OCAM against baselines. 

Keywords—CBIR, medical image retrieval, triplet, 

representational learning, hashing. 
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I. INTRODUCTION 

By providing automated access to medical images that are 
visually similar to a query image, CBIR systems can aid in the 
solution of clinical problems such as grading of disease 
progression, diagnosing multiple concurrent diseases, cross-
organ disease assessment, and counseling of medical trainees 
[1]. Automated retrieval is characteristically performed by 
comparing the visual contents of the query image against 
candidate images in a large image repository. Earlier methods 
assessed visual content in terms of hand-crafted local and 
global image features [2]. Recent methods instead leverage a 
latent space where each image is represented as a dense 
embedding vector [3, 4], and similarity between two images 
is taken as the distance between their embedding vectors. 
Representational learning of the latent space is commonly 
performed via a neural network model trained with an 
embedding objective to assign similar vectors for visually 
similar images [5, 6]. Consequently, retrieval is performed by 
recollecting the set of images that are closest to the query 
image in the latent space.   

The embedding objective involves learning 
representations that become more discernible as the 
dissimilarity between images grows. Prominent approaches to 
do this include point-wise, pair-wise, and triplet-wise 
methods. Point-wise methods process each image separately, 
so they can be suboptimal in capturing similarity-based 
information [7-9]. Pair-wise methods are more amenable to 
similarity assessments as they process images in pairs [10]. 
Successful results have been reported with pair-wise methods 
based on contrastive loss [11-14]. However, these methods 
have relatively limited training efficiency as they only 
consider pairs of either similar or dissimilar images, and they 
can produce weakly discernible representations for similar 
images. To address these limitations, triplet-wise methods 
process images in sets of three with anchor (A), positive (P), 
and negative (N) samples. A triplet loss is commonly used to 
compare the A-P distance between images of the same class 
(i.e., similar images) against the A-N distance between images 
of different classes (i.e., dissimilar images) [15]. This allows 
triplet-wise methods to improve the discernability of intra-
class representations over pair-wise methods.  

The traditional triplet loss enforces the difference between 
A-P and A-N distances to remain above a constant margin 
value [16]. Several recent studies have proposed 
modifications in the loss function to improve performance in 
triplet-wise learning. These modifications include linear or 
non-linear weighting of A-P and A-N  distances in the triplet 
loss [17-19], and the addition of regularization terms based on 
the A-P distance itself to emphasize its contribution [20, 21]. 
Yet, similar to the traditional formulation, these methods do 
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not place any explicit constraints on the P-N distance [15], 
which can lower the segregation between P and N samples 
from opponent classes [22]. Furthermore, these methods 
pervasively use constant margin values that can elicit 
suboptimal performance since the ideal margin varies across 
datasets and across the training iterations for a given dataset.  

Here we propose an Opponent Class Adaptive Margin 
(OCAM) loss to improve triplet-wise representational learning 
in CBIR tasks. Addressing two main limitations of the 
traditional triplet formulation, OCAM incorporates the P-N 
distance to enforce better segregation between opponent 
classes, and it leverages an adaptive margin determined based 
on the current segregation between the opponent classes.  As 
such, OCAM can learn more discernible embedding vectors 
for medical imaging that can facilitate subsequent image 
retrieval. Demonstrations are provided on gastrointestinal, 
skin and lung images based on Euclidean and Hamming 
retrieval codes. Our experiments indicate that OCAM exhibits 
superior performance against competing baselines. Our main 
contributions are summarized below: 

 OCAM leverages an adaptive margin between A-P 
and A-N distances to improve conformity to the 
image distribution per dataset, without necessitating 
manual intervention.  

 OCAM incorporates the P-N distance in the 
embedding objective to enhance the discernability of 
opponent image classes in the latent space.  

 Superior retrieval performance is obtained in various 
anatomies with the OCAM-based CBIR method. 

II. THEORY 

a. CBIR 

Given a single query image, CBIR methods aim to retrieve 
a finite subset of Z images from a repository with high 
similarity in visual content to the query. Let’s consider a 
repository D={X,Y}K consisting of K medical images 
X={x1,x2,…,xK}∈ RdxK, where xk∈Rdx(1≤k≤K) is the kth sample of 
X, Y={y1,y2,…,yK} represents image labels and d denotes the 
image dimensionality. For assessing the similarity of visual 
content, the images are typically mapped onto a latent space 
via Ω:xk→Ek, where Ω denotes the projection from the 
original image space onto the latent space, and the set of 
embedding vectors for the images are given as 
E={E1,E2,…,EK}∈ RS. To retrieve the most similar images 
from the repository, a search for the Z nearest neighbors (NN) 
to the query is required [23]:  

