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Content-Based MPEG Video Traffic Modeling
Ali M. Dawood and Mohammed Ghanbari, Senior Member, IEEE

Abstract—In this paper, we propose a video model to generate
VBR MPEG video traffic based on the scene content description.
Long sessions of nonhomogeneous video clips are decomposed
into homogeneous video shots. The shots are then classified into
different classes in terms of their texture and motion complexity.
Each shot class was uniquely described with an autoregressive
model. Transitions between the shots and their durations have
been analyzed. Unlike many classical video source models, this
model may be used to generate traffic of any type of video scenes
ranging from a low complexity video conferencing to a highly
active sport program. The performance of the model is evaluated
by measuring the mean cell delay when the generated video traffic
is fed to an ATM multiplex buffer.

Index Terms— Image classification, image content, image mo-
tion analysis, image texture analysis, video modeling.

I. INTRODUCTION

T
HE VALIDITY of network simulations depends on the

accuracy of the traffic model and in particular that of

video traffic which generates most of it. Video model is an

aid for designing and testing future communication networks

that will carry multiplexed video traffic. It is an essential

tool in estimating many networking issues such as the delay

arising from statistical multiplexing, the buffer size required

for multiplexing and the bandwidth required for carrying

video [1]. The performance of the video model in simulating

networks depends on how close the video model is tuned to

the real video traffic. Real video traffic can definitely be used

for this purpose, but it limits the network simulation to the

available pre-encoded traffic only. A synthetic video model has

the advantage that it can be easily adjusted to model different

kinds of video sources; hence, image sequence storage and

encoding hardware are no longer needed, not to mention the

time saving. Generally, video models must be versatile, in

characterizing video traffic, to represent a large range of video

sources by varying only a few parameters.

In the past decade, several models for variable bit rate

(VBR) video have been proposed. A good survey of video

models can be found in [2]–[5]. The parameters of these

models are normally obtained by matching certain statistical

characteristics of a real video sequence and the model under

consideration. Particular attention is given to matching the

Manuscript received August 26, 1998; revised November 8, 1998. The
associate editor coordinating the review of this paper and approving it for
publication was Dr. Samir Kapoor. A. Dawood was sponsored by Etisalat
College of Engineering, a division of Emirates Telecommunications Corpora-
tion (ETISALAT), United Arab Emirates.

The authors are with Multimedia Communication Research Laboratory, De-
partment of Electronic Systems Engineering, University of Essex, Colchester
CO4 3SQ, U.K. (e-mail: ghan@essex.ac.uk).

Publisher Item Identifier S 1520-9210(99)01583-7.

mean, variance and correlation between the bits-per-frame of

the model and real traffic.

Maglaris et al. have used a 10-s-long sequence of video

and proposed two models for video data [6]. The first model

is a first order auto-regressive (AR) model which has proven

to be useful for queuing simulation but is not appropriate for

queuing analysis due to its mathematical complexity. The sec-

ond model is a discrete-state continuous-time -state Markov

chain, which is more suitable for queuing analysis. Both

models aimed to produce video traffic similar to a video-phone

source showing the head and shoulders of a talking person. Sen

et al. [7] extended this model in order to model video sources

with scene changes. Their model basically consists of two -

state Markov chains with transitions between the states of each

chain and between the two chains. Each chain represents one

activity level of a video. Grunenfelder et al. [8] used an auto-

regressive with moving average (ARMA) process in order to

model the bit rate of a conditional replenishment (CR) video

codec without a frame buffer at the cell level. The parameters

of the ARMA process are determined from the coded traffic

statistics.

Heyman et al. [9] used a 30-min-long video-conferencing

sequence with no scene change. Their main conclusions were

1) the number of ATM cells per coded frame follows a gamma

distribution, 2) a second order AR model fits the data well, but

it does not produce enough large values to be a good model

for traffic studies, and 3) a two-state Markov chain model

does not provide enough accuracy in the model and larger

number of states is required. Hughes et al. [10] have proposed

an -state discrete-time discrete-state Markov model for the

CR video traffic. The cell per frame was approximated by a

truncated geometric distribution. An additional state was added

to the single Markov chain to represent the scene change. The

Markov chain was also extended to states in order

to describe the aggregate traffic of identical statistically

independent multiplexed sources. A three-state Markov model

has been proposed by Shim et al. [11] to model the bit rate

of a video source with scene change. State 0 is modeled as a

two AR process (2-AR). A transition to state 1 represents a

scene change and the same with state 2, as it is assumed that

the effect of the scene change lasts for two frames. The model

was proposed to discuss the issue of call admission control

(CAC) in ATM networks.

