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Abstract. This chapter discusses content-based recommendation systems, i.e., 
systems that recommend an item to a user based upon a description of the item 
and a profile of the user’s interests. Content-based recommendation systems 
may be used in a variety of domains ranging from recommending web pages, 
news articles, restaurants, television programs, and items for sale. Although the 
details of various systems differ, content-based recommendation systems share 
in common a means for describing the items that may be recommended, a 
means for creating a profile of the user that describes the types of items the user 
likes, and a means of comparing items to the user profile to determine what to 
recommend. The profile is often created and updated automatically in response 
to feedback on the desirability of items that have been presented to the user. 

10.1 Introduction 

A common scenario for modern recommendation systems is a Web application with 
which a user interacts. Typically, a system presents a summary list of items to a user, 
and the user selects among the items to receive more details on an item or to interact 
with the item in some way. For example, online news sites present web pages with 
headlines (and occasionally story summaries) and allow the user to select a headline 
to read a story. E-commerce sites often present a page with a list of individual 
products and then allow the user to see more details about a selected product and 
purchase the product. Although the web server transmits HTML and the user sees a 
web page, the web server typically has a database of items and dynamically 
constructs web pages with a list of items. Because there are often many more items 
available in a database than would easily fit on a web page, it is necessary to select a 
subset of items to display to the user or to determine an order in which to display the 
items. 



Content-based recommendation systems analyze item descriptions to identify items 
that are of particular interest to the user. Because the details of recommendation 
systems differ based on the representation of items, this chapter first discusses 
alternative item representations. Next, recommendation algorithms suited for each 
representation are discussed. The chapter concludes with a discussion of variants of 
the approaches, the strengths and weaknesses of content-based recommendation 
systems, and directions for future research and development. 

10.1.1  Item Representation 

Items that can be recommended to the user are often stored in a database table. Table 
10.1 shows a simple database with records (i.e., “rows”) that describe three 
restaurants. The column names (e.g., Cuisine or Service) are properties of restaurants. 
These properties are also called “attributes,” “characteristics,” “fields,” or “variables” 
in different publications. Each record contains a value for each attribute. A unique 
identifier, ID in Table 10.1, allows items with the same name to be distinguished and 
serves as a key to retrieve the other attributes of the record. 

Table 10.1. A restaurant database 

ID Name Cuisine Service Cost 
10001 Mike’s Pizza Italian Counter Low 
10002 Chris’s Cafe French Table Medium 
10003 Jacques Bistro French Table High 
 

The database depicted in Table 10.1 could be used to drive a web site that lists and 
recommends restaurants. This is an example of structured data in which there is a 
small number of attributes, each item is described by the same set of attributes, and 
there is a known set of values that the attributes may have. In this case, many machine 
learning algorithms may be used to learn a user profile, or a menu interface can easily 
be created to allow a user to create a profile. The next section of this chapter 
discusses several approaches to creating a user profile from structured data. 

Of course, a web page typically has more information than is shown in Table 10.1, 
such as a text description of the restaurant, a restaurant review, or even a menu. These 
may easily be stored as additional fields in the database and a web page can be 
created with templates to display the text fields (as well as the structured data). 
However, free text data creates a number of complications when learning a user 
profile. For example, a profile might indicate that there is an 80% probability that a 
particular user would like a French restaurant. This might be added to the profile 
because a user gave a positive review of four out of five French restaurants. 
However, unrestricted text fields are typically unique and there would be no 
opportunity to provide feedback on five restaurants described as “A charming café 
with attentive staff overlooking the river.” 

An extreme example of unstructured data may occur in news articles. Table 10.2 
shows an example of a part of a news article. The entire article can be treated as a 
large unrestricted text field. 



Table 10.2. Part of a newspaper article 

Lawmakers Fine-Tuning Energy Plan  
SACRAMENTO, Calif. -- With California's energy reserves remaining all but 
depleted, lawmakers prepared to work through the weekend fine-tuning a plan Gov. 
Gray Davis says will put the state in the power business for "a long time to come." 
The proposal involves partially taking over California's two largest utilities and 
signing long-term contracts of up to 10 years to buy electricity from wholesalers. 