       NN , , : , ,q q k q kx Z f E E F F f E E Z        (1) 

where Eq denotes the embedding of the query image, f is a 
distance metric, and F denotes the set of distances between the 
embeddings of repository images and the query image. It is 
possible to conduct the search by ranking images according to 
the Euclidean distance of their continuous embedding codes  
[24]. While search based on continuous codes can be more 
sensitive, it also introduces a computational burden for large 
repositories. For improved search efficiency, a binary hash 
code can be generated for each image based on its embedding, 
B={b1,b2,…,bK}∈{-1,+1}SxK [25] via a binarization operation:  
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Images can then be ranked according to the Hamming 
distances of their hash codes [26]. While hash codes improve 
efficiency, their retrieval performance is inevitably dependent 
on the representation power of the codes. Therefore, deep 
learning (DL) methods are commonly adopted to obtain hash 
codes with high representation power to capture the 
underlying dense embedding vectors for medical images. 

b. Learning of Image Embeddings 

A powerful approach for capturing latent representations 
of images relies on triplet-wise learning [27]. The traditional 
triplet loss (Triplet) for representational learning samples a set 
of three images (xA, xP, and xN) from the repository, as 
illustrated in Fig. 1. Assuming access to information regarding 
whether any pair of images belong to the same image class, 
once xA is initially selected, xP is drawn from the same class, 
whereas xN is drawn from the opponent class. Embeddings of 
the images in the triplet are computed via Ω, 
Ω:xA,xP,xN→EA,EP,EN, E∈RS. The loss is then expressed as: 

      , , max 0, , ,A P N A P A NTriplet E E E f E E f E E      (3) 

where α represents the margin parameter. A first limitation of 
the traditional formulation is that, for a random selection of 
the image triplet, it is possible that f(EA,EP)≥f(EP,EN) even if 
the condition in Eq. (3) is satisfied as f(EA,EP)+α≤f(EA,EN). 
This lack of explicit control over f(EP,EN) can in turn lower the 
discernability of learned embeddings EP, EN. A second 
limitation is that the margin value α requires manual tuning 
for each dataset, which can be labor intensive. Moreover, the 
margin value is kept fixed across the entire course of training, 
so its value can be suboptimal for certain portions of the 
training process.  

 

Figure 1. To define a triplet loss, three image samples are selected. These 
include an anchor sample (xA, in blue color), a positive sample similar to the 
anchor (xP, in green color), and a negative sample dissimilar to the anchor (xN, 
in red color). Links between image samples illustrate their relative distances. 

c. OCAM 

Here we introduce an improved triplet-wise method for 
medical image retrieval based on a new loss function, OCAM. 
OCAM introduces two key technical improvements over the 
traditional triplet loss. The traditional formulation ignores the 
P-N distance, f(EP,EN), so it can yield insufficient segregation 
between opponent image classes. To address this issue, 
OCAM explicitly incorporates f(EP,EN) in the loss function as 
inspired by a recent computer vision study on person 
reidentification [22]. Note that there are two samples in each 
image triplet belonging to the positive class, so weighting the 



distance terms equally can introduce unwanted biases towards 
the positive class. To avoid potential biases, a balanced 
weighting is instead adopted here: (f(EA,EP)-(f(EA,EN)+ 
f(EP,EN))/2). As such, OCAM improves inter-class segregation 
by not only extending the A-P distance over the A-N distance, 
but also maintaining a relatively large P-N distance. 

The traditional formulation also uses a constant margin 
value to segregate opponent classes. However, a static margin 
can result in suboptimal performance since f(EA,EP)-f(EA,EN) 
inherently changes across the training process. In particular, 
an α value suited for early iterations where (f(EA,EP)-
(f(EA,EN)+f(EP,EN))/2) is relatively small will be rendered 
suboptimal towards later iterations as inter-class segregation 
increases, slowing down the learning process. To address this 
limitation, OCAM introduces an adaptive margin value 
inspired by the recent success of adaptive methods in 
classification tasks [16, 28, 29]. Here we propose to leverage 
a margin value αadaptive=(1-f(EP,EN))/2 that is a function of 
f(EP,EN) so as to improve the P-N separation, avoiding the 
need for introducing a user-controlled parameter. 

Taken together, these design elements result in the 
following formulation in OCAM:  

   

       

, , max 0, ,

, , 1 ,
                      

2 2

A P N A P

A N P N P N

OCAM E E E f E E

f E E f E E f E E



 
  




(4) 

which can be further simplified as: 
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To learn embeddings with high representation capability, 
a cosine distance measure that ranges in [0,1] is used [12, 13, 
25]: 
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Following the training of a neural network ΩTrained 
according to the loss in Eq. 5, inference can be performed for 
a query image xq and a test repository DTest={XTest}M consisting 
of M test images XTest={x1,x2,…,xM}∈RdxM, where 
xm∈Rdx(1≤m≤M) is the mth sample of XTest. Both the query image 
and test images in the repository are projected into the latent 
space via ΩTrained. Afterwards, a search is performed to identify 
the most similar embeddings in ETest={E1,E2,…,EM}∈ RS to Eq 
as illustrated in Fig. 2.  