These models were derived for non-MPEG video. MPEG

video models should include the regular group of picture

(GOP) structure. Pancha et al. [12] have studied the statis-

tics of MPEG where they observed that gamma distribution

fits the empirical distribution of the packetized bits/frame

extremely well for video sources with low bit rates. Their
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results show that the distribution of the ATM cells per frame

for high-quality video does not appear to follow any smooth

distribution. They extended their studies [13] to include the

traffic characterization of MPEG video source at the frame,

slice, and macroblock levels. Heyman et al. [14] used a 10-

min MPEG-2 VBR coded movie sequence. They showed

that the number of bits/frame distribution of -frames has

a lognormal distribution and its autocorrelation follows a

geometric function. They concluded that there is no specific

distribution that can fit - and -type frames. Wu et al. [15]

proposed the correlated state transition (CST) scheme for the

modeling of MPEG video at slice level. CST demonstrated

a good performance in capturing the autocorrelation of the

data.

Frame-level MPEG modeling was proposed by Krunz et al.

[16]. The model was based on the decomposition of an MPEG

coded stream into -, -, and -frames. Each frame type was

modeled separately. The lognormal distribution was found to

be the best match for all of the three types. Then, frames are

periodically generated according to the GOP structure of the

MPEG. Although the autocorrelation was calculated for each

frame type, it was not considered in modeling.

Ni et al. [17] proposed a mini-source based discrete-time

Markov modulated deterministic process (D-MMDP) to model

the macro-frame ( -frame equivalent to a GOP) smoothed

VBR MPEG-2 traffic. Although this has the advantage of

eliminating the cyclical variation in the MPEG video pattern,

it is at the expense of coarsening the time scale. Typically, a

GOP has duration of half a second, which is considered long

for high-speed networks.

Review of these works shows that all of the methods

follow the general classical modeling, where the mean and

variance of real video are matched to an AR model or any

known distribution function. Also in these classical models,

the characterized video was homogeneous. The nature of

the video content and its length have not been taken into

consideration, i.e., whether it is a 10-s video-phone or a 30-min

movie! Video material in real life has diverse characteristics

in terms of its nature (video-phone, news, movie, sport, etc.)

and content (active quiz show or nonactive news session).

Obviously, modeling a video by considering its nature (style)

and content will result in a better representation of the video

traffic. This has motivated our research work which departs

from the classical video modeling.

Bocheck and Chang [18] have also proposed a content-

based video (CBV) traffic model which uses camera operations

such as panning, zooming, and static scene as visual effect

primitives to model the video. The scenes were considered

to be composed of several epochs, each containing one of

the visual effect primitives. The CBV model was made of

two independent parts, the epoch and the traffic model. The

former was used to model the video epochs in both spatial

and temporal dimensions. Its output was used subsequently by

the traffic model to generate the corresponding bit rate. Two

parameters were used for the epoch model, namely, global

and local descriptors, which were used in defining the epoch

model state. At each state, a different mathematical model best

describing the current epoch was selected. Frame descriptor,

which is the output of the epoch model, includes parameters

that depend on the coding techniques.

In this paper, we propose a VBR MPEG video model that

can represent any style of video based on the description

of its content, by using statistics of the video shots within

a long video clip. Shot durations and the transition proba-

bilities between the shots are investigated. In this work we

assume an image sequence has already been segmented into

homogeneous shots.

II. DECOMPOSITION OF VIDEO

A. The Hierarchy of Video

A video can be represented in a hierarchical form, where

the top level is the program and the bottom level is a single

video frame. In this paper, we use Video-Clip to represent

a self-sufficient piece of video program, such as a film, a

comedy episode, or a TV news bulletin. A video-clip can be

temporally segmented into meaningful units called Stories. In

drama films, story can be considered as a piece of video that

involves a single element of the dramatic action with a fixed

number of characters and a common location. For example,

the coverage of an individual news topic can be called a

story within the news session video-clip. Stories can be further

segmented into SHOTS, which represent a continuous action

from the start to end of a single camera operation. There may

be panning, or zooming in order to follow the subject, but

there is no abrupt change of viewpoint. At the next level, shot

consists of a number of group of pictures (GOP), and each

GOP has a well-defined structure in terms of its individual

video Frames.