 
Unrestricted texts such as news articles are examples of unstructured data. Unlike 
structured data, there are no attribute names with well-defined values. Furthermore, 
the full complexity of natural language may be present in the text field including 
polysemous words (the same word may have several meanings) and synonyms 
(different words may have the same meaning). For example, in the article in Table 
10.2, “Gray” is a name rather than a color, and “power” and “electricity” refer to the 
same underlying concept. 

Many domains are best represented by semi-structured data in which there are 
some attributes with a set of restricted values and some free-text fields. A common 
approach to dealing with free text fields is to convert the free text to a structured 
representation. For example, each word may be viewed as an attribute, with a 
Boolean value indicating whether the word is in the article or with an integer value 
indicating the number of times the word appears in the article. 

Many personalization systems that deal with unrestricted text use a technique to 
create a structured representation that originated with text search systems [34]. In this 
formalism, rather than using words, the root forms of words are typically created 
through a process called stemming [30]. The goal of stemming is to create a term that 
reflects the common meaning behind words such as “compute,” “computation,” 
“computer” “computes” and “computers.” The value of a variable associated with a 
term is a real number that represents the importance or relevance. This value is called 
the tf*idf weight (term-frequency times inverse document frequency). The tf*idf 
weight, w(t,d), of a term t in a document d is a function of the frequency of t in the 
document (tft,d), the number of documents that contain the term (dft) and the number 
of documents in the collection (N).1 
 

 
 

                                                           
1  Note that in the description of tf*idf weights, the word “document” is traditionally used since 

the original motivation was to retrieve documents. While the chapter will stick with the 
original terminology, in a recommendation system, the documents correspond to a text 
description of an item to be recommended. Note that the equations here are representative of 
the class of formulae called tf*idf. In general, tf*idf systems have weights that increase 
monotonically with term frequency and decrease monotonically with document frequency. 
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Table 10.3 shows the tf*idf representation (also called the vector space 
representation) of the complete article excerpted in Table 10.2. The terms are ordered 
by the tf*idf weight. The intuition behind the weight is that the terms with the highest 
weight occur more often in that document than in the other documents, and therefore 
are more central to the topic of the document. Note that terms such as “util” (a stem 
of “utility”), “power,” “megawatt,” are among the highest weighted terms capturing 
the meaning.  

Table 10.3. tf*idf representation of the article in Table 10.2 

util-0.339 power-0.329 megawatt-0.309 electr-0.217 energi-0.206 california-0.181 
debt-0.128 lawmak-0.128 state-0.122 wholesal-0.119 partial-0.106 consum-0.105 
alert-0.103 scroung-0.096 advoc-0.09 testi-0.088 bail-out-0.088 crisi-0.085 amid-
0.084 price-0.083 long-0.082 bond-0.081 plan-0.081 term-0.08 grid-0.078 reserv-
0.077 blackout-0.076 bid-0.076 market-0.074 fine-0.073 deregul-0.07 spiral-0.068 
deplet-0.068 liar-0.066. 
 
Of course, this representation does not capture the context in which a word is used. It 
loses the relationships between words in the description. For example, a description 
of a steak house might contain the sentence, “there is nothing on the menu that a 
vegetarian would like” while the description of a vegetarian restaurant might mention 
“vegan” rather than vegetarian. In a manually created structured database, the cuisine 
attribute having a value of “vegetarian” would indicate that the restaurant is indeed a 
vegetarian one. In contrast, when converting an unstructured text description to 
structured data, the presence of the word vegetarian does not always indicate that a 
restaurant is vegetarian and the absence of the word vegetarian does not always 
indicate that the restaurant is not a vegetarian restaurant. As a consequence, 
techniques for creating user profiles that deal with structured data need to differ 
somewhat from those techniques that deal with unstructured data or unstructured data 
automatically and imprecisely converted to structured data. 

One variant on using words as terms is to use sets of contiguous words as terms. 
For example, in the article in Table 10.2, terms such as “energy reserves” and “power 
business” might be more descriptive of the content than these words treated as 
individual terms. Of course, terms such as “all but” would also be included, but one 
would expect that these have very low weights, in the same way that “all” and “but” 
individually have low weights and are not among the most important terms in Table 
10.3. 