III. METHODS 

a. Datasets 

We demonstrated the CBIR performance of OCAM on 
three medical image datasets. The KVASIR dataset [30] 
contained endoscopic images from eight classes of 
gastrointestinal disease, with 1000 images per class. The ISIC 
2019 dataset [31] contained dermoscopic images from eight 
classes of skin lesions, with the number of images in each 
class varying from 239 to 12875. The X-RAY dataset [32] 
contained radiographic images from four classes of lung 
disease, with the number of images in each class  varying from 
4497 to 5768. All images were downsampled to 256x256 

pixels. 85% of the images were used for model training, and 
15% were reserved for model testing. 

 
Figure 2. For CBIR, given a query image xq, Eq is computed based on a trained 
network ΩTrained and compared against the embedding vectors in the repository 
ETest to retrieve similar images. Candidate images from the repository can be 
ranked based on the Euclidean distance of continuous embedding codes for 
the accuracy or based on Hamming distance of binarized hash codes for 
efficiency. 

b. Architectural Details and Model Implementation 

A Siamese neural network model was leveraged to capture 
the latent representations of medical images with OCAM (Fig. 
3). The weights of subnetworks processing anchor, positive 
and negative samples were tied. The subnetworks were 
designed by considering popular convolutional neural 
network (CNN) architectures in computer vision: VGG16 
[33], ResNet50 [34], InceptionV3 [35], MobileNetV2 [36], 
DenseNet169 [37], and EfficientNetB3 [38]. To obtain S-bit 
hash codes of image embeddings at the output of the Siamese 
network, the final fully connected (FC) layers in backbone 
CNNs were replaced with a dropout layer at 0.3 dropout rate 
and a dense layer of length S. Separate models were designed 
for S=16 and S=64.  

 
Figure 3. Representational learning with OCAM. Embedding vectors EA, EP, 
and EN for a randomly selected image triplet xA, xP, and xN are generated with 
a Siamese network. The Siamese network contains backbone CNNs (Ω) with 
tied weights across anchor, positive and negative samples. CNN parameters 
are trained to minimize the OCAM loss.  

Models were implemented in the TensorFlow framework 
and executed on an NVidia RTX 3090 GPU. Model training 
was performed with the Adam optimizer, a batch size of 20 
(corresponding to a selection of 60 images per batch due to 
triplet sampling), and a learning rate of 10-5. Backbone CNNs 



were initialized with weights pretrained on ImageNet for 
object classification. Models were trained until convergence 
on each dataset, and because the dataset sizes varied, the 
number of epochs was 4500 for KVASIR, 45000 for ISIC 
2019, and 5000 for X-RAY datasets. CBIR performance was 
separately examined for query search with continuous codes 
in the Euclidean space of dense embedding vectors [2, 10, 15], 
and for query search with binary codes in the Hamming space 
of the embedding vectors [4, 12, 26].  

c. Competing Methods 

Comparisons were performed against CBIR methods that 
perform representational learning via state-of-the-art point-
wise, pair-wise, and triplet-wise loss functions. We adhered to 
the hyperparameters given in the original studies for each 
competing method described below.  

Neural Codes: The Neural Codes method trains a 
backbone CNN architecture for a classification task and then 
discards its output layer to use it in a retrieval task [39]. 
VGG16 was taken as the backbone CNN, and the 
dimensionalities of two FC layers prior to softmax were 
changed to 2048 and S. In each dataset, the backbone CNN 
was trained to detect image classes by minimizing a point-
wise categorical cross-entropy loss as in Eq. 7. For retrieval, 
the softmax layer was removed, and the image embedding was 
taken as the vector of S-dimensional activations prior to the 
softmax layer in the trained CNN. 
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where K represents the total number of samples in the training 
repository, J represents the number of different classes in the 
training repository, and θ is the set of parameters of the Ω. 

Contrastive: The Contrastive method employs a 
traditional pair-wise contrastive loss on two anchor images 
(xA1, xA2) based on their similarity label (L, 0=dissimilar, 
1=similar). For this purpose, two images are randomly 
selected from the repository: xA1, xA2.  If these two anchor 
images belong to the same class, parameter L is set to 1, if they 
belong to different classes, parameter L is set to 0. As such, 
EA1 and EA2 can be derived by minimizing the following loss 
with α taken as 0.2 [10, 40]: 
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Triplet: The Triplet method employs a traditional triplet 
loss function with α taken as 0.2 [15, 16, 20]: 

      , , max 0, , ,A P N A P A NTriplet E E E f E E f E E      (9) 

 

TriEP: The TriEP method uses weighting coefficients for 
distance measures in the triplet loss, and selects the hardest 
positive and negative samples [17].  
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where σ1, σ2, β1, β2 represent the weighting coefficients, and 
α=0.3, σ1=2.04, σ2=1.71, β1=0.83, β2=0.64 were used. 

