
Noname manuscript No.

(will be inserted by the editor)

CONTENT BASED RADIOLOGY IMAGE RETRIEVAL

USING A FUZZY RULE BASED SCALABLE

COMPOSITE DESCRIPTOR

Savvas A. Chatzichristofis · Yiannis S.

Boutalis

Received: date / Accepted: date

Abstract The rapid advances made in the field of radiology, the increased frequency

in which oncological diseases appear, as well as the demand for regular medical checks,

led to the creation of a large database of radiology images in every hospital or medical

center. There is now an imperative need to create an effective method for the indexing

and retrieval of these images. This paper proposes a new method of content based

radiology medical image retrieval. The description of images relies on a Fuzzy Rule

Based Compact Composite Descriptor (CCD), which includes global image features

capturing both brightness and texture characteristics in a 1D Histogram. Furthermore,

the proposed descriptor includes the spatial distribution of the information it describes.

The most important feature of the proposed descriptor is that its size adapts according

to the storage capabilities of the application that uses it. Experiments carried out on

a large group of images show that even at 48 bytes per image, the proposed descriptor

demonstrates a high level of accuracy in its results. To evaluate the performance of the

proposed feature, the mean average precision was used.

Keywords CBMIR · Image Retrieval · Fuzzy Methods · Medical Images

1 Introduction

The last decades have witnessed significant advances in medical imaging and com-

puterized medical image processing. The commonly used medical imaging modalities

for radiological applications are: X-ray Computed Tomography (X-ray CT), Magnetic

Resonance Imaging (MRI), Single Photon Emission Computed Tomography (SPECT),
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Positron Emission Tomography (PET) and Ultrasound [1].

Nowadays, digitized medical images are becoming more frequently used. This leads to

the creation of large image databases, resulting in the need to find an efficient method

for the indexing and retrieval of these images.

The process of automatic indexing and retrieval of medical images based on their

content is known by the term Content-based medical image retrieval (CBMIR) [2].

Content-Based Image Retrieval (CBIR) is any technology that in principle helps to

organize digital image archives by their visual content. By this definition, anything

ranging from an image similarity function to a robust image annotation engine falls

under the purview of CBIR [3].

CBMIR is quite different from CBIR as the retrieval similarity must consider the med-

ical context (such as the subtle pathological changes) as well as the user individualized

subjectivity [4]. Medical images are multimodal, heterogeneous and higher dimensional

with temporal properties, which distinguish them from images in other domains [5]. In

the CBMIR the basic objective is to provide diagnostic support to the physicians or

radiologists by displaying relevant past cases, along with proven pathologies as ground

truth [6].

Several medical image indexing and retrieval techniques have been proposed in the lit-

erature. Chu et al presented an image retrieval system dedicated to brain MRI which

indexes images mainly on the shape of the ventricular region [7]. Korn et al proposed

a system for the fast and effective retrieval of tumour shapes in mammogram X-rays

[8]. Comaniciu et al described a system that aims to help physicians in the diagnosis

of lymphoproliferative disorders of blood [9]. Glatard et al introduced a Texture Based

Medical Image Indexing and Retrieval for Cardiac Images [10].

Most of the CBMIRs are based on visual example. The doctor/specialist uses a ra-

diology image as input (query image), and, based on certain global or local feature

vectors (FV), the system brings up similar images. These sorts of feature vectors are

used to describe the content of the image and that is why they must be appropriately

selected on occasion. The visual content of the images is mapped in to a new space

called the feature space. The feature vectors (descriptors) that are chosen have to be

discriminative and sufficient for the description of the objects [11].

This paper proposes a new descriptor that can be used for the indexing and retrieval of

radiology medical images. This descriptor uses brightness and texture characteristics

as well as the spatial distribution of these characteristics in one compact 1D vector.

The most important characteristic of the proposed descriptor is that its size adapts

according to the storage capabilities of the application that is using it. This character-

istic renders the descriptor appropriate for use in large medical (or gray scale) image

databases. Our earlier research papers, in which brightness and texture features were

combined in one compact descriptor [12], demonstrate the effectiveness of the compos-

ite descriptors.

To extract the proposed descriptor, a two unit fuzzy system is used. To extract the

brightness information, a fuzzy unit classifies the brightness values of the image’s pix-

els into LBright clusters. The cluster centers are calculated using the Gustafson Kessel

Fuzzy Classifier [13], which is described in section 2, while the process of fuzzy bright-

ness classification is described in section 3.

The texture information embodied in the proposed descriptor comes from the Direc-

tionality histogram suggested in [14]. This feature is part of the well known Tamura

texture features. The extraction process of the Fuzzy Directionality Histogram is de-

scribed in section 3.
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Section 4 describes the Fractal Scanning method, which is used to capture the spatial

distribution of brightness and texture information. Section 5 describes the process of

combining the brightness and texture features for the formation of the proposed de-

scriptor. The experimental results are described in section 6, while the conclusions are

presented in section 7.

2 Gustafson Kessel Fuzzy Classifier

One major problem of the standard fuzzy C-mean algorithm is that it produces spher-

ical classes. For example, if the sets of points illustrated at Fig. 1(a) pass through the

fuzzy C-mean algorithm for partitioning into four classes, the result will not be the

optimal (Fig 1(b)). If we replace the Euclidean distance in the fuzzy C-mean algo-

rithm with another metric, the calculation of which will include a positive symmetrical

table, it will allow ellipsoid clusters to be recognized, as well as spherical ones. Such

an algorithm has been designed by Gustafson and Kessel (GK) [13]. The Gustafson

Kessel algorithm is used in this paper in the brightness information extraction process,

which is described in section 3, as well as in the quantization process of the proposed

descriptor, in the methodology analyzed in section 5.

Fig. 1 (a) The points in the 2D space which must separate to four classes. (b) Four classes
obtained by using the fuzzy C-mean algorithm. (c) The four classes obtained through the
Gustafson - Kessel algorithm.

Let the total of prototypes X = {x1, x2, . . . , xn} with Xi ∈ Rp, which we want to

classify into L clusters. If {v1, v2, . . . , vL} are the vectors of the cluster centers then

Mahalanobis distance of every prototype xk of the cluster (vi, Ai) is equal to:

d2
ik = (xk − vi)

T × Ai × (xk − vi) (1)

Where Ai = C−1
i , with Ci the covariance matrix of the cluster i given by:

Ci =

n
∑

k=1

um
ik(xk − vi) × (xk − vi)

T (2)

Where um
ik is described in equation 6. In every repetition of the GK algorithm the

vectors of the center vi of the clusters are determined as:
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vi =
1

n
∑

k=1

um
ik

n
∑

k=1

um
ikxk i = 1, 2, . . . , n k = 1, 2, . . . , n (3)

The GK algorithm is consist of the following steps:

Step 1: The number of L clusters and the largest number of repetitions are determined.

Step 2: The U0 table of participatory functions is started, either at random or based

on a particular approach. The centers of V 0 clusters and the covariance matrixes C0

are calculated. Then, the tables A0 of the clusters are calculated. Next, the U0 tables

are recalculated. A value is set for m. Indicator a = 0.

Step 3: Given table Ua the centers of V a clusters are calculated according to equation

3.

Step 4: Given the V a, the covariance matrixes Ca of every cluster are calculated:

Ci =

n
∑

k=1

um
ik(xk − vi)(xk − vi)

T i = 1, 2, . . . , L k = 1, 2, . . . , n (4)

Step 5: Given the covariance matrixes Ca, the Aa of every cluster are calculated

Ai = p
√

det(Ci)(Ci)
−1 i = 1, 2, . . . , L (5)

Step 6: Given the Aa tables, the distance of every prototype xk from the center of

cluster is calculated according to the equation d2
ik = (xk − vi)

T Ai(xk − vi). Next, the

new participatory functions Ua of every prototype in every cluster are calculated.

uik =

[

1
d2

ik

]
1

m−1

L
∑

j=1

[

1
d2

ik

]
1

m−1

i = 1, 2, . . . , L k = 1, 2, . . . , n (6)

Step 7: The process is completed if

∣

∣

∣
u
(a)
ik

− u
(a−1)
ik

∣

∣

∣
≤ e or if a = Repetitions. Other-

wise make a = a + 1 and the process is repeated from step 3.

