Content-Based Routing of Path Queries in
Peer-to-Peer Systems*

Georgia Koloniari and Evaggelia Pitoura

Department of Computer Science, University of loannina, Greece
{kgeorgia,pitoura}l@cs.uoi.gr

Abstract. Peer-to-peer (P2P) systems are gaining increasing popularity
as a scalable means to share data among a large number of autonomous
nodes. In this paper, we consider the case in which the nodes in a P2P
system store XML documents. We propose a fully decentralized approach
to the problem of routing path queries among the nodes of a P2P sys-
tem based on maintaining specialized data structures, called filters that
efficiently summarize the content, i.e., the documents, of one or more
node. Our proposed filters, called multi-level Bloom filters, are based
on extending Bloom filters so that they maintain information about the
structure of the documents. In addition, we advocate building a hierar-
chical organization of nodes by clustering together nodes with similar
content. Similarity between nodes is related to the similarity between
the corresponding filters. We also present an efficient method for update
propagation. Our experimental results show that multi-level Bloom filters
outperform the classical Bloom filters in routing path queries. Further-
more, the content-based hierarchical grouping of nodes increases recall,
that is, the number of documents that are retrieved.

1 Introduction

The popularity of file sharing systems such as Napster, Gnutella and Kazaa has
spurred much current attention to peer-to-peer (P2P) computing. Peer-to-peer
computing refers to a form of distributed computing that involves a large number
of autonomous computing nodes (the peers) that cooperate to share resources
and services [I]. As opposed to traditional client-server computing, nodes in a
P2P system have equal roles and act as both data providers and data consumers.
Furthermore, such systems are highly dynamic in that nodes join or leave the
system and change their content constantly.

Motivated by the fact that XML has evolved as a standard for publishing and
exchanging data in the Internet, we assume that the nodes in a P2P system store
and share XML documents [23]. Such XML documents may correspond either
to native XML documents or to XML-based descriptions of local services or
datasets. Such datasets may be stored in local to each node databases supporting
diverse data models and exported by the node as XML data.

* Work supported in part by the IST programme of the European Commission FET
under the IST-2001-32645 DBGlobe project, IST-2001-32645

E. Bertino et al. (Eds.): EDBT 2004, LNCS 2992, pp. 29-[7] 2004.
© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

30 G. Koloniari and E. Pitoura

A central issue in P2P computing is locating the appropriate data in these
huge, massively distributed and highly dynamic data collections. Traditionally,
search is based on keyword queries, that is, queries for documents whose name
matches a given keyword or for documents that include a specific keyword. In
this paper, we extend search to support path queries that exploit the structure of
XML documents. Although data may exhibit some structure, in a P2P context,
it is too varied, irregular or mutable to easily map to a fixed schema. Thus, our
assumption is that XML documents are schema-less.

We propose a decentralized approach to routing path queries among highly
distributed XML documents based on maintaining specialized data structures
that summarize large collections of documents. We call such data structures
filters. In particular, each node maintains two types of filters, a local filter sum-
marizing the documents stored locally at the node and one or more merged filters
summarizing the documents of its neighboring nodes. Each node uses its filters
to route a query only to those nodes that may contain relevant documents. Fil-
ters should be small, scalable to a large number of nodes and documents and
support frequent updates.

Bloom filters have been used as summaries in such a context [2]. Bloom
filters are compact data structures used to support keyword queries. However,
Bloom filters are not appropriate for summarizing hierarchical data, since they
do not exploit the structure of data. To this end, we introduce two novel multi-
level data structures, Breadth and Depth Bloom filters, that support efficient
processing of path queries. Our experimental results show that both multi-level
Bloom filters outperform a same size traditional Bloom filter in evaluating path
queries. We show how multi-level Bloom filters can be used as summaries to
support efficient query routing in a P2P system where the nodes are organized
to form hierarchies. Furthermore, we propose an efficient mechanism for the
propagation of filter updates. Our experimental results show that the proposed
mechanism scales well to a large number of nodes.

In addition, we propose creating overlay networks of nodes by linking to-
gether nodes with similar content. The similarity of the content (i.e., the local
documents) of two nodes is related to the similarity of their filters. This is cost
effective, since a filter for a set of documents is much smaller than the documents
themselves. Furthermore, the filter comparison operation is more efficient than a
direct comparison between sets of documents. As our experimental results show,
the content-based organization is very efficient in retrieving a large number of
relevant documents, since it benefits from the content clusters that are created
when forming the network.

In summary, the contribution of this paper is twofold: (i) it proposes using
filters for routing path queries over distributed collections of schema-less XML
documents and (ii) it introduces overlay networks over XML documents that
cluster nodes with similar documents, where similarity between documents is
related to the similarity between their filters.