WABT: The WABT method performed triplet-wise 
learning where the anchor sample is scaled prior to distance 
calculations to improve performance [18]: 

      , , max 0, , ,A P N A P A NWABT E E E f rE E f rE E    (11) 

where r denotes the scaling coefficient, and α=1 and r=3 were 
used. 

       dmTri: The dmTri method uses a dynamic margin value 
by normalizing the loss function in the traditional triplet 
formulation with the sum of the A-P distance and α [41], with 
α taken as 0.2: 
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CondTri: The CondTri method augments the traditional 
triplet loss with a weighted regularization term based on the 
individual distance measures [20], with α=0.2 and the 
regularization weight δ=0.1: 
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CTLL: The CTLL method augments the traditional triplet 
loss with a weighted and biased regularization term based on 
the difference norm of the embeddings for anchor and positive 
samples [21], with α=1, the regularization weight κ=0.01, and 
the regularization bias γ=0.01: 
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d. Performance Metrics 

CBIR performance was measured using the precision 
metric for a total of Z retrieved images (P@Z) and the mean 
average precision (mAP) metric [10, 14, 25, 42]. Given a 
repository D with J image classes, P@Z was computed as the 
across-class average of class-specific (P@Z)j. To compute 
(P@Z)j, a single test image from the jth class was taken as the 
query, and retrieval was attempted on the entire test set 
excluding the query image. This process was repeated across 
all possible query images for the jth class. Afterwards, class-
specific performance (P@Z)j and P@Z were computed:  
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where nj denotes the number of samples in the jth class, 𝑥𝑖
𝑗
 is 

the ith query image from the jth class, NN(.)z denotes the zth 
element retrieved from the repository among the set of Z 
images, and t is an indicator function that returns 1 if its inputs 
are from the same class, and returns 0 otherwise. (mAP)j and 
mAP were calculated as follows:  
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 Note that a high P@Z score can be attained when the 
number of images retrieved from the same class as the query 
image is high. Meanwhile, mAP does not only consider the 
raw number of correctly retrieved images but it also reflects 
the order in which images are retrieved. In particular, a high 
mAP score can be attained when images from the same class 
as the query are retrieved in higher ranks among Z images 
compared to images from other classes. 

IV. RESULTS 

a. Ablation Studies 

Several ablation studies were performed to demonstrate 
the value of the individual components in OCAM, including 
the backbone CNN, the P-N distance loss component, and the 
adaptive margin value. First, retrieval performance was 
evaluated for OCAM variants based on six different backbone 
CNNs. mAP performances with S=64 are given in Table I (E 
represents Embedding space and H represents Hamming 
space). The variants with VGG16 yield optimal or near-
optimal performance across all CBIR tasks, so VGG16 was 
designated as the backbone CNN in the remaining 
experiments.  

The retrieval performance of OCAM was also evaluated 
comparatively against a variant ablated of the P-N distance 
f(EP,EN) (w/o f(EP,EN)), a variant ablated of the adaptive 
margin αadaptive (w/o αadaptive), and a variant ablated of both the 
P-N distance and the adaptive margin (w/o f(EP,EN) and 
αadaptive). Performances of variant models are shown in Fig. 4 
with S=64. Overall, OCAM outperforms all ablated variants 
and the performance benefits grow towards larger Z values. 
Furthermore, both f(EP,EN) and αadaptive elements in OCAM 

contribute to CBIR performance in terms of P@Z and mAP. 
These observations are seen in both Euclidean and Hamming 
spaces, although there is an expected performance decline for 
all methods in Hamming space due to the binarization of 
embeddings.   

The main motivation for OCAM is to improve the 
discernability of latent space representations for images from 
separate classes. We reasoned that if OCAM improves 
representational discernability over traditional triplet loss, 
then the learned embedding vectors should be better 
segregated in the embedding space.  To test this prediction, we 
projected the embedding vectors learned using OCAM and 
Triplet into a two-dimensional space via t-Distributed 
Stochastic Neighbor Embedding (t-SNE) [9, 15, 18]. The 
image projections in the t-SNE space are displayed in Fig. 5. 
For OCAM, images from different classes project to spatially 
segregated clusters that are well separated from each other. In 
contrast, for Triplet, the separation between clusters is 
relatively lower, and samples from distinct clusters can occur 
in spatially proximate locations. These results indicate that 
OCAM improves inter-class discernability over the traditional 
triplet method.  