Steps 1 and 2 are executed only once, during the algorithm initiation, while steps 3, 4,

5 and 6 are repeatedly executed until at least one of the conditions described in step

7 is satisfied. The parameters calculated in steps 3, 4 and 5 are used in the repetition

during which they are calculated while parameter Ua, calculated in step 6, is used both

to check that the condition for algorithm termination is satisfied, and as data for the

next repetition.
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3 Brightness Information

The image-acquisition system usually converts a biomedical signal or radiation carry-

ing the information of interest to a digital image [1]. In most cases, these images are 8

bit greyscale images. The first unit of the proposed system undertakes to fuzzy classify

the brightness of the image pixels into LBright preset clusters. Experiments, which

are described in section 6, were carried out for LBright = 8 and LBright = 16. The

number of clusters comes as a compromise between the low storage requirements of

the application using the proposed descriptor, and the need for more efficient retrieval

accuracy. The center of these clusters was calculated using the following method: A

sample of 3000 (8 bit grayscale) radiology medical images was used. These images

included 1000 X-ray images, 1000 MRI images and 1000 Ultrasound images. All the

images were resized to 128 × 128 pixels, ignoring the initial aspect ratio. The bicubic

method was used to resize the images [15].

The aim was to classify the values of pixel brightness of all the images by using the

Fuzzy Classifier Gustafson-Kessel in LBright clusters. The particularly large resulting

figure of samples 3000× 128× 128 ∼= 106, however, would lead to out of memory prob-

lems. The Gustafson-Kessel algorithm was therefore used in each image individually,

classifying the pixel brightness into 20 clusters. The Gustafson Kessel parameters are

selected as: Clusters L = 20, Repetitions=3000, e = 0.001 and m = 2. Next, the

group of 3000 × 20 cluster values were classified into LBright clusters using a second

Gustafson-Kessel classifier. In this case, the Gustafson Kessel parameters are selected

as: Clusters L = 8, 16, Repetitions= 2000, e = 0.001 and m = 2. The centers of the

resulting clusters for L = 8 and L = 16 are shown in Table 1.

Table 1 Brightness Cluster Centers.

v(0) v(1) v(2) v(3) v(4) v(5) v(6) v(7)
L=16 1.71 12.25 22.53 35.38 50.38 65.60 82.41 99.99
L=8 3.18 22.68 54.00 90.13 125.80 162.57 202.25 243.64

v(8) v(9) v(10) v(11) v(12) v(13) v(14) v(15)
L=16 116.92 134.31 153.65 173.36 193.70 214.88 234.91 251.23

The resulting cluster centers v(i), i ∈ [0, L − 1] are used to form a fuzzy system. This

system will classify the pixel brightness of any image, interacted with the system into

LBright classes. The fuzzy system with LBright = 8 is illustrated in Figure 2.

The fuzzy system output is an LBright-bin histogram. The way this system operates

is described as follows: Let the image j. Every pixel of the image interacts with the

system. Suppose that the brightness value of the pixel P (x, y) is Pb, where Pb:

v(k) ≤ Pb ≤ v(k + 1) k ∈ [0, LBright − 2] (7)

This value activates the membership function k by R(A) and membership function

k + 1 by R(B), as illustrated in Figure 2. Where A and B are the incision points of

Pb with the membership function k and k + 1 respectively. The fuzzy system output

histogram alternates as follows:

BrightnessHisto(k) = BrightnessHisto(k) + R(A)

BrightnessHisto(k + 1) = BrightnessHisto(k + 1) + R(B)
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Fig. 2 Brightness Classification System.

R(A) + R(B) = 1

Where BrightnessHisto is the fuzzy system output histogram.

For the example of Figure 2: k = 6,R(A) = 0.7 and R(B) = 0.3. The procedure is

repeated for all the pixels.

4 Texture Information

Most CBIMR systems use texture features. Due to the structure of medical images,

texture is a very strong feature which includes huge amounts of information. A com-

monly used texture feature is the Tamura Texture feature [16][17][18]. According to

[17], which compares low-level features for the automatic categorization of medical im-

ages, the histograms based on Tamura’s texture features yielded the best results among

the features proposed for general-purpose image retrieval. The Tamura texture includes

6 features selected by psychological experiments: Coarseness, contrast, directionality,

line likeness, regularity and roughness [14].

Tamura Directionality histogram is a graph of local edge probabilities against their

directional angle.

In this paper, a novel fuzzy approach of the directionality histogram is proposed and

used to describe the texture information to the proposed descriptor.

The extraction method of the traditional Tamura Directionality histogram utilizes the

fact that gradient is a vector, so it has both magnitude and direction. In the discrete

case, the magnitude |∆G| and the local edge direction θ are approximated as follows:

|∆G| =
|∆H | + |∆V |

2
(8)

θ = tan−1

(

∆V

∆H

)

+
π

2
(9)

Where |∆H | and |∆V | are the horizontal and vertical differences computed using

approximate pixel-wise derivatives measured by the Sobel edge detector in the 3 × 3

moving window.

The resultant θ is a real number (0 < θ < π) measured counter clockwise so that
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the horizontal direction is zero. The desired histogram HD can be obtained by quan-

tizing θ in n values and counting the points with the magnitude |∆G| over the threshold

t;

HD(k) =
Nθ(k)

n−1
∑

i=0

Nθ(i)

k = 0, 1, . . . n − 1 (10)

Where Nθ(k) is the number of points at which |∆G| ≥ t.

Thresholding by t is aimed at preventing counting of unreliable directions which cannot

be regarded as edge points. The most classic approach, uses n = 16 and t = 12. Note

that the shape of each histogram was not sensitive to the value of t.

The texture information extraction unit of the system that is used for the extraction of

the proposed descriptor uses a fuzzy approach to extract the directionality histogram.

In our approach we used n = LTextures quantized values of θ. The number of LTexture

depends as much on the storage capabilities of the application using the proposed de-

scriptor as it does on the need for more efficient retrieval accuracy. As the number of

directionality areas increases, so does the calculating cost of extracting the proposed

descriptor. Experiments were carried out for and LTexture = 4 and LTexture = 16 are

described in section 6.

The LTexture quantized values of θ are used to form a fuzzy system, similar to the

system that was described in section 2. The fuzzy system with LTexture = 16 is illus-

trated in Figure 3.

For every image entered into the texture information extractor unit, an LTexture-bin

histogram that describes the directionality of the image is extracted.

Fig. 3 Directionality Classification System.

The way this system operates is described as follows: Suppose that the θ value of a

moving window (3 × 3 pixels) is Th, where Th :

θ(k − 1) ≤ Th ≤ θ(k) (11)

This value activates membership function k by V (A) and the membership function k+1

by V (B), as illustrated in Figure 3. The fuzzy system output histogram alternates as

follows:

DirectionHisto(k) = DirectionHisto(k) + V (A)
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DirectionHisto(k + 1) = DirectionHisto(k + 1) + V (B)

V (A) + V (B) = 1

Where DirectionHisto is the fuzzy system output histogram.

For the example of Figure 3: k = 7, V (A) = 0.7 and V (B) = 0.3. The procedure is

repeated for all moving windows (Entire image).

5 Fractal scanning

Fractal scanning is the term given to the image scanning technique based on a pre-

determined fractal curve. This technique is much more efficient for capturing spatial

features in digital images than other commonly used techniques such as horizontal,

vertical or diagonal pixels scan [19]. Such techniques do not maintain the adjacency of

the features inside the image since their scanning direction is usually not identified with

the one that features specify. Feature extraction is more substantial when we succeed

to retain the neighborhood relationship among the pixels.