The remainder of this paper is structured as follows. Section 2 introduces
multi-level Bloom filters as XML routers in P2P systems. Section 3 describes a

Content-Based Routing of Path Queries in Peer-to-Peer Systems 31

hierarchical distribution of filters and the mechanism for building content-based
overlay networks based on filter similarity. Section 4 presents the algorithms for
query routing and update propagation, while Section 5 our experimental results.
Section 6 presents related research and Section 7 concludes the paper.

2 Routers for XML Documents

We consider a P2P system in which each participating node stores XML docu-
ments. Users specify queries using path expressions. Such queries may originate
at any node. Since it is not reasonable to expect that users know which node
hosts the requested documents, we propose using appropriately distributed data
structures, called filters, to route the query to the appropriate nodes.

2.1 System Model

We consider a P2P system where each node n; maintains a set of XML documents
D; (a particular document may be stored in more than one node). Each node is
logically linked to a relatively small set of other nodes called its neighbors.

¢ <xml>
<device>
<printer>
<color></color>
<postscript></postscript> : printer
</printer> .
<camera>
<digital></digital>
</camera> . color postscript digital
</device>

(a) (W)

device

camera

Fig. 1. Example of (a) an XML document and (b) the corresponding tree

In our data model, an XML document is represented by an unordered labeled
tree, where tree nodes correspond to document elements, while edges represent
direct element-subelement relationships. Figure [l depicts an XML service de-
scription for a printer and a camera provided by a node and the corresponding
XML tree. Although, most P2P systems support only queries for documents that
contain one or more keywords, we want also to query the structure of documents.
Thus, we consider path queries that are simple path expressions in an XPath-like
query language.

Definition 1. (path query) A path query of length p has the form ‘s; i s2 by
... 8 b7 where each l; is an element name and each s; is either / or // denoting
respectively parent-child and ancestor-descendant traversal.

A keyword query for documents containing keyword k is just the path query
//k. For a query ¢ and a document d, we say that ¢ is satisfied by d, or match(d,
q) is true, if the path expression forming the query exists in the document.
Otherwise we have a miss. Nodes that include documents that match the query
are called matching nodes.

32 G. Koloniari and E. Pitoura

2.2 Query Routing

A given query may be matched by documents at various nodes. Thus, central
to a P2P system is a mechanism for locating nodes with matching documents.
In this regard, there are two types of P2P systems. In structured P2P systems,
documents (or indexes of documents) are placed at specific nodes usually based
on distributed hashing (such as in CAN [21] and Chord [20]). With distributed
hashing, each document is associated with a key and each node is assigned a
range of keys and thus documents. Although, structured P2P systems provide
very efficient searching, they compromise node autonomy and in addition require
sophisticated load balancing procedures.

In unstructured P2P systems, resources are located at random points. Un-
structured P2P systems can be further distinguished between systems that use
indexes and those that are based on flooding and its variations. With flooding
(such as in Gnutella [22]), a node searching for a document contacts its neigh-
bor nodes which in turn contact their own neighbors until a matching node is
reached. Flooding incurs large network overheads. In the case of indexes, these
can be either centralized (as in Napster [8]), or distributed among the nodes (as
in routing indexes [19]) providing for each node a partial view of the system.

Our approach is based on unstructured P2P systems with distributed indexes.
We propose maintaining as indexes specialized data structures, called filters, to
facilitate propagating the query only to those nodes that may contain relevant
information. In particular, each node maintains one filter that summarizes all
documents that exist locally in the node. This is called a local filter. Besides
its local filter, each node also maintains one or more filter, called merged filters,
summarizing the documents of a set of its neighbors. When a query reaches a
node, the node first checks its local filter and uses the merged filters to direct
the query only to those nodes whose filters match the query.

Filters should be much smaller than the data itself and should be lossless,
that is if the data match the query, then the filter should match the query as
well. In particular, each filter should support an efficient filter-match operation
such that if a document matches a query ¢ then filter-match should also be true.
If the filter-match returns false, we say that we have a miss.

Definition 2. (filter match) A filter F(D) for a set of documents D has the fol-
lowing property: For any query g, if filter-match(q, F(D)) = false, then match(q,
d) = false, V d € D.

Note that, the reverse does not necessarily hold. That is, if filter-match(g,
F(D)) = true, then there may or may not exist documents d € D such that
match(g, d) is true. We call false positive the case in which, for a filter F(D) for
a set of documents D, filter-match(g, F(D)) = true but there is no document d
€ D that satisfies ¢, that is V d € D, match(q, d) = false. We are interested in
filters with small probability of false positives.