B. Shot Characterization

Most of the work on video modeling which was surveyed

in Section I has been tested for homogeneous video. No

considerations were given to the video content and its length

except in [18]. Video programs in real life have diverse content

in terms of image texture and motion.

In fact, homogeneous video is another name for the video

shot described in the previous subsection. A video-clip is

nonhomogeneous since it comprises several shots of different

characteristics. Therefore modeling a video-clip should start

from modeling the shot, then advancing from one shot to

another to represent the whole clip.

In this paper, texture and motion are used to classify shots

into various groups. Each combination of texture and motion is

graded subjectively into a number of levels. The more levels,

the more accurate the model, but at the expense of the model’s

complexity. For moderate complexity, three levels of texture

and three levels of motion are chosen, namely, low, medium,

and high, resulting in nine different types of shots: LL, LM,

LH, ML, MM, MH, HL, HM, and HH, where the first letter

represents the texture level, and the second one represents the

motion level, and L, M, and H stand for low, medium, and

high, respectively.

As an example, Fig. 1 shows nine single frames of various

shots. The first column shows the shots with slow motion and
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Fig. 1. Single frame from each shot.

the last column with high motion. Similarly in the first row

shots have low texture and in the bottom row with high texture.

Combinations of rows and columns specify the level of motion

and texture in each shot. Table I lists the bit rate of each shot

when coded with a VBR MPEG encoder. The encoded ATM

cells per frame profile (53-byte cells with a payload of 48

bytes) of the shots is shown in Fig. 2 following the shot order

presented in Table I.

To measure the texture level of the encoded frames, for each

frame type the average magnitudes of the DCT coefficients of

the luminance/block (8 8 pixels) were calculated during

the encoding process and then averaged over the shot. In our

experiment we have used a GOP structure of and

, that is a distance of three frames between the anchor

- or -frames and twelve frames between the -frames. The

MPEG bit stream was also made variable by using fixed

quantizer scale codes of 3, 3, 4 for - -, and -frames,

respectively. Figs. 3–5 show the relation between the average

DCT coefficient magnitude and the generated ATM cells per

frame for and , respectively. Relation between DCT

coefficient magnitudes and the bit rate is very distinct for -

frames, shown in Fig. 3, as expected, but due to the motion

these relations are not so clear cut for - and -frames as

shown in Figs. 4 and 5. Hence using bit rate of -frames, one

can classify images in terms of their texture.

Fig. 2. ATM cells per frame for the nine different shots.

On motion classification, for each frame type the magni-

tude of motion vectors (MV)/macroblock were also extracted

during the encoding process and averaged over the shot, in

order to measure the motion level of the encoded shot. Since

-frames are intraframe coded, the average MV magnitudes

were calculated for the - and -frames only within every

shot. Figs. 6 and 7 depict the relation between the magnitude

of MV and the generated cells per frame for - and -frame,

respectively. Again, in terms of motion, classification clearly
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TABLE I
MEAN BIT RATE (MBR) IN Mbit/s FOR EACH CODED SHOT,

WITH A PICTURE SIZE OF 352 � 288 (PIXELS) AT 25 Hz

Fig. 3. Average DCT coefficient magnitude of I-pictures for nine shots.

shows the effect of motion on the bit rate, but due to the

influence of DCT coefficient (texture), the classification is not

so distinct. However, if results of -frames are combined with

those of - and -frames, then a very reliable classification

can be made. For example, the class of the texture can be

known from the -frames, then - and -frames would help

on the motion-based classification. Therefore, results obtained

in Figs. 3–7 emphasize the fact that the generated number of

cells per frame is directly affected by the texture and motion

level of the encoded video shot.

C. Characterization of Real Video Clip

The above shot classification and analysis were applied to

a 30-min BBC news bulletin, which was found to be a good

example of a video-clip containing shots with different motion

and texture levels. The news shots were classified subjectively

into nine types according to their motion and texture levels.

In case subjective classification for some complex shots such

as a shot with camera panning, camera shaking, and cartoon

seemed to be difficult, the encoded cells per frame profile

was used instead. There were 228 shots detected in the 30-

min news session, which is found to be close to what has

Fig. 4. Average DCT coefficient magnitude of P -pictures for nine shots.