Fig. 4 Comparison between horizontal and fractal scanning.(a) Horizontal scanning, (b) Frac-
tal Scanning

A comparison between the fractal scanning technique and the linear horizontal scan-

ning is shown in Fig. 4. It is obvious that horizontal scanning loses the adjacency in

the vertical direction and this will be also reflected on the constructed signature.

5.1 Hilbert Curve Fractal scanning

To apply fractal scanning to an image, space filling curves [20] are used. The Hilbert

curve which is used in this paper is essentially a fractal that, in its two-dimensional

form, can be analyzed as an L-System (Lindenmayer system) [21]. Using these systems,

repetitive drawing methods that use the turtle analogy rule can be described. They are

created started from one axiom, such as for example a rectilinear section and one or

more drawing rules. When these rules are repeated several times the result is usually

a complex fractal curve. We make this clear with the following example:
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Consider the symbol “F” and the rule “replace symbol F with the string F+F-F+F”.

By repeating this procedure we get:

F

F+F-F+F

(F+F-F+F) + ( F+F-F+F) - (F+F-F+F) + (F+F-F+F)

...

After this, we proceed with the drawing part. This is the stage where the turtle analogy

comes in. We assume that “F” says, “draw a line” (move forward), “+” says “turn

left” and “-” says “turn right”. Implementing the whole process by using x iterations

of the rule, line length y and 60 degrees angle we get the well-known Koch curve.

We characterize the curve with the factors x and y which reflects the order and the

movement step, respectively. The Hilbert space-filling curve, which we use for fractal

scanning, is constructed in the same way but using different rules and symbols:

Symbols : ‘‘L’’, ‘‘R’’

Rules : ‘‘L -> + RF - LFL - FR + ’’,‘‘R-> - LF + RFR + FL - ’’

Angle : 90 degrees

The letters “L” and “R” are used to create the series of symbols, the final shape of

which will relate to the levels of repetition chosen. The drawing will take place taking

into consideration only the letters “F” (drawing the line), “+” (clockwise rotation) and

“-” (anti-clockwise rotation). Figure 5 shows the first three levels of repetition of the

drawing rule. A first-order Hilbert curve is a square with one open side (which is the

basic element) that defines its direction. The second-order Hilbert curve replaces every

square by four other in a way that depends on the direction of the first-order square

[19]. The reasons we adopt the Hilbert curve are its ability to capture in its path the

adjacent information of the image objects, its property to cover squared regions and

that it has been successfully used in the scanning process in other image-processing

applications.

5.2 Z-Grid Based scanning

Replacing the Hilbert Curve with the Z-Space Filling Curve, the Z-Grid fractal scan-

ning [22] method results. The extraction method can be modeled as follows:

Taking a grid G of dimensions W ×Q, where W ∈ {0, w − 1} and Q ∈ {0, q − 1}. Two

marker labels are placed to the top and to the left of the grid, to be used for mapping

the grid cells. The symbols LW and LQ are used as label descriptors. The marker

labels are separated into W and Q positions respectively. Each position corresponds

to a cell. Odd position values for each marker label are equal to 1, while even position

values are equal to 0. The cell G(w, q) of Grid G is described using a combination of

the LQ(q) and LW (w).

In the simplest case, where the grid size is equal to 2×2, G(0, 0) as shown in the Fig. 5

(ii)(a) is marked as LQ(0)LW (0) = 00, G(0, 1) is marked as LQ(1)LW (0) = 10, G(1, 0)

is marked as LQ(0)LW (1) = 01 and G(1, 1) is marked as LQ(1)LW (1) = 11. To draw

the Z-Grid fractal curve, starting from the upper left corner of the Grid G(0, 0) move

to the next cell, according to the order in which the cells were marked.

In higher dimensions, the original Grid is separated into a new Grid G′. G′ is sur-

rounding G. The dimensions of G′ are W ′ ∈ {0, w−1
2 } and Q′ ∈ {0, q−1

2 }. Given
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Fig. 5 Method of creating the (i) Hilbert and the (ii) Z-Grid based curve. (i)(a) First repetition
of the drawing rule, (i)(b) Second repetition of the drawing rule and (i)(c) Third repetition of
the drawing rule. (ii)(a) Designing of the Z-Grid Curve on a 2 × 2 grid, (ii)(b) Designing of
the Z-Grid Curve on a 4× 4 grid and (ii)(c) Designing of the Z-Grid Curve on a 8× 8 grid

that G′ has half the cells of G, each cell in G′ could be considered to comprise one

2 × 2 Sub Grid. Two new marker labels are used to describe the cells in Grid G′.

The symbols L′

Q and L′

W are used to describe the labels. Marker labels are respec-

tively separated into Q/2 and W/2 positions. The procedure for label calibration is as

follows: Starting from the top left corner of the Grid, G(0, 0), each cell is described

by the binary number of the sequence in which it appears. As many bits as nec-

essary are used to describe the binary number which describes the total number of

cells resulting in each dimension. Cell G(w′, q′) on Grid G′ is described using the

L′

Q(q′) and L′

W (q′). Finally, each cell G(w, q) on Grid G is described by the com-

bination: L′

Q(q′)L′

W (w′)LQ(q)LW (w). This combination configures a binary number

which specifies the order in which Z-Grid fractal scanning is configured. For example,

G(0, 0) in the Fig. 5 (ii)(b) is marked as L′

Q(0)L′

W (0)LQ(0)LW (0) = 0000 while G(1, 1)

is marked as L′

Q(0)L′

W (0)LQ(1)LW (1) = 0011. To draw the Z-Grid fractal curve in

higher dimensions, starting from the upper left corner of the Grid G(0, 0) move to the

next cell, according to the order in which the cells were marked.

For grid sized 2 × 2, 4 × 4 and 8 × 8, the procedure is described in Fig. 5 (ii).

The way in which the Hilbert curve and the Z-Grid fractal scanning are used in the

proposed descriptor is described in section 6.
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6 Descriptor Implementation

The brightness and texture features described in the previous sections are combined

to produce the proposed descriptor. The production process is illustrated in Figure

6. Using the bicubic method, the image entered into the system is resized to the di-

mensions of 240 × 240 pixels, ignoring the initial aspect ratio. Our approach starts by

performing brightness and edge enhancement in the Pre-Filtering unit. First, the auto

brightness correction method proposed in [23] is applied to the image. This method is

partially inspired by the HVS (Human Vision System). It particularly adopts some of

the shunting characteristics of the on-center off-surround networks, in order to define

the response function for a new artificial center-surround network. This network com-

pares every pixel to its local average and assigns a new value in order to light the dark

image regions, while minimally affecting the light ones. The aim of using this filter is

to cover alterations in the brightness that might result from the settings of the system

used to record/capture the medical image.

Fig. 6 Descriptor Implementation.

Next, a coordinate logic filter (CLF) -OR- [24] is applied to the image. This filter

enhances the edges of the image and aims to help the texture information extraction

unit to reach weaker texture alternations. The result of the image enhancement is il-

lustrated in Figure 7.

In the following unit, system checks whether the user chose to integrate spatial in-

formation into the descriptor. The process of extraction of the proposed descriptor

without spatial information is described in section 6.1 while the integration of spatial

information is described in section 6.2.

6.1 Descriptor Implementation without Spatial Information

The improved image from the pre-filtering unit is transferred to the Image Splitter

unit. In this unit, the image is divided into 3 × 3 pixels image blocks. Each image

block is entered into the brightness information extractor unit (Brightness Unit) and

the directionality information extractor unit (Directionality Unit). The combination

of these two units forms the proposed descriptor which is constructed as follows: The

descriptor’s structure has LTexture regions determined by the Directionality Unit. Each
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Fig. 7 (a) Original Image, (b) Auto Brightness Correction and (c) Application with CLF
-OR- Filter. Image is taken from Auckland MRI Research Group.

Directionality Unit region contains LBright individual regions defined by the Brightness

Unit. Overall, the proposed descriptor histogram contains LTexture × LBright bins.

Each Image Block interacts successively with the two units. Firstly, the Directionality

Unit defines the texture type that is presented in the image block and classifies it in

one or more regions n ∈ [0, LTexture − 1] with participant rate P (n), for each n that

participates.