To assess the influence of this representational 
discernability on retrieved images, we visually inspected 
images retrieved based on OCAM and based on Triplet. Fig. 6 
depicts Z=10 images retrieved in response to a query image 
randomly selected from the test set of each of the three 
datasets. In general, OCAM-retrieved images show higher 
visual similarity to the query image. Note that CBIR methods 

TABLE I 
RETRIEVAL PERFORMANCE OF OCAM ACROSS BACKBONE CNNS 

 
KVASIR (S=64) ISIC 2019 (S=64) X-RAY (S=64) 

E H E H E H 

VGG16 [31] 88.74 85.93 72.95 71.48 87.32 86.41 

ResNet50 [32] 87.03 82.22 72.44 70.91 86.52 85.71 

InceptionV3 [33] 84.49 80.13 70.23 69.16 84.60 83.71 

MobileNetV2 [34] 82.13 75.62 72.16 70.76 83.57 82.66 

DenseNet169 [35] 88.52 84.37 72.98 71.20 85.98 85.34 

EfficientNetB3 [36] 85.47 81.33 73.13 71.13 83.76 82.52 

 

 
Figure 4. Precision performances of OCAM variants were measured based on 64-dimensional embedding vectors. P@Z metrics are plotted for the KVASIR 
(a,d), ISIC 2019 (b,e), and X-RAY (c,f) datasets across various numbers of retreived images (Z). Results for Euclidean space are given in top row, and those 

for Hamming space are given in bottom row. mAP metrics for each variant are listed in parantheses. 
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can occasionally retrieve image samples from opponent 
classes. An important performance criterion for CBIR 
methods is the retrieve rank of opponent-class samples (which 
is also captured in the mAP metric). The retrieve rank of 
opponent samples in OCAM is lower than that for Triplet, 
indicating that OCAM is more resilient against erroneous 
sample selection.  

b. CBIR Experiments 

Next, OCAM was comparatively demonstrated for CBIR 
tasks against state-of-the-art representational learning 

approaches. Competing methods included a point-wise 
learning approach (Neural Codes) [39], a pair-wise learning 
approach (Contrastive) [10], and several triplet-wise learning 
approaches including traditional triplet learning (Triplet) [15], 
expansion-pool tri-hard learning (TriEP) [17], weighted 
anchor based triplet learning (WABT) [18], dynamic margin 
triplet learning (dmTri) [41], conditional triplet learning 
(CondTri) [20], and constrained triplet loss layer learning 
(CTLL) [21]. Experiments were conducted in the continuous 
Euclidean space to demonstrate the full performance of 
learned representations, and in binarized Hamming space to 

 
Figure 6. Representative retreival results for Z=10 images given a single query image. Results are shown for the a) KVASIR, b) ISIC-2019, c) X-RAY datasets. 

Images retreived from the same class as the query image are marked in green bounding boxes, whereas opponent-class samples are marked in red. 
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Figure 5. The latent space distribution of images were visualized using two-dimensional t-SNE projections of learned embedding vectors. Representative 

results are displayed for embeddings learned based on the traditional triplet method (Triplet) versus OCAM. OCAM yields more discrete clusters than Triplet. 
Black arrows highlight problematic samples with insufficient inter-class segregation. The distinct classes and their labels are described in respective legends 

for each dataset. 



demonstrate the performance in real-time applications that 
require computational efficiency.  

 Euclidean Space: Tables II-IV list retrieval performances 
of competing methods on the test sets of the KVASIR, ISIC 
2019, and X-RAY datasets, respectively. Note that the number 
of samples included in the minority class varied across 
datasets, which places a practical limit on the number of 
images that can be retrieved. Accordingly, retrieval was 
performed for up to Z=150 images in KVASIR and X-RAY, 
and up to Z=35 images in ISIC 2019 that had a more dramatic 
class imbalance. Compared to the second-best method, OCAM 
improves mAP by 1.57% at S=16 and 1.44% at S=64 in 
KVASIR, by 2.03% at S=16 and 3.80% at S=64 in ISIC 2019, 
and by 0.25% at S=16 and 2.21% at S=64 in X-RAY.   

 Hamming Space: Tables V-VII list retrieval performances 
of competing methods on the test sets of the KVASIR, ISIC 
2019, and X-RAY datasets, respectively. As expected, 
performances of all methods are moderately lower in the 
Hamming versus Euclidean space due to loss of information 
during the binarization of embedding vectors. In general, 
OCAM outperforms competing methods in CBIR 
performance. Compared to the second-best method, OCAM 
improves mAP by 3.85% at S=16 and 1.46% at S=64 in 
KVASIR, by 1.07% at S=16 and 2.71% at S=64 in ISIC 2019, 
and by 2.01% at S=64 in X-RAY. Meanwhile, it yields a 
moderately lower mAP by 0.22% compared to WABT with 
Hamming codes at S=16 in X-RAY.  