Fig. 5. Average DCT coefficient magnitude of B-pictures for nine shots.

been reported in [19]. Fig. 8 depicts the histogram of shot

durations in frames. The mean shot duration was found at

177 frames (equivalent to 7.1 s at 25 frames/s) and the

distribution curve was observed to follow a second-order

gamma distribution. The frequency of occurrences of each shot

type is tabulated in Table II. The temporal correlation between

the shots was determined by measuring the probability that

one shot type follows the next type. This is listed in Table III

and is used as the transition probabilities in our model for

defining the temporal dependencies among the shots. This

transition probability table shows that a LL shot is more likely

to follow another LL shot, and shots with high motion are

almost unlikely to follow LL, unless they have lower texture.

Also from HH type we see that it is rare for a high texture

and high motion (HH) shot to follow a low motion and low

texture (LL) shot, but it normally transits via a medium texture

or medium motion shot as shown in Table III.

III. COMPOSITION OF VIDEO CLIPS

A. Content-Based Model (CBM)

To model video based on this concept, we assume that

video has already been segmented into shots using temporal
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Fig. 6. Average of MV magnitudes of P -pictures for nine shots.

Fig. 7. Average of MV magnitudes of B-pictures for nine shots.

Fig. 8. Histogram of shot duration (frames).

segmentation procedures, such as time constrained clustering

[19], [20], self-organizing scene clustering [21], and histogram

comparison [22].

In Section II-B, we classified video shots into nine different

types based on their texture and motion complexity levels.

TABLE II
NUMBER OF EACH SHOT TYPE IN 30-MIN NEWS

TABLE III
SHOT TYPES TRANSITION PROBABILITY (%) FOR 30-MIN NEWS

Each type has a different overall mean bit rate as expected.

The lowest bit rate is for low texture and the low motion

(LL) shot, and the highest bit rate is when both texture and

motion are high, HH, as shown in Table IV. However, there

are combinations of texture and motion which generate almost

similar rates. For example, low texture and high motion (LH)

is almost identical to medium texture but low motion (ML),

and many others. The implication of this is that in fact we do

not need nine types, and some types generate similar bit rates,

but nevertheless, transition from one type to another depends

on texture and motion, as shown in Table III. Hence we will

keep the nine types for this reason. Also note that in almost

all bit rates (all shot types), the percentage of bit rate in -

frames from the mean bit rate is almost constant. In Table IV,

this percentage varies between 2.4–3.14% of the coded bit rate.

Similarly, for every type, the percentage of bit rate assigned to

-frames is fairly constant from 5.5 to 6.6%. However, what

changes is the bit rate assigned to -frames, which is again not

much. This is about 5.6 to 10.5%. In this table the mean bit

rate (third column) is divided into - , and -frames with a

GOP structure of and . There are one -, three

- and eight -frames in a GOP, with a GOP frequency of

of frame rate.
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TABLE IV
MEAN BIT RATE (MBR) AND THE PERCENTAGE OF I-, P -, AND

B-FRAME BIT RATES FOR NINE DIFFERENT SHOTS CODED AT

25 Hz, WITH A GOP STRUCTURE OF N = 12 AND M = 3

The implications are that irrespective of the mean bit

rate/shot, one can define a simple relation between the bits

assigned to - -, and -frames. Hence, for a given mean

bit rate per shot, the respective bitsper frame type can be

calculated. Another notable implication of this table is the

relation between the shot type and mean bit rate. Therefore, if

the number of shots and shot type in a video clip is known,

then one can define the mean bit rate for each shot from the

overall mean bit rate. This is significant, since in VBR video,

normally the overall bit rate is defined, not bits for individual

shots.

After classification of video clip into shots, and determina-

tion of bit rate for each shot and the proportion of , and

bit rates, we can model the video. Hence a shot can be

defined as a vector

where represents the th shot in a video clip

of shots, represents the th shot type, is

the duration of the th shot, and , , and

are the -, -, and -frames autoregressive model parameters

(determined according to [6]), respectively, for the th shot

type.

The following steps summarize the whole procedure for a

synthetic generation of video traffic based on the following

model.

1) Define the number of shots ( ) in the video-clip.

2) Specify the shot type, and derive the mean bit rate of

each shot from the overall mean bit rate.

3) Specify the shot duration, according to the statistics and

Gamma function.

4) Using the mean and variance, calculate the auto-

regressive (AR) model’s parameters for the th shot

[6].

5) Go to step 3 for the th + 1 shot.

B. Homogeneous Shot Modeling

Since shots are homogeneous and homogeneous video is

well represented by an autoregressive (AR) model, then we

model each shot with an AR, considering the GOP structure

(e.g., the sequence of , and in a GOP).