10.2  User Profiles 

A profile of the user’s interests is used by most recommendation systems. This profile 
may consist of a number of different types of information. Here, we concentrate on 
two types of information: 

 
1. A model of the user’s preferences, i.e., a description of the types of items that 

interest the user. There are many possible alternative representations of this 
description, but one common representation is a function that for any item predicts 
the likelihood that the user is interested in that item. For efficiency purposes, this 
function may be used to retrieve the n items most likely to be of interest to the 
user. 

2. A history of the user’s interactions with the recommendation system. This may 
include storing the items that a user has viewed together with other information 
about the user’s interaction, (e.g., whether the user has purchased the item or a 
rating that the user has given the item). Other types of history include saving 
queries typed by the user (e.g., that a user searched for an Italian restaurant in the 
90210 zip code). 

 
There are several uses of the history of user interactions. First, the system can simply 
display recently visited items to facilitate the user returning to these items. Second, 
the system can filter out from a recommendation system an item that the user has 
already purchased or read.2 Another important use of the history in content-based 
recommendation systems is to serve as training data for a machine learning algorithm 
that creates a user model. The next section will discuss several different approaches 
to learning a user model. Here, we briefly describe approaches of manually providing 
the information used by recommendation systems: user customization and rule-based 
recommendation systems. 

In user customization, a recommendation system provides an interface that allows 
users to construct a representation of their own interests. Often check boxes are used 
to allow a user to select from the known values of attributes, e.g., the cuisine of 
restaurants, the names of favorite sports teams, the favorite sections of a news site, or 
the genre of favorite movies. In other cases, a form allows a user to type words that 
occur in the free text descriptions of items, e.g., the name of a musician or author that 
interests the user. Once the user has entered this information, a simple database 
matching process is used to find items that meet the specified criteria and display 
them to the user.  

There are several limitations of user customization systems. First, they require 
effort from the user and it is difficult to get many users to make this effort. This is 
particularly true when the user’s interests change, e.g., a user may not follow football 

                                                           
2  Of course, in some situations it is appropriate to recommend an item the user has purchased 

and in other situations it is not. For example, a system should continue to recommend an 
item that wears out or is expended, such as a razor blade or print cartridge, while there is 
little value in recommending a CD or DVD a user owns. 

  



during the season but then become interested in the Superbowl. Second, 
customization systems do not provide a way to determine the order in which to 
present items and can find either too few or too many matching items to display. 

Figure 10.1 shows book recommendations at Amazon.com. Although 
Amazon.com is usually thought of as a good example of collaborative 
recommendation (see Chapter 9 of this book [35]), parts of the user’s profile can be 
viewed as a content-based profile. For example, Amazon contains a feature called 
“favorites” that represents the categories of items preferred by users. These favorites 
are either calculated by keeping track of the categories of items purchased by users or 
may be set manually by the user. Figure 10.2 shows an example of a user 
customization interface in which a user can select the categories. 

In rule-based recommendation systems, the recommendation system has rules to 
recommend other products based on the user history. For example, a system may 
contain a rule that recommends the sequel to a book or movie to people who have 
purchased the early item in the series. Another rule might recommend a new CD by 
an artist to users that purchased earlier CDs by that artist. Rule-based systems may 
capture several common reasons for making recommendations, but they do not offer 
the same detailed personalized recommendations that are available with other 
recommendation systems. 

 
 

 
 

Fig. 10.1. Book recommendations by Amazon.com. 

 



 
 

Fig. 10.2. User customization in Amazon.com 

10.3  Learning a User Model 

Creating a model of the user’s preference from the user history is a form of 
classification learning. The training data of a classification learner is divided into 
categories, e.g., the binary categories “items the user likes” and “items the user 
doesn’t like.” This is accomplished either through explicit feedback in which the user 
rates items via some interface for collecting feedback or implicitly by observing the 
user’s interactions with items. For example, if a user purchases an item, that is a sign 
that the user likes the item, while if the user purchases and returns the item that is a 
sign that the user doesn’t like the item. In general, there is a tradeoff since implicit 
methods can collect a large amount of data with some uncertainty as to whether the 
user actually likes the item. In contrast, when the user explicitly rates items, there is 
little or no noise in the training data, but users tend to provide explicit feedback on 
only a small percentage of the items they interact with. 