 Overall, we observe that the performance benefits of 
OCAM against competing methods are relatively larger in the 
ISIC 2019 dataset versus the KVASIR and XRAY datasets, 

where performance metrics are generally higher. Note that 
the difficulties of the representational learning task and 
subsequent image retrieval task grow with higher class 
imbalances in the repository. Thus, this finding suggests that 
OCAM shows improved reliability against class imbalances 
compared to baselines.  

V. DISCUSSION 

 CBIR methods promise fast, automated access to images 
from a medical repository that are visually similar to a query 
image to facilitate downstream assessments with visual 
examples. Current CBIR approaches typically rely on the 
learning of embedding vectors with high representation 
capability for visual image features, as subsequent retrieval 
performance depends critically on the representational quality 
of the embedding vectors [17, 25, 42-44]. Here, we introduced 
a novel triplet-wise representational learning method, OCAM, 
for improved CBIR performance on medical image 
repositories. OCAM leverages triplet learning with an 
improved objective that considers distances between positive 
and negative classes and an adaptive margin value. Explicit 
consideration of f(P,N) enables OCAM to improve inter-class 
segregation in the embedding space, while the adaptive 
margin value improves performance by automatically tuning 
the margin value depending on the learned representations at 
each stage of the training process.  

 CBIR performance can be influenced by the code length 
and the code type used to perform the image similarity 
assessments. In our experiments, CBIR was performed based 
on two different code lengths, S=16 and 64. As would be 
expected, we observed that retrieval performances increased 

TABLE II 
RETRIEVAL PERFORMANCE IN KVASIR DATASET (EUCLIDEAN) 

 
S=16 S=64 

P@5 P@20 P@50 P@100 P@150 mAP P@5 P@20 P@50 P@100 P@150 mAP 

Neural Codes [39] 86.22 83.98 82.28 79.81 76.12 78.07 88.21 84.61 82.62 80.97 76.48 79.36 

Contrastive [10] 86.86 84.12 82.62 80.57 76.58 80.63 89.68 87.28 86.69 85.37 81.49 85.59 

Triplet [15] 90.13 87.61 86.88 85.52 81.32 85.22 90.20 88.52 88.02 87.00 83.33 87.18 

TriEP [17] 87.83 85.59 84.69 83.06 78.64 83.01 86.78 83.54 81.98 79.83 75.97 80.10 

WABT [18] 81.45 76.67 75.23 74.26 72.17 74.80 82.45 78.28 76.32 74.96 72.40 75.71 

dmTri [41] 90.47 88.35 87.38 85.97 81.90 85.73 90.32 88.40 87.56 86.16 82.01 86.27 

CondTri [20] 87.48 85.58 84.81 83.26 79.75 83.63 90.96 88.84 88.13 87.22 83.77 87.30 

CTLL [21] 89.72 87.07 86.47 85.24 80.89 85.09 89.88 87.89 87.39 86.68 82.87 86.71 

OCAM 90.75 88.97 88.64 87.40 84.13 87.30 91.33 89.84 89.76 88.93 84.82 88.74 

 
TABLE III 

RETRIEVAL PERFORMANCE IN ISIC 2019 DATASET (EUCLIDEAN) 

 
S=16 S=64 

P@5 P@10 P@20 P@35 mAP P@5 P@10 P@20 P@35 mAP 

Neural Codes [39] 66.76 65.18 63.44 61.97 56.15 68.97 66.61 64.43 62.76 57.90 

Contrastive [10] 68.08 65.16 64.98 63.94 58.85 72.49 70.19 67.78 66.14 60.27 

Triplet [15] 77.70 74.84 73.21 72.48 67.92 79.68 77.03 75.66 74.79 68.87 

TriEP [17] 76.70 73.55 72.28 71.33 66.45 78.60 75.26 73.61 72.49 67.84 

WABT [18] 73.44 70.35 68.76 67.78 63.64 76.68 73.59 71.99 71.10 66.67 

dmTri [41] 77.75 74.81 73.25 72.39 68.03 80.26 78.09 76.92 76.15 71.27 

CondTri [20] 78.08 75.16 73.98 72.94 68.74 79.71 77.24 76.22 75.48 70.75 

CTLL [21] 77.75 74.75 73.19 72.21 67.50 78.64 75.74 74.32 71.18 69.15 

OCAM 79.29 77.00 75.79 75.20 70.77 81.38 79.27 78.21 77.59 72.95 

 
TABLE IV 

RETRIEVAL PERFORMANCE IN X-RAY DATASET (EUCLIDEAN) 