The first-order AR process is defined as

(1)

where represents the generated bits for the th frame,

and are constants, and is an independent Gaussian

random process with a mean and variance 1. The steady-

state average bit rate and the autocovariance of bits per

me are given by [6]

(2)

(3)

Three AR models are used for each shot, one for each frame

type, considering the values in Table IV. Note that although

in Table IV the percentage of mean bit rate for frame types

is fairly constant, the standard deviation (square root of the

variance) inside the shot varies considerably. Also for each

shot and frame type, the ratio of the standard deviation to

mean bit rate varies with texture and motion activity.

C. CBM Simulation Results

To show the performance of the proposed model, a virtual

video-clip (VVC) was edited from 11 shots, covering all of

the nine types of interest. Since bit rate within a shot is fairly

constant, only a small portion of the real shot (3–4 s) was

included in the VVC. This was done to reduce the simulation

time. The VVC was then made 32-s-long (800 frames) and the

shots were arranged to form a realistic story similar to a news

video clip, according to the following scenario.

1) At the start, a news reader talks for approximately 3.5

s; the background is plain with a picture hanging on

it. The background is thus medium textured, and the shot

is classified as medium texture and low motion, ML.

2) Then, a reporter with a closed-up shot reports in open-air

with a plain sky background. The movement is more than

the news reader. This shot lasts for 3.5 s, and it is classified

as low texture and medium motion, LM.

3) A person is interviewed in the open area for approximately

3.5 s. He is standing on the road with a flag waving on

the side. The texture and the motion are rated as medium,

MM.

4) The news reader then returns with a plain background,

and talks for 3.2 s, LL shot.

5) In the next shot, two persons demonstrate a cooking recipe

for 3 s; the texture is high and the motion is medium, HM.

6) The next shot is a person aggressively banging on a door

for 3 s. The classification is low texture and high motion,

LH.

7) The news reader with the plain background comes back

for 1.5 s (LL).

8) Then, a medium textured scene from a train station lasts

for 2.7 s. It shows passengers walking on the platform. It

is considered MH.
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Fig. 9. VVC cells per frame—real.

Fig. 10. VVC cells per frame—CBM.

9) After that, a 2.5-s football scene shows a highly textured

stadium and running players. The shot is therefore of HH

type.

10) Next is a weather lady talking about the weather in Europe

for 3.5 s. The background is a synthetic map with cloud

and sun symbols making it a highly textured background

but the motion is low, i.e., HL shot.

11) Finally, the news reader with a plain background is talking

for 2 s to summarize and close the session (LL).

The VVC is then VBR MPEG encoded with a fixed quan-

tizer scale codes of 3, 3, and 4 for - -, and -frames,

respectively. The cells per frame profile is shown in Fig. 9.

In order to evaluate the performance of our proposed model,

the VVC was also modeled with the classical autoregressive

method. In this model the statistics of the whole 800 frames

were used in the modeling. Note that in CBM, we use

autoregressive (AR) model for each shot. Fig. 10 shows the

cell-rate profile of the CBM. Here we have used the exact

durations and order of shot appear in the VVC. Fig. 11

shows the classical AR model. We have also evaluated the

network behavior in response to the three forms of generated

traffic. Each video traffic was packed into ATM cells, and

Fig. 11. VVC cells per frame—classical AR.

Fig. 12. Cell delay of 70% loaded ATM buffer.

the mean delay of the ATM multiplexer for network loads of

70 and 90% were calculated, as shown in Figs. 12 and 13,

respectively.

Inspection of Figs. 9–13 shows how the content-based

video model (CBM) closely follows the real nonhomoge-

neous MPEG traffic, while the classical method without

the consideration of video content, fails to achieve such

performance.

D. Robustness of Content-Based Modeling

Since CBM is based on the subjective description of the

video content, the shot classification may vary from person

to person depending on his/her perception and definition of

the low, medium, and high motion and texture levels of every

individual shot within the video clip. In order to study the

robustness of the CBM model to different opinions in shot

classification, some shots were classified in a different type.

For example, a LM shot was assumed to be LL, or a HM

to be MM. Table V illustrates the 11 shots with the new

order, where most of them have been classified in a different

class.
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Fig. 13. Cell delay of 90% loaded ATM buffer.