Figure 10.3 shows an example of a recommendation system with explicit user 
feedback. The recommender “MyBestBets” by ChoiceStream is a web based inter-
face to a television recommendation system. Users can click on the thumbs up or 
thumbs down buttons to indicate whether they like the program that is recommended. 
By necessity, this system requires explicit feedback because it is not integrated with a 
television [1] and cannot infer the user’s interests by observing the user’s behavior. 



 
 

Fig. 10.3. A recommendation system using explicit feedback 
 
The next section reviews a number of classification learning algorithms. Such 
algorithms are the key component of content-based recommendation systems, 
because they learn a function that models each user’s interests. Given a new item and 
the user model, the function predicts whether the user would be interested in the item. 
Many of the classification learning algorithms create a function that will provide an 
estimate of the probability that a user will like an unseen item. This probability may 
be used to sort a list of recommendations. Alternatively, an algorithm may create a 
function that directly predicts a numeric value such as the degree of interest. 

Some of the algorithms below are traditional machine learning algorithms de-
signed to work on structured data. When they operate on free text, the free text is first 
converted to structured data by selecting a small subset of the terms as attributes. In 
contrast, other algorithms are designed to work in high dimensional spaces and do not 
require a preprocessing step of feature selection. 

10.4  Decision Trees and Rule Induction 

Decision tree learners such as ID3 [31] build a decision tree by recursively 
partitioning training data, in this case text documents, into subgroups until those 
subgroups contain only instances of a single class. A partition is formed by a test on 



some feature -- in the context of text classification typically the presence or absence 
of an individual word or phrase. Expected information gain is a commonly used 
criterion to select the most informative features for the partition tests [38]. 

Decision trees have been studied extensively in use with structured data such as 
that shown in Table 10.1. Given feedback on the restaurants, a decision tree can 
easily represent and learn a profile of someone who prefers to eat in expensive French 
restaurants or inexpensive Mexican restaurants. Arguably, the decision tree bias is not 
ideal for unstructured text classification tasks [29]. As a consequence of the 
information-theoretic splitting criteria used by decision tree learners, the inductive 
bias of decision trees is a preference for small trees with few tests. However, it can be 
shown experimentally that text classification tasks frequently involve a large number 
of relevant features [17]. Therefore, a decision tree’s tendency to base classifications 
on as few tests as possible can lead to poor performance on text classification. 
However, when there are a small number of structured attributes, the performance, 
simplicity and understandability of decision trees for content-based models are all 
advantages. Kim et al. [18] describe an application of decision trees for personalizing 
advertisements on web pages. 

RIPPER [9] is a rule induction algorithm closely related to decision trees that 
operates in a similar fashion to the recursive data partitioning approach described 
above. Despite the problematic inductive bias, however, RIPPER performs 
competitively with other state-of-the-art text classification algorithms. In part, the 
performance can be attributed to a sophisticated post-pruning algorithm that 
optimizes the fit of the induced rule set with respect to the training data as a whole. 
Furthermore, RIPPER supports multi-valued attributes, which leads to a natural 
representation for text classification tasks, i.e., the individual words of a text 
document can be represented as multiple feature values for a single feature. While 
this is essentially a representational convenience if rules are to be learned from 
unstructured text documents, the approach can lead to more powerful classifiers for 
semi-structured text documents. For example, the text contained in separate fields of 
an email message, such as sender, subject, and body text, can be represented as 
separate multi-valued features, which allows the algorithm to take advantage of the 
document’s structure in a natural fashion. Cohen [10] shows how RIPPER can 
classify e-mail messages into user defined categories. 

10.5  Nearest Neighbor Methods 

The nearest neighbor algorithm simply stores all of its training data, here textual 
descriptions of implicitly or explicitly labeled items, in memory. In order to classify a 
new, unlabeled item, the algorithm compares it to all stored items using a similarity 
function and determines the "nearest neighbor" or the k nearest neighbors. The class 
label or numeric score for a previously unseen item can then be derived from the class 
labels of the nearest neighbors. 