 
S=16 S=64 

P@5 P@20 P@50 P@100 P@150 mAP P@5 P@20 P@50 P@100 P@150 mAP 

Neural Codes [39] 86.85 84.27 83.81 83.54 81.66 81.17 87.09 84.88 84.22 84.16 82.71 81.86 

Contrastive [10] 88.06 85.62 85.22 85.03 84.67 84.40 88.09 85.88 85.46 85.11 84.89 84.72 

Triplet [15] 88.60 86.13 85.53 85.41 85.21 84.48 88.77 86.90 86.12 85.84 85.57 85.11 

TriEP [17] 88.10 85.45 84.82 84.77 84.63 84.06 88.32 86.20 85.70 85.42 85.18 84.68 

WABT [18] 89.28 87.39 86.85 86.58 86.31 85.41 87.47 85.40 85.22 85.18 85.02 84.68 

dmTri [41] 88.65 86.03 85.37 85.09 84.94 84.12 88.36 86.14 85.78 85.64 85.40 84.82 

CondTri [20] 88.78 86.63 86.02 85.67 85.48 84.63 88.74 86.45 85.82 85.41 85.16 84.63 

CTLL [21] 88.32 85.78 85.07 84.84 84.69 84.07 88.53 86.25 85.96 85.72 85.47 84.88 

OCAM 90.42 88.49 87.84 87.53 87.20 85.66 91.19 89.21 88.93 88.66 88.42 87.32 

 



with higher S. On average, the increase in mAP performance 
of OCAM is 2.9% when the S is elevated from 16 to 64. We 
also assessed CBIR tasks based on continuous Euclidean and 
binary Hamming codes. We observed that mAP performance 
in Hamming space is lower than in the Euclidean space due to 
information loss during the binarization process. On average, 
the increase in mAP performance of OCAM in Euclidean 
space is 2.8% compared to the Hamming space. Lastly, CIBR 
performance can also depend on the native imbalance between 
different classes of images in the repository. A general 
inspection of the results in Tables II-VII suggest that CBIR 
performance is higher in relatively more balanced KVASIR 
and X-RAY datasets compared to the imbalanced ISIC 2019 
dataset.   

 For systematic performance comparisons, here we focused 
on competing methods that shared a common representational 
learning framework to derive image embeddings of matching 
dimensionality. Several previous studies have reported CBIR 
results on some of the datasets examined here using traditional 
and deep-learning techniques. Traditional methods generally 
use hand-crafted approaches such as wavelet features [45], 
PHOG features [46], and bag-of-words [43]. Their retrieval 
performances often lag behind solutions involving a learning-
based approach [47]. Recent learning-based studies have also 
considered improvements to retrieval performance via 
architectural modifications as opposed to learning objectives. 
Proposed frameworks include a CNN-based query-driven 
distance approach [42], a cauchy rotation invariance method 
(CRI-ResNet) with ResNet18 architecture [25], a DenseNet-
121 architecture with random rotation [44] and an attention 
based CNN method [48]. Because our main focus in the 

current study was to evaluate learning objectives, we did not 
directly compare OCAM against these baselines. That said, a 
comparison of reported metrics suggests that OCAM might 
yield nearly 3.4% higher performance in KVASIR, 10.9% 
higher performance in ISIC-2019, and 4.9% higher 
performance in X-RAY. That said, it is likely that combining 
architectural improvements with the learning objective in 
OCAM might enable further performance benefits. It remains 
important for future work to systematically examine the 
relative benefits of architectural and learning objective 
contributions to retrieval performance.  

 Several lines of improvement might enable OCAM to 
further its performance in CBIR tasks. An inspection of 
retrieval performance with point-wise, pair-wise and triplet-
wise methods considered here suggests that performance 
improves as a higher number of image samples are considered 
during representational learning. Thus, the quality of learned 
embedding vectors might be further improved by adopting 
advanced loss functions based on quadruplet learning [49]. 
Architectures that explicitly leverage self-attention 
mechanisms might enable the capture of more representative 
embedding vectors for images by better modeling spatial 
context [6, 50]. A task-agnostic approach to more sensitively 
capture the distributional properties of medical images might 
employ recent diffusion models [51, 52].  