TABLE V
RECLASSIFICATION OF SHOTS DUE TO A DIFFERENT OPINION

The cells per frame of the CBM generated traffic with this

new description is shown in Fig. 14. The network behavior

was evaluated, as in Section III-C, to compare the performance

of the CBM when making incorrect shot description with the

classical AR model. Figs. 15 and 16 show the mean delay

of the cells in an ATM buffer for network loads of 70 and

90%, respectively. Although the mean delay curve does not

fit well with that of the real data it is still far better than the

classical AR model’s curve. These two graphs therefore, verify

the robustness of the CBM in modeling video clips containing

a number of shots even if it is based on some incorrect shot

description. This is useful when running the CBM model with

probabilistic transitions between the shot types, as will be seen

in the next section.

IV. A PROBABILISTIC VERSION OF CBM

The simulation made in Section III-C was to emphasize

the idea of the CBM scheme in video modeling, where the

transition between the shots and the duration of each shot were

made deterministic according to the scenario in the VVC. In

Fig. 14. VVC CBM—with a different classification.

Fig. 15. Cell delay of 70% loaded ATM buffer.

Fig. 16. Cell delay of 90% loaded ATM buffer.

order to derive a more realistic content-based video model,

these transitions and durations should be made probabilistic,

based on the video clip shots characteristics. The transition

probabilities can be obtained from Table III, and the shot

durations are based on gamma function of Fig. 8. In this
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Fig. 17. Transition probabilities between all states.

section, the probabilistic results of the CBM will be shown

and compared against the deterministic ones.

A. The Nine State Model

Since the shots were classified into nine types, a nine state

model is used to represent the CBM, where each state rep-

resents a single shot type. The transition is allowed to occur

between any two states; hence, there will be nine transitions

from each state. A nine state model with all the transition prob-

abilities is shown in Fig. 17. Note, according to Table III some

of the transitions may not occur (zero transition probability);

hence, these transitions can be excluded from the diagram.

B. A Real News Video Clip

A 3000-frame (2-min) video clip was extracted from the 30-

min news program. There were 21 shots found in the 2-min

video clip, and the probability density function (PDF) of the

durations (shot lengths in frames) of these shots was found to

follow a gamma function with and . The tran-

sition probabilities between the states are listed in Table VI.

It can be seen that many transitions have zero entries due to

the limited number of shots available in the 2-min video clip.

This limitation causes some of the transitions to be eliminated

from the diagram, and, similarly, some states as well.

Assuming that the starting state is LL, then transition to

the next states can be obtained from Table VI. Video traffic is

generated by following these steps.

1) Start from an initial state.

2) Find the duration of the shot with a gamma function of

and .

3) According to the type of the shot, use Table IV to

calculate the autoregressive (AR) model’s parameters.

4) Run AR model for the duration of the shot given in step

2.

5) Transit to the next state according to Table VI.

6) Go to step 2.

TABLE VI
SHOT TYPE TRANSITION PROBABILITY (%) FOR 2-MIN NEWS

Fig. 18. Real traffic.

Fig. 19. Generated traffic with a classical AR model.

C. Simulation Results of Nine State Model

The 2-min video clip shown in Fig. 18 was modeled with

three different methods: 1) a classical AR method as shown

in Fig. 19, where the AR parameters were derived from the
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Fig. 20. Generated traffic with exact shot description and durations.

Fig. 21. Generated traffic with a nine state model.

overall characteristics of the real video traffic, 2) content-

based, but using the exact descriptions and durations of the

shots as shown in Fig. 20, and 3) applying the nine state model

with the state transitions of Table VI and durations of the shots

following a gamma process of and , as shown

in Fig. 21.

We have also evaluated the network performance with these

traffics, where each model’s generated traffic has been fed into

an ATM multiplexer with a given service rate. Figs. 22 and 23

show the mean delay of the ATM multiplexer with network

loads of 70 and 90%, respectively, for the real and three

modeled video traffics. The worst performance was observed

to be for the classical method which does not consider the

video content information. The description based model shows

a better performance especially when the video content has

been described exactly. The nine state model, which is a

purely statistical model has much better performance than the

classical model.

V. CONCLUSIONS

In this paper various aspects of video modeling were re-

viewed, and the demand for a new approach of modeling was

Fig. 22. Cell delay of 70% loaded ATM buffer.

Fig. 23. Cell delay of 90% loaded ATM buffer.

outlined. We proposed a content-based model (CBM) that can

generate MPEG video traffic for a wide range of applications,

such as video conferencing, TV news, and sport programs.