The similarity function used by the nearest neighbor algorithm depends on the type 
of data. For structured data, a Euclidean distance metric is often used. When using the 
vector space model, the cosine similarity measure is often used [34]. In the Euclidean 



distance function, the same feature having a small value in two examples is treated 
the same as that feature having a large value in both examples. In contrast, the cosine 
similarity function will not have a large value if corresponding features of two 
examples have small values. As a consequence, it is appropriate for text when we 
want two documents to be similar when they are about the same topic, but not when 
they are both not about a topic. 

The vector space approach and the cosine similarity function have been applied to 
several text classification applications ([11], [39], [2]) and, despite the algorithm’s 
unquestionable simplicity, it performs competitively with more complex algorithms. 
The Daily Learner system uses the nearest neighbor algorithm to create a model of 
the user’s short term interests [7]. Gixo, a personalized news system, also uses text 
similarity as a basis for recommendation (Figure 10.4). The headlines are preceded by 
an icon that indicates how popular the item is (the first bar) and how similar the story 
is to stories that have been read by the user before (the second bar). The fact that 
these bars differ shows the value of personalizing to the individual. 
 

 
 
Fig. 10.4. Gixo presents personalized news based on similarity to articles that have previously 
been read 

10.6  Relevance Feedback and Rocchio’s Algorithm 

Since the success of document retrieval in the vector space model depends on the 
user’s ability to construct queries by selecting a set of representative keywords [34], 
methods that help users to incrementally refine queries based on previous search 
results have been the focus of much research. These methods are commonly referred 
to as relevance feedback. The general principle is to allow users to rate documents 
returned by the retrieval system with respect to their information need. This form of 
feedback can subsequently be used to incrementally refine the initial query. In a 



manner analogous to rating items, there are explicit and implicit means of collecting 
relevance feedback data. 

Rocchio’s algorithm [33] is a widely used relevance feedback algorithm that 
operates in the vector space model. The algorithm is based on the modification of an 
initial query through differently weighted prototypes of relevant and non-relevant 
documents. The approach forms two document prototypes by taking the vector sum 
over all relevant and non-relevant documents. The following formula summarizes the 
algorithm formally: 
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ere, Q  is the user’s query at iteration i, and α, β, and γ are parameters that control 

ork, researchers have used a variation of Rocchio’s algorithm in a 
ma

10.7  Linear Classifiers 

Algorithms that learn linear decision boundaries, i.e., hyperplanes separating in-

H i
the influence of the original query and the two prototypes on the resulting modified 
query. The underlying intuition of the above formula is to incrementally move the 
query vector towards clusters of relevant documents and away from irrelevant 
documents. While this goal forms an intuitive justification for Rocchio’s algorithm, 
there is no theoretically motivated basis for the above formula, i.e., neither 
performance nor convergence can be guaranteed. However, empirical experiments 
have demonstrated that the approach leads to significant improvements in retrieval 
performance [33].  

In more recent w
chine learning context, i.e., for learning a user profile from unstructured text ([15], 

[3], [29]). The goal in these applications is to automatically induce a text classifier 
that can distinguish between classes of documents. In this context, it is assumed that 
no initial query exists, and the algorithm forms prototypes for classes analogously to 
Rocchio’s approach as vector sums over documents belonging to the same class. The 
result of the algorithm is a set of weight vectors, whose proximity to unlabeled 
documents can be used to assign class membership. Similar to the relevance feedback 
version of Rocchio’s algorithm, the Rocchio-based classification approach does not 
have any theoretic underpinnings and there are no performance or convergence 
guarantees. 

stances in a multi-dimensional space, are referred to as linear classifiers. There are a 
large number of algorithms that fall into this category, and many of them have been 
successfully applied to text classification tasks [20]. All linear classifiers can be 
described in a common representational framework. In general, the outcome of the 
learning process is an n-dimensional weight vector w, whose dot product with an n-
dimensional instance, e.g., a text document represented in the vector space model, 
results in a numeric score prediction. Retaining the numeric prediction leads to a 
linear regression approach. However, a threshold can be used to convert continuous 



predictions to discrete class labels. While this general framework holds for all linear 
classifiers, the algorithms differ in the training methods used to derive the weight 
vector w. For example, the equation below is known as the Widrow-Hoff rule, delta 
rule or gradient descent rule and derives the weight vector w by incremental vector 
movements in the direction of the negative gradient of the example's squared error 
[37]. This is the direction in which the error falls most rapidly.  
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The equation shows how the weight vector w can be derived incrementally. The 
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f the above learning schemes for linear algorithms is that 
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 approaches tend to converge on 
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er product of instance xi and weight vector wi is the algorithm’s numeric prediction 
for instance xi. The prediction error is determined by subtracting the instance’s known 
score, yi, from the predicted score. The resulting error is then multiplied by the 
original instance vector xi and the learning rate η to form a vector that, when 
subtracted from the weight vector w, moves w towards the correct prediction for 
instance xi. The learning rate η controls the degree to which every additional instance 
affects the previous weight vector. 