∑

P (n) = 1

Meanwhile, every pixel of the image block interacts with the brightness classification

unit and is classified in one or more of the m ∈ [0, LBright−1] preset brightness classes

with participation rate R(m), for each m that participates.

∑

R(m) = 1

Finally the output bin (LBright × n + m) of the proposed descriptor increases by

P (n) × R(m) for each n and m. The procedure is repeated in the Brightness Unit for

all the pixels.

On the completion of the process, the descriptor’s histogram bin values are normalized

within the interval [0, 1].

bin(i)
′

=
bin(i)

LT exture×LBright
∑

j=0

bin(j)

i ∈ [0, LTexture × LBright] (12)

The structure of the proposed descriptor is illustrated in Figure 8.

In order to reduce the storage needs of the proposed descriptor, its bin values are

quantized for binary representation using a three bits/bin quantization. Given that the

LBright × LTexture Directionality/ Brightness bin values are concentrated within a

small range (from 0 to 0.053), linear quantization cannot be applied. The descriptor’s

histogram bins are separated into LTexture quantization groups (one group for each

texture type). Each group is quantized with different quantization table.

In order to calculate the quantization table of each group, the same set of images de-

scribed in section 3 was used. First, the descriptor of all the images was calculated.

Let Xj be the proposed descriptor of the image j. Xj is separated into the LTexture re-

gions according to the quantization groups. Let
[

Xi
j

]

the set of bin values in the group
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Fig. 8 Proposed Descriptor Structure.

i ∈ [0, LTexture − 1] of the image j. For each i (group), the set of bin values
[

Xi
j

]

of

all the j (images), constitute inputs into the fuzzy Gustafson Kessel classifier, which

separates the bin values into eight regions. This technique maps the bin values into the

integer area [0, 7] . The procedure is repeated for all the LTexture groups. The Gustafson

Kessel parameters are selected as: Clusters L = 8, repetitions=2000, e = 0.002, and

m = 2. This quantization method was also used in [25] and [26]. The resulting quan-

tization tables for (LTexture = 8, LBright = 8), (LTexture = 8, LBright = 16) and

(LTexture = 16, LBright = 8) are given in Table 2, Table 3 and Table 4 respectively.

Each row represents a quantization group. The final size of the proposed descriptor is:

(

(LTexture × LBright) ×
3

8

)

bytes (13)

For each image entered into the system, the proposed descriptor is extracted. This

descriptor is separated into LTexture regions according to the quantization groups. The

value of each bin of the descriptor is assigned to one of the values [0, 7] according to the

minimum distance of the value from one of the eight entries in the corresponding row

of the proper quantization table. For example, let the proposed descriptor histogram

bin(4) = 0.006 for LTexture = 16 and LBright = 8 . This particular bin belongs to

group 1 (the first Directionality/ Brightness group), the quantization table of which is

shown in the first row of Table 4. The minimum distance is with the value 7.2E − 03.

Therefore the proposed descriptor histogram quantized value of bin(4) = 011 = 3.

Table 2 Quantization Table for LTexture = LBright = 8 .

000 001 010 011 100 101 110 111
2.3E-04 1.8E-03 4.0E-03 6.8E-03 1.1E-02 1.7E-02 4.0E-02 5.7E-01
2.7E-04 1.9E-03 4.0E-03 6.5E-03 9.8E-03 1.5E-02 2.7E-02 8.3E-02
2.1E-04 1.4E-03 3.1E-03 5.1E-03 7.6E-03 1.1E-02 1.8E-02 4.5E-02
2.4E-04 1.6E-03 3.5E-03 5.7E-03 8.6E-03 1.3E-02 2.1E-02 6.2E-02
2.4E-04 1.7E-03 3.9E-03 6.7E-03 1.0E-02 1.7E-02 3.9E-02 3.6E-01
2.4E-04 1.7E-03 3.9E-03 6.7E-03 1.0E-02 1.7E-02 3.9E-02 4.6E-01
2.4E-04 1.8E-03 4.0E-03 6.9E-03 1.1E-02 1.8E-02 4.0E-02 3.9E-01
2.2E-04 1.7E-03 3.8E-03 6.5E-03 1.0E-02 1.7E-02 3.6E-02 4.0E-01
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Table 3 Quantization Table for LTexture = 8 and LBright = 16 .

000 001 010 011 100 101 110 111
8.0E-04 4.6E-03 8.8E-03 1.4E-02 2.0E-02 3.0E-02 5.5E-02 4.0E-01
8.4E-04 5.1E-03 9.9E-03 1.5E-02 2.2E-02 3.3E-02 6.5E-02 5.9E-01
7.8E-04 4.5E-03 8.5E-03 1.4E-02 2.0E-02 2.8E-02 5.5E-02 5.6E-01
8.3E-04 5.0E-03 9.5E-03 1.4E-02 2.0E-02 3.0E-02 5.4E-02 2.9E-01
7.2E-04 4.1E-03 7.8E-03 1.2E-02 1.8E-02 2.7E-02 5.1E-02 3.6E-01
6.8E-04 3.9E-03 7.7E-03 1.2E-02 1.8E-02 2.6E-02 4.8E-02 3.1E-01
6.9E-04 4.2E-03 7.8E-03 1.3E-02 1.9E-02 2.8E-02 5.0E-02 3.1E-01
8.9E-04 5.2E-03 1.0E-02 1.6E-02 2.3E-02 3.3E-02 6.2E-02 3.4E-01

Table 4 Quantization Table for LTexture = 16 and LBright = 8 .

000 001 010 011 100 101 110 111
3.6E-04 2.3E-03 4.5E-03 7.2E-03 1.1E-02 1.6E-02 3.1E-02 5.7E-01
3.2E-04 1.9E-03 3.7E-03 5.7E-03 8.4E-03 1.3E-02 2.4E-02 5.3E-01
3.3E-04 1.9E-03 3.5E-03 5.3E-03 7.6E-03 1.1E-02 1.6E-02 4.0E-02
3.7E-04 2.1E-03 4.1E-03 6.3E-03 8.8E-03 1.2E-02 2.0E-02 6.9E-02
3.2E-04 1.8E-03 3.4E-03 5.4E-03 7.9E-03 1.1E-02 1.7E-02 3.9E-02
3.1E-04 1.7E-03 3.3E-03 5.3E-03 7.8E-03 1.1E-02 1.8E-02 5.6E-02
3.6E-04 2.0E-03 3.9E-03 6.1E-03 8.6E-03 1.3E-02 2.1E-02 7.8E-02
3.6E-04 2.1E-03 4.0E-03 6.2E-03 9.0E-03 1.3E-02 2.4E-02 1.9E-01
3.7E-04 2.3E-03 4.4E-03 7.0E-03 1.0E-02 1.6E-02 2.9E-02 2.4E-01
4.2E-04 2.5E-03 4.9E-03 7.6E-03 1.1E-02 1.9E-02 5.3E-02 6.8E-01
3.6E-04 2.1E-03 3.9E-03 6.3E-03 9.3E-03 1.4E-02 2.7E-02 4.4E-01
3.7E-04 2.2E-03 4.3E-03 6.9E-03 1.1E-02 1.6E-02 3.5E-02 3.8E-01
3.3E-04 2.0E-03 3.8E-03 6.2E-03 9.4E-03 1.4E-02 2.8E-02 3.7E-01
2.7E-04 1.8E-03 3.6E-03 5.7E-03 8.9E-03 1.3E-02 2.6E-02 3.6E-01
3.0E-04 2.0E-03 3.9E-03 6.1E-03 8.8E-03 1.3E-02 2.6E-02 3.7E-01
3.2E-04 2.1E-03 4.2E-03 6.8E-03 1.0E-02 1.5E-02 3.1E-02 4.3E-01

6.2 Descriptor Implementation with Spatial Information

To integrate the spatial information in relation to the distribution of Brightness and

Texture, the improved image from the pre-filtering unit interacts with the Image Di-

vider unit.