The approach was based on the subjective description of

the video content. Video-clip content was decomposed into

homogeneous shots, where each shot is modeled with three-

autoregressive (3-AR) models for -, -, and -frames. The

bit/frame within each shot is derived from the mean bit rate

and specific ratios between -, -, and -frames.

Shots were classified into nine types according to their

texture and motion, and a nine state model was proposed

to represent the nine types. The model was made to switch

between one shot type to another in a probabilistic way based

on a transition table.

Performance comparison between the classical and the CBM

approaches indicate the efficiency of the CBM for modeling a

nonhomogeneous video-clip. The CBM robustness was tested

by modeling a video-clip based on some incorrect description.

The network behavior have confirmed the superior perfor-

mance of the CBM over the classical method in general, and

shown that the nine state model is a realistic solution for the

CBM type of video modeling.



DAWOOD AND GHANBARI: CONTENT BASED MPEG VIDEO TRAFFIC MODELING 87

REFERENCES

[1] L. Alparone, F. Argenti, L. Capriotti, and G. Benelli, “Models for ATM
video packet transmission,” Eur. Trans. Telecommun. Related Technol.,

vol. 3, no. 5, pp. 491–497, Sept./Oct. 1992.
[2] J. Bae and T. Suda, “Survey of traffic control scheme and protocols in

ATM networks,” Proc. IEEE, vol. 79, pp. 170–189, Feb. 1991.
[3] J. P. Cosmas, G. H. Petit, R. Lehnert, C. Blondia, K. Kontovassilis,

O. Casals, and T. Theimer, “A review of voice, data and video traffic
models for ATM,” Eur. Trans. Telecommun., vol. 5, no. 2, pp. 139–154,
Mar./Apr. 1994.

[4] V. S. Frost and B. Melamed, “Traffic modeling for telecommunications
networks,” IEEE Commun. Mag., vol. 32, pp. 70–81, Mar. 1994.

[5] I. W. Habib and T. N. Saadawi, “Multimedia traffic characteristics in
broadband networks,” IEEE Commun. Mag., vol. 30, pp. 48–54, July
1992.

[6] B. Maglaris, D. Anastassiou, P. Sen, G. Karlsson, and J. D. Rob-
bins, “Performance models of statistical multiplexing in packet video
communications,” IEEE Trans. Commun., vol. 36, pp. 834–844, July
1988.

[7] P. Sen, B. Maglaris, N. Rikli, and D. Anastassiou, “Models for packet
switching of variable-bit-rate video sources,” IEEE J. Select. Areas

Commun., vol. 7, pp. 865–869, June 1989.
[8] R. Grunenfelder, J. P. Cosmas, S. Manthorpe, and A. Odinma-Okafor,

“Characterization of video codecs as autoregressive moving average
processing and related queuing system performance,” IEEE J. Select.

Areas Commun., vol. 9, pp. 284–293, Apr. 1991.
[9] D. P. Heyman, A. Tabatabi, and T. V. Lakshman, “Statistical analysis

and simulation study of video teleconference traffic in ATM networks,”
IEEE Trans. Circuits Syst. Video Technol., vol. 2, pp. 49–59, Mar. 1992.

[10] C. J. Hughes, M. Ghanbari, D. E. Pearson, V. Sefridis, and J. Xiong,
“Modeling and subjective assessment of cell discard in ATM video,”
IEEE Trans. Image Processing, vol. 2, pp. 212–222, Apr. 1993.

[11] C. Shim, I. Ryoo, J. Lee, and S. Lee, “Modeling and call admission
control algorithm of variable bit rate video in ATM networks,” IEEE J.

Select. Areas Commun., vol. 12, pp. 332–344, Feb. 1994.
[12] P. Pancha and M. El-Zarki, “A look at the MPEG video coding

standard for variable bit rate video transmission,” presented at IEEE
INFOCOM’92, Conf. Computer Communications, Florence, Italy, 1992.

[13] , “MPEG coding for variable bit rate video transmission,” IEEE

Commun. Mag., vol. 32, pp. 54–66, May 1994.
[14] D. P. Heyman, A. Tabatabi, and T. V. Lakshman, “Statistical analysis

of MPEG-2 coded vbr video traffic,” in 6th Int. Workshop on Packet

Video, Portland, OR, Sept. 1994.
[15] J. C. Wu, Y. W. Chen, and K. C. Jiang, “Modeling and performance

study of MPEG video sources over ATM networks,” in Proc. IEEE Int.