An alternative algorithm that ha
proach above on text classification tasks with many features is the exponentiated 

gradient (EG) algorithm. Kivinen and Warmuth [19] prove a bound for EG’s error, 
which depends only logarithmically on the number of features. This result offers a 
theoretic argument for EG’s performance on text classification problems, which are 
typically high-dimensional.  

An important advantage o
y can be performed on-line, i.e., the current weight vector can be modified 

incrementally as new instances become available. This is a crucial advantage for 
applications that operate under real-time constraints. 

Finally, it is important to note that while the above
perplanes that separate the training data accurately, the hyperplane’s generalization 

performance might not be optimal. A related approach aimed at improving 
generalization performance is known as support vector machines [36]. The central 
idea underlying support vector machines is to maximize the classification margin, i.e., 
the distance between the decision boundary and the closest training instances, the so-
called support vectors. A series of empirical experiments on a variety of benchmark 
data sets indicated that linear support vector machines perform particularly well on 
text classification tasks [17]. The main reason for this is that the margin maximization 
is an inherently built-in overfitting protection mechanism. A reduced tendency to 
overfit training data is particularly useful for text classification algorithms, because in 
this domain high dimensional concepts must often be learned from limited training 
data, which is a scenario prone to overfitting. 



10.8  Probabilistic Methods and Naïve Bayes 

In contrast to the lack of theoretical justifications for the vector space model, there 
has been much work on probabilistic text classification approaches. This section 
describes one such example, the naïve Bayesian classifier. Early work on a 
probabilistic classifier and its text classification performance was reported by Maron 
[24]. Today, this algorithm is commonly referred to as a naïve Bayesian Classifier 
[13]. Researchers have recognized Naïve Bayes as an exceptionally well-performing 
text classification algorithm and have frequently adopted the algorithm in recent work 
([27], [28], [25]). 

The algorithm’s popularity and performance for text classification applications 
have prompted researchers to empirically evaluate and compare different variations of 
naïve Bayes that have appeared in the literature (e.g. [26], [21]). In summary, 
McCallum and Nigam [26] note that there are two frequently used formulations of 
naïve Bayes, the multivariate Bernoulli and the multinomial model. Both models 
share the following principles. It is assumed that text documents are generated by an 
underlying generative model, specifically a parameterized mixture model:  
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Here, each class c corresponds to a mixture component that is parameterized by a 
disjoint subset of θ, and the sum of total probability over all mixture components 
determines the likelihood of a document. Once the parameters θ have been learned 
from training data, the posterior probability of class membership given the evidence 
of a test document can be determined according to Bayes’ rule: 
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While the above principles hold for naïve Bayes classification in general, the multi-
variate Bernoulli and multinomial models differ in the way p(di|cj; θ) is estimated 
from training data. 

The multivariate Bernoulli formulation was derived with structured data in mind. 
For text classification tasks, it assumes that each document is represented as a binary 
vector over the space of all words from a vocabulary V. Each element Bit in this 
vector indicates whether a word appears at least once in the document. Under the 
naïve Bayes assumption that the probability of each word occurring in a document is 
independent of other words given the class label, p(di|cj; θ) can be expressed as a 
simple product: 
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Bayes-optimal optimal estimates for p(wt|cj; θ) can be determined by word 
occurrence counting over the data: 
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In contrast to the binary document representation of the multivariate Bernoulli model, 
the multinomial formulation captures word frequency information. This model 
assumes that documents are generated by a sequence of independent trials drawn 
from a multinomial probability distribution. Again, the naïve Bayes independence 
assumption allows p(di|cj; θ) to be determined based on individual word probabilities: 
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Here, Nit is the number of occurrences of word wt in document di. Taking word 
frequencies into account, maximum likelihood estimates for p(wt|cj; θ) can be derived 
from training data: 
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Empirically, the multinomial naïve Bayes formulation was shown to outperform the 
multivariate Bernoulli model. This effect is particularly noticeable for large 
vocabularies (McCallum and Nigam, 1998).  