In this unit, the image is divided into LBlocks×LBlocks squared sections. These sections

are called Sub Images. Experiments were carried out for LBlocks = 4 and LBlocks = 8.

These are described in section 7.

Each Sub Image is transferred to the image splitter unit. The sequence in which the

Sub Images are entered into the next unit relates to the fractal scanning method, as

Figure 9 illustrates.

Fig. 9(b) is a schematic illustration of how the Hilbert curve is applied for the fractal

scanning of Sub Images while Fig. 9(c) is a schematic illustration of how the Z-Grid

is applied for the fractal scanning of Sub Images. Fig. 9(e) numerically illustrates the

order in which the Sub Images are entered into the image splitter in case of Hilbert

fractal scanning and Fig. 9(f) numerically illustrates the order in which the Sub Images

are entered into the image splitter in case of Z-Grid scanning. The fractal scanning of

the image plays a fundamental part in the formation of the descriptor’s final shape. In

the image splitter unit, every Sub-Image is treated as an independent image and the

proposed descriptor is extracted using the process described. The completion of the

process results in LBlocks × LBlocks Sub-Image descriptors.

The resulting LBlocks × LBlocks vectors are combined for the formation of the final

descriptor shape. The Sub-Images descriptors are placed in succession, one next to the



15

Fig. 9 Linear and Fractal Scanning. (a) Original image. (b) The image is divided into 64
(LBlocks = 8 ) Sub Images using Hilbert Fractal. For LBlocks = 8 the third repetition of
the drawing rule is used. (c) The image is divided into 64 (LBlocks = 8 ) Sub Images using
Z-Grid. (d) Numerical representation of the Sub Images using Linear Scanning.(e) Numerical
representation of the Sub Images using Hilbert Fractal and (f) Numerical representation of the
Sub Images using Z-Grid.

other according to the order determined by the fractal scanning method. The final

length of the descriptor is:

L2
Blocks × (LBright × LTexture) (14)

If spatial distribution with LBlocks = 8 is integrated in the proposed descriptor, the

quantization tables are given in Table 6 and Table 7. If the LBlocks = 4, the quantiza-

tion tables is given in Table 5.

Each Sub-Image descriptor is quantized using a different set of quantization values.

The same quantization table is used for both the Hilbert fractal and the Z-Grid. The

first column in the tables corresponds to the Sub-Image resulting from Linear Scanning

(Fig. 9(d)). Depending on the method of fractal scanning implemented, the position of

a given Sub-Image is defined in relation to the position of the Sub-Image in the case

of Linear Scanning, and the corresponding row in the table is selected. For example:

if the Hilbert fractal scanning method with LBlocks = 8 is applied to the image, the

quantization of the histogram produced by the 22nd Sub-Image is achieved using the

1st line on Table 6. If the Z-Grid is used, the quantization of the histogram of the 22nd

Sub-Image would be achieved with the 27th row of Table 6. The same quantization

process is followed when using LBlocks = 4. In this case, Table 5 is used.

The final size of the descriptor is:

(

L2
Blocks × (LBright × LTexture) ×

3

8

)

bytes (15)
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Table 5 Quantization Table for LBlock = 4, LTexture = 16 and LBright = 8.

Line 000 001 010 011 100 101 110 111
1 5.4E-06 1.2E-03 4.5E-03 9.4E-03 1.7E-02 2.7E-02 5.2E-02 4.1E-01
2 3.4E-06 9.1E-04 3.4E-03 7.2E-03 1.2E-02 2.2E-02 3.1E-02 6.8E-02
3 3.8E-06 8.6E-04 3.2E-03 6.8E-03 1.2E-02 1.9E-02 2.9E-02 6.0E-02
4 4.7E-06 1.5E-03 4.7E-03 9.8E-03 1.7E-02 2.8E-02 5.0E-02 1.3E-01
5 1.5E-06 8.2E-04 3.5E-03 7.4E-03 1.3E-02 2.1E-02 3.3E-02 7.5E-02
6 5.0E-07 1.2E-03 4.6E-03 9.8E-03 1.7E-02 2.9E-02 5.1E-02 1.3E-01
7 4.6E-06 1.2E-03 4.5E-03 9.7E-03 1.7E-02 2.2E-02 5.2E-02 4.4E-01
8 5.7E-06 1.5E-03 4.2E-03 9.0E-03 1.6E-02 2.8E-02 5.2E-02 4.9E-01
9 4.8E-06 1.2E-03 4.5E-03 9.6E-03 2.2E-02 2.8E-02 5.3E-02 3.2E-01
10 5.3E-06 1.2E-03 4.3E-03 9.6E-03 1.9E-02 3.3E-02 5.3E-02 1.9E-01
11 3.0E-06 1.1E-03 4.3E-03 9.1E-03 1.6E-02 2.5E-02 4.1E-02 1.1E-01
12 2.7E-06 1.2E-03 4.7E-03 8.0E-03 1.8E-02 3.0E-02 5.4E-02 3.3E-01
13 3.4E-06 1.7E-03 4.2E-03 9.0E-03 1.6E-02 2.8E-02 5.5E-02 1.8E-01
14 2.9E-06 8.3E-04 3.5E-03 7.5E-03 1.3E-02 2.1E-02 3.3E-02 7.4E-02
15 1.8E-06 9.6E-04 3.8E-03 6.1E-03 1.4E-02 2.2E-02 3.5E-02 8.6E-02
16 2.8E-06 1.1E-03 4.4E-03 9.5E-03 1.7E-02 3.0E-02 5.7E-02 4.1E-01

Table 6 Quantization Table for LBlock = 8, LTexture = 16 and LBright = 8 Part 1.

Line 000 001 010 011 100 101 110 111
1 5.5E-06 1.2E-03 4.5E-03 9.6E-03 1.7E-02 2.8E-02 5.1E-02 4.2E-01
2 3.6E-06 8.8E-04 3.4E-03 7.1E-03 1.2E-02 2.0E-02 3.2E-02 7.6E-02
3 3.6E-06 8.3E-04 3.2E-03 6.8E-03 1.2E-02 1.9E-02 2.9E-02 5.5E-02
4 3.6E-06 8.2E-04 3.1E-03 6.6E-03 1.1E-02 1.8E-02 2.8E-02 5.2E-02
5 5.4E-06 1.1E-03 4.4E-03 9.5E-03 1.7E-02 2.9E-02 5.4E-02 4.3E-01
6 5.0E-06 1.1E-03 4.4E-03 9.6E-03 1.8E-02 2.9E-02 5.3E-02 4.0E-01
7 5.0E-06 1.1E-03 4.2E-03 9.0E-03 1.6E-02 2.7E-02 5.2E-02 4.6E-01
8 4.5E-06 1.2E-03 4.5E-03 9.6E-03 1.7E-02 2.8E-02 5.3E-02 4.8E-01
9 5.2E-06 1.2E-03 4.2E-03 9.0E-03 1.6E-02 2.8E-02 5.2E-02 4.9E-01
10 3.5E-06 8.6E-04 3.3E-03 6.8E-03 1.2E-02 1.9E-02 2.9E-02 6.1E-02
11 3.8E-06 8.6E-04 3.2E-03 6.8E-03 1.2E-02 1.9E-02 2.9E-02 6.0E-02
12 4.0E-06 8.5E-04 3.2E-03 6.8E-03 1.2E-02 1.8E-02 2.8E-02 5.3E-02
13 5.4E-06 1.1E-03 4.3E-03 9.3E-03 1.7E-02 2.8E-02 5.1E-02 3.9E-01
14 5.2E-06 1.1E-03 4.4E-03 9.5E-03 1.7E-02 2.8E-02 5.1E-02 3.5E-01
15 5.7E-06 1.2E-03 4.3E-03 9.0E-03 1.6E-02 2.7E-02 5.1E-02 4.0E-01
16 4.7E-06 1.2E-03 4.4E-03 9.4E-03 1.7E-02 2.8E-02 5.2E-02 4.2E-01
17 4.5E-06 1.1E-03 4.2E-03 8.9E-03 1.6E-02 2.7E-02 5.2E-02 4.6E-01
18 4.4E-06 1.2E-03 4.4E-03 9.7E-03 1.7E-02 2.9E-02 5.4E-02 4.5E-01
19 4.2E-06 8.5E-04 3.2E-03 6.9E-03 1.2E-02 1.8E-02 2.8E-02 5.5E-02
20 4.0E-06 7.8E-04 3.0E-03 6.6E-03 1.2E-02 1.8E-02 2.8E-02 5.3E-02
21 5.1E-06 1.2E-03 4.5E-03 9.6E-03 1.7E-02 2.9E-02 5.3E-02 4.9E-01
22 5.0E-06 1.2E-03 4.5E-03 9.7E-03 1.7E-02 2.9E-02 5.2E-02 4.1E-01
23 3.8E-06 9.1E-04 3.4E-03 7.0E-03 1.2E-02 1.9E-02 3.1E-02 8.1E-02
24 5.9E-06 1.2E-03 4.4E-03 9.2E-03 1.6E-02 2.7E-02 4.8E-02 2.9E-01
25 4.7E-06 1.2E-03 4.5E-03 9.7E-03 1.7E-02 2.8E-02 5.2E-02 4.4E-01
26 4.7E-06 1.1E-03 4.4E-03 9.6E-03 1.7E-02 2.9E-02 5.3E-02 4.0E-01
27 3.5E-06 8.4E-04 3.3E-03 7.0E-03 1.2E-02 1.9E-02 2.9E-02 6.1E-02
28 3.4E-06 9.1E-04 3.4E-03 7.2E-03 1.2E-02 2.0E-02 3.1E-02 6.8E-02
29 6.6E-06 1.2E-03 4.6E-03 9.8E-03 1.7E-02 2.8E-02 4.7E-02 2.7E-01
30 6.4E-06 1.3E-03 4.8E-03 1.0E-02 1.8E-02 2.9E-02 5.1E-02 3.8E-01
31 3.5E-06 9.0E-04 3.4E-03 7.1E-03 1.2E-02 1.9E-02 3.1E-02 8.0E-02
32 3.2E-06 8.8E-04 3.4E-03 6.9E-03 1.2E-02 1.9E-02 3.0E-02 6.9E-02