VI. CONCLUSION 

Triplet-wise methods for learning image embeddings 
promise superior performance over point- and pair-wise 
methods in CBIR tasks. However, the traditional triplet 
formulation can suffer from suboptimal segregation between 

TABLE V 
RETRIEVAL PERFORMANCE IN KVASIR DATASET (HAMMING) 

 
S=16 S=64 

P@5 P@20 P@50 P@100 P@150 mAP P@5 P@20 P@50 P@100 P@150 mAP 

Neural Codes [39] 85.41 82.86 80.70 78.24 74.08 75.17 86.95 83.77 81.11 80.09 76.24 78.89 

Contrastive [10] 80.88 77.19 75.64 73.11 71.72 72.96 88.80 86.13 85.29 83.66 79.51 81.23 

Triplet [15] 86.42 83.68 81.84 79.35 73.47 75.07 89.53 87.75 87.21 86.11 82.25 84.47 

TriEP [17] 84.10 82.93 80.85 78.38 72.99 72.74 83.93 81.06 79.78 78.13 74.57 71.03 

WABT [18] 76.08 74.66 73.62 73.10 70.67 63.94 74.83 73.96 73.45 73.23 71.20 67.13 

dmTri [41] 87.81 85.38 84.50 82.26 76.80 79.37 88.93 87.08 86.16 84.81 80.01 83.97 

CondTri [20] 84.73 83.25 82.02 79.61 74.04 72.43 88.98 87.25 86.38 84.87 80.90 82.73 

CTLL [21] 84.92 82.56 80.53 77.44 71.94 74.42 86.62 87.45 86.81 85.87 81.78 84.38 

OCAM 89.10 87.28 86.33 84.95 79.32 83.22 90.83 89.22 88.59 87.66 83.68 85.93 

 
TABLE VI 

RETRIEVAL PERFORMANCE IN ISIC 2019 DATASET (HAMMING) 

 
S=16 S=64 

P@5 P@10 P@20 P@35 mAP P@5 P@10 P@20 P@35 mAP 

Neural Codes [39] 66.16 64.62 62.88 60.48 55.57 66.84 65.37 63.79 62.11 56.38 

Contrastive [10] 66.27 64.78 64.09 62.55 54.74 69.36 66.91 65.77 64.48 58.11 

Triplet [15] 74.74 72.57 70.88 69.97 64.15 77.99 73.36 71.96 71.91 67.29 

TriEP [17] 71.50 71.15 69.21 68.16 62.12 75.72 73.03 71.22 70.08 64.14 

WABT [18] 61.57 66.12 66.91 65.58 61.60 61.82 62.51 64.96 64.17 59.73 

dmTri [41] 72.95 70.60 69.55 68.70 62.31 77.91 75.34 73.91 73.02 68.44 

CondTri [20] 74.91 72.88 71.01 70.11 64.91 78.22 75.45 74.00 73.14 68.77 

CTLL [21] 72.59 71.48 70.52 69.59 64.73 77.47 74.73 73.05 71.97 67.94 

OCAM 75.63 73.93 72.12 71.36 65.98 78.94 76.33 74.87 74.21 71.48 

 
TABLE VII 

RETRIEVAL PERFORMANCE IN X-RAY DATASET (HAMMING) 

 
S=16 S=64 

P@5 P@20 P@50 P@100 P@150 mAP P@5 P@20 P@50 P@100 P@150 mAP 

Neural Codes [39] 85.06 83.54 82.72 82.18 79.43 79.07 86.89 84.38 84.28 83.62 81.27 79.25 

Contrastive [10] 82.61 81.48 80.58 79.79 78.00 76.44 87.17 85.42 85.17 84.88 84.71 84.18 

Triplet [15] 85.85 83.79 83.43 82.96 82.67 81.29 88.91 86.16 85.63 85.27 85.01 84.37 

TriEP [17] 84.41 83.35 83.05 82.44 81.95 80.50 87.41 85.32 85.06 84.84 84.65 84.09 

WABT [18] 87.28 85.89 85.70 85.30 84.82 83.11 87.89 85.58 85.22 85.01 84.89 84.40 

dmTri [41] 86.10 83.93 82.97 82.45 82.22 80.43 88.55 86.11 85.49 85.21 85.00 83.90 

CondTri [20] 85.76 83.99 83.45 82.81 82.28 79.55 88.01 85.54 84.91 84.62 84.40 83.38 

CTLL [21] 86.17 84.12 83.44 82.88 82.41 80.98 88.64 86.19 85.67 85.39 85.06 84.16 

OCAM 88.83 86.60 86.02 85.55 85.25 82.89 91.19 88.83 88.41 88.31 88.15 86.41 

 



positive and negative samples, and requires manual tuning of 
a margin value. Here, we introduced a new triplet-wise 
method, OCAM, that addresses these limitations for improved 
CBIR performance. OCAM was demonstrated on three 
medical datasets from divergent domains for CBIR tasks 
executed in Euclidean and Hamming spaces. Our results 
clearly indicate that OCAM outperforms state-of-the-art point-
wise, pair-wise and triplet-wise learning approaches.  
Therefore, it holds great promise for automating query search 
in CBIR systems that aim to improve diagnostic accuracy 
while minimizing processing delays. 
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