Even though the naïve Bayes assumption of class-conditional attribute 
independence is clearly violated in the context of text classification, naïve Bayes per-
forms very well. Domingos and Pazzani [12] offer a possible explanation for this 
paradox by showing that class-conditional feature independence is not a necessary 
condition for the optimality of naïve Bayes. The naïve Bayes classifier has been used 
in several content-based recommendation systems including Syskill & Webert [29].  



10.9  Trends in Content-Based Filtering 

Belkin & Croft [5] surveyed some of the first content-based recommendation systems 
and noted that they made use of technology related to information retrieval such as 
tf*idf and Rocchio’s method. Indeed, some of the early work on content-based 
recommendation used the term “query” to refer to user models. In this view, a user 
model is a saved query (or a set of saved queries) that can retrieve additional or new 
information of interest to the user. Some representative early systems include a 
system at Bellcore [14] that found new technical reports related to previously read 
reports and LyricTime [22] that recommended songs in a multimedia player based on 
a profile learned from the user’s feedback on prior songs played. 

The creation and rapid growth of the World Wide Web in the mid 1990s made 
access to vast amounts of information possible and created problems of locating and 
identifying personally relevant information. Some in the Machine Learning 
community applied traditional machine learning methods to user modeling of 
document interests. These methods reduced the text training data to a few hundred 
highly relevant words using techniques such as information theory or tf*idf. Some 
representative systems included WebWatcher [16] and Syskill & Webert [29]. 

 

 
Fig. 10.5. The Syskill & Webert system learns a model of the user’s preference for web pages 



10.10 Limitations and Extensions 

Although there are different approaches to learning a model of the user’s interest with 
content-based recommendation, no content-based recommendation system can give 
good recommendations if the content does not contain enough information to 
distinguish items the user likes from items the user doesn’t like. In recommending 
some items, e.g., jokes or poems, there often isn’t enough information in the word 
frequency to model the user’s interests. While it would be possible to tell a lawyer 
joke from a chicken joke based upon word frequencies, it would be difficult to 
distinguish a funny lawyer joke from other lawyer jokes. As a consequence, other 
recommendation technologies, such as collaborative recommenders [35], should be 
used in such situations.  

In some situations, e.g., recommending movies, restaurants, or television pro-
grams, there is some structured information (e.g., the genre of the movie as well as 
actors and directors) that can be used by a content-based system. However, this 
information might be supplemented by the opinions of other users. One way to 
include the opinions of other users in the frameworks discussed in Section 10.2 is to 
add additional data associated to the representation of the examples. For example, 
Basu et al. [4] add features to examples that indicate the identifiers of other users who 
like an item. Ripper was applied to the resulting data that could learn profiles with 
both collaborative and content-based features (e.g., a user might like a science fiction 
movie if USER-109 likes it). Although not strictly a content-based system, the same 
technology as content-based recommenders is used to learn a user model. Indeed, 
Billsus and Pazzani [6] have shown that any machine learning algorithm may be used 
as the basis for collaborative filtering by transforming user ratings to attributes. 
Chapter 12 of this book [8] discusses a variety of other approaches to combining 
content and collaborative information in recommendation systems. 

A final usage of content in recommendations is worth noting. Simple content-
based rules may be used to filter the results of other methods such as collaborative 
filtering. For example, even if it is the case that people who buy dolls also buy adult 
videos, it might be important not to recommend adult items in a particular application. 
Similarly, although not strictly content-based, some systems might not recommend 
items that are out of stock. 

10.11 Summary 

Content-based recommendation systems recommend an item to a user based upon a 
description of the item and a profile of the user’s interests. While a user profile may 
be entered by the user, it is commonly learned from feedback the user provides on 
items. A variety of learning algorithms have been adapted to learning user profiles, 
and the choice of learning algorithm depends upon the representation of content. 
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