Having described the extraction method of the proposed descriptor, it is now possible

to justify the reason for resizing each image to the dimensions of 240×240 ignoring the

initial aspect ratio. To begin with, the resizing procedure is imperative for the accel-

eration of the descriptor extraction process. The reason for selecting these dimensions

are as follows:

By applying spatial information to the descriptor, the image is divided into 8×8 or 4×4

Sub-Images. Therefore, the objective is that each side of the image is to be divisible by

the LBlocks without leaving a remainder. The size of each Sub-Image produced must
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Table 7 Quantization Table for LBlock = 8, LTexture = 16 and LBright = 8 Part 2.

Line 000 001 010 011 100 101 110 111
33 3.7E-06 1.1E-03 4.3E-03 9.4E-03 1.7E-02 2.9E-02 5.5E-02 4.7E-01
34 6.0E-06 1.2E-03 4.5E-03 9.4E-03 1.7E-02 2.8E-02 5.2E-02 4.2E-01
35 5.6E-06 1.2E-03 4.4E-03 9.3E-03 1.7E-02 2.7E-02 5.0E-02 3.6E-01
36 5.5E-06 1.2E-03 4.5E-03 9.5E-03 1.7E-02 2.8E-02 5.0E-02 3.3E-01
37 2.1E-06 1.1E-03 4.3E-03 9.1E-03 1.6E-02 2.5E-02 4.1E-02 1.1E-01
38 1.8E-06 9.6E-04 3.8E-03 8.1E-03 1.4E-02 2.2E-02 3.5E-02 8.6E-02
39 2.3E-06 9.0E-04 3.5E-03 7.5E-03 1.3E-02 2.1E-02 3.3E-02 7.4E-02
40 2.8E-06 8.5E-04 3.2E-03 6.7E-03 1.2E-02 1.8E-02 2.9E-02 6.8E-02
41 3.4E-06 1.1E-03 4.1E-03 9.0E-03 1.6E-02 2.8E-02 5.3E-02 4.8E-01
42 5.1E-06 1.2E-03 4.5E-03 9.6E-03 1.7E-02 2.9E-02 5.4E-02 5.2E-01
43 5.0E-06 1.3E-03 4.7E-03 9.8E-03 1.7E-02 2.8E-02 5.0E-02 3.4E-01
44 4.8E-06 1.2E-03 4.6E-03 9.8E-03 1.7E-02 2.8E-02 5.0E-02 3.7E-01
45 2.8E-06 1.2E-03 4.9E-03 1.1E-02 1.9E-02 3.1E-02 5.6E-02 3.3E-01
46 2.7E-06 1.2E-03 5.0E-03 1.1E-02 1.9E-02 3.2E-02 5.9E-02 3.9E-01
47 2.6E-06 8.4E-04 3.2E-03 6.8E-03 1.2E-02 1.9E-02 3.0E-02 6.2E-02
48 2.6E-06 8.4E-04 3.3E-03 6.8E-03 1.2E-02 1.8E-02 2.9E-02 6.2E-02
49 2.9E-06 1.2E-03 4.7E-03 1.0E-02 1.8E-02 2.9E-02 5.2E-02 2.3E-01
50 2.0E-06 9.3E-04 3.8E-03 8.0E-03 1.4E-02 2.2E-02 3.7E-02 9.8E-02
51 3.5E-06 9.4E-04 3.5E-03 7.2E-03 1.2E-02 2.0E-02 3.1E-02 7.6E-02
52 3.3E-06 9.5E-04 3.5E-03 7.3E-03 1.3E-02 2.0E-02 3.2E-02 7.2E-02
53 2.7E-06 1.2E-03 4.5E-03 9.6E-03 1.7E-02 2.9E-02 5.4E-02 3.2E-01
54 2.9E-06 1.2E-03 4.7E-03 1.0E-02 1.8E-02 3.0E-02 5.4E-02 3.3E-01
55 3.7E-06 1.2E-03 4.4E-03 9.3E-03 1.7E-02 2.9E-02 5.7E-02 4.4E-01
56 3.1E-06 1.1E-03 4.2E-03 9.0E-03 1.6E-02 2.8E-02 5.5E-02 3.8E-01
57 4.7E-06 1.2E-03 4.6E-03 9.8E-03 1.7E-02 2.9E-02 5.1E-02 2.9E-01
58 2.1E-06 9.8E-04 3.9E-03 8.2E-03 1.4E-02 2.2E-02 3.6E-02 8.6E-02
59 1.9E-06 8.7E-04 3.5E-03 7.4E-03 1.3E-02 2.1E-02 3.3E-02 7.4E-02
60 2.9E-06 9.9E-04 3.8E-03 7.8E-03 1.3E-02 2.1E-02 3.2E-02 6.7E-02
61 3.3E-06 1.2E-03 4.6E-03 9.8E-03 1.8E-02 3.0E-02 5.7E-02 4.1E-01
62 3.4E-06 1.2E-03 4.4E-03 9.5E-03 1.7E-02 2.9E-02 5.6E-02 4.2E-01
63 3.1E-06 1.1E-03 4.2E-03 9.1E-03 1.6E-02 2.8E-02 5.4E-02 3.7E-01
64 2.8E-06 1.1E-03 4.4E-03 9.5E-03 1.7E-02 3.0E-02 5.7E-02 4.0E-01

be a multiple of 3 so that during the extraction of the non-overlapped image blocks

(whose dimensions are 3 × 3) all pixels in the block can be included. An extension of

this is also the reason why it was decided to ignore the initial aspect ratio. In many

images used in the experiments described in section 7, one dimension is exceedingly

small compared to the other (e.g. 512× 91). If resizing is attempted while maintaining

the initial aspect ratio, then it is very likely that Sub-Images with dimensions that are

not multiples of 3 would emerge, and many pixels, and therefore useful information

from the image, would be lost.