Conf. Communications, Seattle, WA, 1995, vol. 3.
[16] M. Krunz, R. Sass, and H. Hughes, “Statistical characteristics and

multiplexing of MPEG streams,” in Proc. IEEE Int. Conf. Computer

Communications, INFOCOM’95, Boston, MA, Apr. 1995, vol. 2, pp.
455–462.

[17] J. Ni, T. Yang, and D. H. K. Tsang, “Source modeling, queuing analysis,
and bandwidth allocation for VBR MPEG-2 video traffic in ATM,” Proc.

Inst. Elect. Eng., Commun., vol. 143, no. 4, pp. 197–205, Aug. 1996.
[18] P. Bocheck and S. Chang, “A content based video traffic model using

camera operations,” in Proc. IEEE Int. Conf. Image Processing, ICIP’96,

Lausanne, Switzerland, Sept. 1996, vol. 2, pp. 817–820.
[19] M. M. Yeung and B. Yeo, “Video visualization for compact presentation

and fast browsing of pictorial content,” IEEE Trans. Circuits Syst. Video

Technol., vol. 7, pp. 771–785, Oct. 1997.
[20] B. Yeo and M. M. Yeung, “Analysis and synthesis for new digital video

applications,” in Proc. IEEE Int. Conf. Image Processing, ICIP’97, Oct.
1997, vol. 1, pp. 1–4.

[21] Y. Ariki and Y. Saito, “Extraction of TV news articles based on scene
cut detection using DCT clustering,” in Proc. IEEE Int. Conf. Image

Processing, ICIP’96, Lausanne, Switzerland, Sept. 1996, vol. 3, pp.
847–850.

[22] H. Yu, G. Bozdagi, and S. Harrington, “Feature-based hierarchical video
segmentation,” in Proc. IEEE Int. Conf. Image Processing, ICIP’97, Oct.
1997, vol. 2, pp. 498–501.

Ali M. Dawood was born in Sharjah, United Arab
Emirates (UAE), in 1971. He received the BTEC
diploma and the B.Eng. degree in communications
in 1991 and 1994, respectively, from Etisalat
College of Engineering, a division of Emirates
Telecommunications Corporation—ETISALAT,
UAE. He received the M.Sc. degree in telecom-
munication and information systems from the
University of Essex, Colchester, U.K., in 1995.
He is currently pursuing the Ph.D. degree in the
Department of Electronic Systems Engineering at

the University of Essex.
He has been employed by ETISALAT, since 1994, as a candidate for

teaching assistance, where both the M.Sc. and Ph.D. degrees were under the
sponsorship of Etisalat College of Engineering. His research interests include
MPEG video traffic source modeling, networks performance evaluation, and
high-level video processing for multimedia applications.

Mohammed Ghanbari (M’78–SM’97) received
the B.Sc. degree in electrical engineering from
Aryamehr University of Technology, Tehran, Iran,
in 1970 and the M.Sc. degree in telecommunications
and Ph.D. degree in electronics engineering, both
from the University of Essex, U.K., in 1976 and
1979, respectively.

After working almost ten years in industry, he
started his academic career as a Lecturer in the
Department of Electronic Systems Engineering,
University of Essex in 1988 and was promoted

to Senior Lecturer, Reader, and then Professor in 1993, 1995, and 1996,
respectively. His research interests are video compression and video
networking. He is best known for his pioneering work on two-layer video
coding for ATM networks.

Dr. Ghanbari is the co-recipient of the 1995 A. H. Reeves Premium
Prize for the year’s best paper published in the IEE Proceedings on the
theme of digital coding. He was also a co-investigator of the European
MOSAIC Project, studying the subjective assessment of picture quality, which
resulted to ITU-R Recommendation 500. He is the co-author of Principles

of Performance Engineering(London, U.K.: IEE Press, 1997). He has been
a member of the organizing committee of several international conferences
and workshops. He was the Chairman of the Steering Committee of the
1997 International Workshop on Audio Visual Services over Packet Networks,

AVSPN’97, and Guest Editor to 1997 IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS FOR VIDEO TECHNOLOGY, Special Issue on Multimedia Ttechnology
and Aapplications. Currently, he represents the University of Essex as one of
the six U.K. academic partners in the Virtual Centre of Excellence in Digital
Broadcasting and Multimedia.