7 Experiments

The proposed method has been implemented in the image retrieval system img(Rummager)1

[27] and the on line application img(Anaktisi)2[28]. Img(Rummager) and img(Anaktisi)

are developed by the authors of this paper in the Automatic Control Systems &

Robotics Laboratory3 at the Democritus University of Thrace-Greece. Both appli-

cations are implemented in C#.

To evaluate the performance of the proposed descriptor experiments are performed on

1 http://www.img-rummager.com
2 http://www.anaktisi.net
3 ACSL: http://www.ee.duth.gr/acsl
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two medical image databases: The IRMA 2007 database and the IRMA 20054 database.

To evaluate CBIR, several performance evaluation measures have been proposed [29]

based on the precision P and the recall R. In our experiments, the Mean Average Pre-

cision is employed to evaluate the performance of the proposed descriptor. The MAP

was selected to compare the proposed descriptor retrieval results to the results pre-

sented by other low level descriptors in the IRMA 2005 database, which are available

in the bibliography.

Precision = P =
Number of relevant images retrieved

Total number of images retrieved
(16)

Recall = R =
Number of relevant images retrieved

Total number of relevant images
(17)

The average precision AP for a single query q is the mean over the precision scores

after each retrieved relevant item:

AP (q) =
1

NR

NR
∑

n=1

PQ(Rn) (18)

where Rn is the recall after the nth relevant image was retrieved. NR is the total

number of relevant documents for the query. The mean average precision MAP is the

mean of the average precision scores over all queries:

MAP =
1

|Q|

∑

q∈Q

AP (q) (19)

where Q is the set of queries q.

An advantage of the mean average precision is that it contains both precision and recall

oriented aspects and is sensitive to the entire ranking.

The searching procedure is described as follows: For all benchmarking database images

used in performance measurement experiments, the proposed descriptor is extracted

and saved in an XML file. For each query image there is a given ground truth. The

ground truth is defined by an image set from the database exhibiting visual similarity

with the query image. Further details for the type of image forming the ground truth

are described in section 7.1. The descriptor is extracted from the query image and its

distance from the descriptor of each image included in the XML file is measured, based

on a selected measurement. The PQ(Rn) is calculated for each n image included in the

ground truth. Each resulting PQ is a function of the total number of images retrieved

in order to retrieve image n. Then the AP (q) is calculated. The MAP is calculated for

each benchmarking image database, being the average of the AP (q)s of all database

queries.

To compare the ratio, retrieval efficiency with descriptor size, experiments were carried

out using 7 approaches, as described in Table 8.

4 IRMA is courtesy of TM Deserno, Dept. of Medical Informatics, RWTH Aachen
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Table 8 The 7 approaches used in the experiments

Approach LBlocks LTexture LBright Fractal Scanning Method Size in bytes
E1 1 8 8 None 24
E2 1 8 16 None 48
E3 1 16 8 None 48
E4 4 16 8 Hilbert 768
E5 4 16 8 Z-Grid 768
E6 8 16 8 Hilbert 3072
E7 8 16 8 Z-Grid 3072

7.1 Experiments on IRMA 2007 Medical Image Database

The IRMA 2007 database consists of 12000 fully classified medical radiographs taken

randomly from medical routine at the RWTH Aachen University Hospital. 10000 of

these were released together with their classification as training data; another 1000

were also published with their classification as validation data to allow for tuning

classifiers in a standardized manner. In addition, the database includes 1000 images

which comprise the query images.

Each of the 10000 images is described with the IRMA code. The IRMA code is a method

for describing medical images and includes information relating to the following:

– Technical code (T) describes the imaging modality

– Directional code (D) models body orientations

– Anatomical code (A) refers to the body region examined

– Biological code (B) describes the biological system examined.

The 1000 query images are also described by the IRMA CODE. Each query image has

all the images from the set of the 10000 with the same IRMA CODE as ground truth.

In total, 116 different IRMA codes occur in the database.

The IRMA 2007 database was used in the ImageCLEF 2007 image retrieval evaluation

for the automatic annotation task.

First, experiments were carried out to identify which method of measuring the dis-

tance works better with the proposed descriptor. Using the 3rd approach (LBlocks = 1,

LTexture = 16, and LBright = 8) three similarity metric techniques ware tested in 100

queries.

The distance D(a, b) of two image descriptors Xa and Xb was calculated using 3 dif-

ferent approaches.

First, the distance was calculated using the Euclidean metric, so that the results could

be compared with the implementation of the Tamura features in the LIRe Demo re-

trieval system [30] (which uses the Euclidean distance to compare the Tamura direc-

tionality histogram of the images).

Then, the Jensen-Shannon divergence [31] was attempted. This similarity matching

method was used in order to compare the Tamura Features on [32] and [18] and com-

puted using the following formulas:

X̃(i) =
Xa(i) + Xb(i)

2
(20)
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D(a, b) =
∑

i

Xa(i) log
Xa(i)

X̃(i)
+

∑

i

Xb(i) log
Xb(i)

X̃(i)
(21)

Finally, the similarity between the images was calculated using the non binary Tan-

imoto Coefficient [33], which was used in order to compare the compact composite

descriptors of [25] and [26] and is given by:

D(a, b) =
XT

a Xb

XT
a Xa + XT

b
Xb + XT

a Xb

(22)

where XT is the transpose vector of the descriptor X.

Table 9 shows th MAP results for the proposed descriptor using the 3 similarity metric

techniques. As the results show, the non-binary Tanimoto coefficient presented the best

results.

Table 9 MAP results using several similarity metric techniques

Approach Similarity Metric Number Of Queries Mean Average Precision
E3 Euclidean 100 35.45
E3 Jensen-Shannon 100 34.79
E3 Tanimoto Coefficient 100 37.14

Therefore, by using the Tanimoto coefficient, all the approaches were tested on all the

queries.

When spatial information is integrated into the proposed descriptor, the similarity

matching is differentiated, in order to take into account the information about the

sequence with which the histograms of the Sub-Images forms the final histogram. De-

pending on the fractal scanning technique selected during descriptor extraction, the

histograms of the Sub-Images are placed in a different order. The proposed descrip-

tor is defined as H(i), which contains the information extracted from k Sub-Images

(k = L2
Blocks). This histogram can be analysed as follows:

H (i) = H (h1 (j) , h2 (j) , h3 (j) . . . hk (j)) (23)

i ∈ [0, k × LTextute × LBrightness], j ∈ [0, LTexture × LBrightness]

Where hk(j) are the histograms resulting from each Sub-Image Sj . It is noted

that every such histogram is the proposed descriptor without spatial distribution for

LTexture = n and LBrightness = m.

Neighborhood of the Sub-Image Sj is defined as the neighborhood with r = 1

SM
(j0)

= (j) : |j − j0| <= r (24)

In total, LBlocks neighborhoods are defined for each H(i). The distance between 2

images is defined as the sum of the distances between S(j) neighborhoods according

to Tanimoto Coefficient, from one image in relation to the other.



21

D(a, b) =

k=L2

Blocks
∑

j=0

DTanimoto(Sa(j), Sb(j)) (25)

Experimental results have shown that in the case of distance measurement of the Pro-

posed Descriptor with Spatial Distribution Information, the results are slightly better

if the Tanimoto Coefficient is replaced with the Ordinal distance [34]. The reason for

this is that the histogram of the proposed descriptor displays a number of zero values.

However, the calculation cost necessary for conversion of the histogram to a signature,

and more specifically to extended signatures [34], is quite high, and slows the retrieval

process down considerably.

The proposed descriptor retrieval results are compared with the corresponding results of

the following descriptors: Tamura Directionality Histogram, Gray value Histogram and

MPEG-7: Edge Histogram (EHD)[35][36]. Implementations of these low level features

are available in [30]

Given that the proposed descriptor is a combination of Tamura directionality histogram

and the Gray Value Histogram, it would be useful to compare the obtained retrieval

results with the results that would come from other combination processes of these

characteristics.

One way of combining the retrieval results that come from different low level features

is the Borda Count. Initially, the Borda count was proposed as a single-winner election

method in which voters rank candidates in order of preference. In the field of retrieval,

it was originally suggested by [37]. The way in which the Borda count was applied in

order to combine the results of Tamura directionality histogram and the Gray Value

Histogram is described as follows:

Let the query Q consisting of q images. The search is performed on a database of

images that includes N images. The results that come from the Tamura directionality

histogram are classified according to the distance D, that each image presents from

the image Q. Each image l, depending on the position shown in the results, is scored

as follows:

Rank(l)′ = [N − (N − location of the image l after the classification)]−1 (26)

The same procedure is followed and at the results that come from the Gray Value

Histogram. The results are classified and each image is scored with Rank(l)′′.

Finally, for each l image the Rank(l) = Rank(l)′ + Rank(l)′′ is calculated and a final

classification of the results according to the Rank of each image is being made. The

evaluation process of the results through the MAP, after this classification, is the same

as the evaluation process, that has been described.

Observation of the results can easily lead to the following conclusions: The results of

the compact versions of the proposed descriptor are directly related to the size of the

descriptor. Approaches E2 and E3 produced decidedly better results than approach

E1. In addition, when comparing the results of E2 and E3 to each other, we observe

that their results are similar, thus strengthening the conclusion that the system’s per-

formance is related to the number of bins of the descriptor.

It is taken for granted that the integration of information about the spatial distribution

further enhances the system’s performance. However, it is observed that in this case



22

Table 10 MAP results on IRMA 2007 Medical Image Database

Descriptor MAP Descriptor MAP
Proposed Descriptor E7 36.81 Proposed Descriptor E3 20.4
Proposed Descriptor E6 36.78 Tamura Directionality Histo. 15.1
Proposed Descriptor E5 35.1 Borda Count 14.7
Proposed Descriptor E4 35.0 Gray Value Histogram 12.4
MPEG-7: Edge Histogram 28.1 Proposed Descriptor E1 10.3
Proposed Descriptor E2 20.9

the descriptor size does not correlate with the retrieval accuracy. The size difference in

approaches E4 and E5 with E6 and E7 is not reflected in the results. It could be con-

cluded that result improvement is achieved through integration of spatial information,

and it approaches maximum performance either when using a small number LBlocks,

or a large one.

7.2 Experiments on IRMA 2005 Medical Image Database

The IRMA 2005 database consists of 10000 annotated radiographs. The images are

separated into 9000 training images and 1000 test images. The images are subdivided

into 57 classes. For CBMIR, the relevances are defined by the classes, given a query

image from a certain class, all database images from the same class are considered

relevant. [38]

The IRMA 2005 database was used in the ImageCLEF 2005 image retrieval evaluation

for the automatic annotation task.

Table 11 MAP results on IRMA 2005 Medical Image Database

Descriptor MAP Descriptor MAP
Proposed Descriptor E7 44.28 Gray Value Histogram 26.1
Proposed Descriptor E6 44.26 Gabor histogram 25.2
Proposed Descriptor E5 42.8 inv. feature histogram (mon.) 24.4
Proposed Descriptor E4 42.7 inv. feature histogram (relational) 24.1
32x32 image 40.9 LF patches signature 23.0
Xx32 image 35.0 Borda Count 23.0
LF SIFT histogram 32.7 Tamura Directionality Histo. 21.5
LF patches histogram 31.4 LF SIFT global search 20.9
Proposed Descriptor E3 28.3 LF patches global 17.6
Proposed Descriptor E2 28.3 global texture feature 16.4
Proposed Descriptor E1 28.0 LF SIFT signature 10.9
Gabor vector 27.7 MPEG-7: Edge Histogram 10.9

Table 11 shows the MAP results in this database. The values of the remaining descrip-

tors are taken from [38].

Observation of the experiment results strengthens the conclusions that resulted from

experiments on the IRMA2007 database. The sole exception is perhaps the high per-

formance that approach E1 produced, which is however considered unsuitable due to

the inconsistency of its results. Finally, it is worth noting that use of different frac-

tal scanning methods leads to equally good results, with the Z-Grid method displaying

slightly better results. Another one conclusion that can come, is related to the informa-

tion described in the proposed descriptor. Considering the results of both experiments
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and comparing them with the results that come from the Borda Count between the

Tamura directionality histogram and the Gray Value Histogram, we perceive that the

proposed descriptor (without the E1 approach ) shows much better results than the

Borda Count. Hence, the combination of Tamura Directionality Histogram and the

Gray Value Histogram through the proposed descriptor is better than the combination

made by the Borda Count. In addition, the difference between the sizes of the XML

files using the 2 approaches, is notable. The size of the file, which carries the informa-

tion that uses the Borda Count to describe the number of 9000 images for IRMA2005,

is 8.47 MB, while for the E3 approach the file size is not exceeding 1.3 MB.

Having studied both experiments, we have reached the conclusion that the approach

displaying the best correlation between size and result is approach E5.

The AP results for all the queries are available on line5.

8 Conclusions and Future Works

This paper proposed a new method combining Brightness and Texture information in

one scalable descriptor. Furthermore, the proposed descriptor includes the spatial dis-

tribution of the information it describes. The most important feature of the proposed

descriptor is that its size adapts according to the storage capabilities of the application

that is using it. This characteristic render the descriptor appropriate for use in large

medical (or greyscale) image databases.

The experimental results showed that the proposed descriptor can be used for the re-

trieval of medical images more successfully than other state of art low level features.

The proposed method is an extension of the state of art Tamura Texture to which, in

the Directionality histogram, brightness and spatial distribution information is added.

The proposed method can be used as part of a broader retrieval system that uses more

characteristics, replacing the Tamura Texture Directionality Histogram extraction unit.

The proposed descriptor’s capability of achieving reliable retrieval results, even in its

compact versions, allows the possibility of an additional element that can be integrated

into the header of DICOM files. DICOM is an all-encompassing data transfer, storage

and display protocol built and designed to cover all functional aspects in digital imag-

ing [6]. The combination of visual characteristics described by the proposed descriptor

with the textual characteristics already included in the DICOM header could create a

hybrid retrieval system with very good results. Corresponding systems that have been

developed [39] [40], [41] use non compact descriptors which are extracted from the

images in advance and saved in appropriate databases. The difference with the system

which could comprise future work lies in the fact that the proposed descriptor would

be extracted during image production and integrated into the file header, without par-

ticularly affecting the image’s size. Integration of the proposed descriptor into DICOM

files would contribute to the development of a CAD (computer-aided diagnosis) sys-

tem. Nowadays, doctors can search for similar cases based on the textual information

included in DICOM files. With the proposed method, they would also be able to use

the visual information. For example, for a patient exhibiting an unexpected image on

a chest MRI scan, the doctor would use the terms “Chest” and “MRI” as textual in-

formation and would supply the CAD with the patient’s radiology images. The system

will return similar cases entered in the database as well as the diagnosis/treatment

5 http://www.ee.duth.gr/acsl/results
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followed in said cases. It should be noted that by no means does the system offer a

diagnosis, but rather a reference to similar cases.

Additionally, by using the proposed descriptor, it is also possible to design a quick

retrieval system for medical images. A significant factor influencing the speed of a re-

trieval system is the distance computational time. The proposed descriptor can be used

to design a multi-level database which would include different sizes of the descriptor.

During the first retrieval phase, a compact version of the descriptor would be used,

which may not achieve the best retrieval results, yet it would locate and reject those

images least relevant to the query image and exclude them from the next phase of

the process. In the next stage, a less compact version of the descriptor would be used,

concluding in the final stage where the largest descriptor version would be used, but

applied to a very small number of images.

Finally, an element which could improve the performance of the proposed descriptor

is the application of a detection technique for the minimum boundary rectangle to the

images, and the extraction of features only from the pixels enclosed within it.

Proposed descriptor, img(Rummager) and img(Anaktisi) are programmed in C# and

are available as open source projects under the GNU General Public License (GPL).
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