Bloom filters are appropriate as summarizing filters in this context in terms
of scalability, extensibility and distribution. However, they do not support path
queries. To this end, we propose an extension called multi-level Bloom filters.

Content-Based Routing of Path Queries in Peer-to-Peer Systems 33

Multi-level Bloom filters were first presented in [17] where preliminary results
were reported for their centralized use. To distinguish traditional Bloom filters
from the extended ones, we shall call the former simple Bloom filters. Other hash-
based structures, such as signatures [13], have similar properties with Bloom
filters and our approach could also be applied to extend them in a similar fashion.

2.3 Multi-level Bloom Filters

Bloom filters are compact data structures for probabilistic representation of a
set that support membership queries (“Is element a in set A?”). Since their
introduction [3], Bloom filters have seen many uses such as web caching [4] and
query filtering and routing [2I5]. Consider a set A = {a1, as,..., a, } of n elements.
The idea is to allocate a vector v of m bits, initially all set to 0, and then choose
k independent hash functions, hq, ho, ..., hi, each with range 1 to m. For each
element a € A, the bits at positions hi(a), ha(a), ..., hi(a) in v are set to 1
(Fig. 2)). A particular bit may be set to 1 many times. Given a query for b, the
bits at positions hi(b), ha(b), ..., hi(b) are checked. If any of them is 0, then
certainly b ¢ A. Otherwise, we conjecture that b is in the set although there is a
certain probability that we are wrong. This is a false positive. It has been shown
[3] that the probability of a false positive is equal to (1 — e~ **/™)k. To support
updates of the set A we maintain for each location ¢ in the bit vector a counter
¢(i) of the number of times that the bit is set to 1 (the number of elements that
hashed to 7 under any of the hash functions).

hi(a) =4 ho(a) =2 hg(a) =5 hy(a) =8

Ll el [[fmoee

’7 m = 10 bits 7‘

Fig. 2. A (simple) Bloom filter with k¥ = 4 hash functions

Let T be an XML tree with j levels and let the level of the root be level 1.
The Breadth Bloom Filter (BBF) for an XML tree T with j levels is a set of
simple Bloom filters {BBF;, BBFy, ... BBF,}, i < j. There is one simple Bloom
filter, denoted BBF;, for each level i of the tree. In each BBF;, we insert the
elements of all nodes at level i. To improve performance and decrease the false
positive probability in the case of i < j, we may construct an additional Bloom
filter denoted BBF(, where we insert all elements that appear in any node of
the tree. For example, the BBF for the XML tree in Fig. [is a set of 4 simple
Bloom filters (Fig. Bl(a)).

The Depth Bloom Filter (DBF) for an XML tree T with j levels is a set of
simple Bloom filters {DBF(, DBF;, DBF, ..., DBF;_1}, ¢ < j. There is one
Bloom filter, denoted DBF, for each path of the tree with length 4, (i.e., a path
of i + 1 nodes), where we insert all paths of length i. For example, the DBF for
the XML tree in Fig. [[is a set of 3 simple Bloom filters (Fig. BIb)). Note that

34 G. Koloniari and E. Pitoura

(device U printer U camera U

BBF, [1] 1] 1[1] 1]of 1] o 1] 1] 1] pfedevice v priner o cams
color U postseript U digital)
BBF;, | 1] 0[0]o]1]o]1]0]0]o0]0]0]du
BBF: | 0| 1] 1]1]1]0]o[o] 1] o] 0] 1]wrmer o comern
BBF3; \ 0\ o\ 0\ 1‘ 0\ 0\ 1‘ 0\ 0\ 1‘ 1‘ 1| (color U postseript U digital)
(@)
pBF, |1 11 1] 1] o[1]o] 1] 1]1]1 oy
(device/printer U device/camera
DB, [1] o] o] o] i o] [o[] 1] o] 1] ¥ semeaistat prite o
printer/postscript)

(device/camera/digital U

pBF; [1] o[o] o] 1o 1] 1] 1] o] o] 1] aevicersrintercoter

device/printer/postscript)

(b)

Fig. 3. The multi-level Bloom filters for the XML tree of Fig.[} (a) the Breadth Bloom
filter and (b) the Depth Bloom filter

we insert paths as a whole; we do not hash each element of the path separately.
We use a different notation for paths starting from the root. This is not shown
in Fig. Blb) for ease of presentation.

The BBF filter-match operation (that checks whether a BBF matches a
query) distinguishes between queries starting from the root and partial path
queries. In both cases, if BBF(exists, the procedure checks whether it matches
all elements of the query. If so, it proceeds to examine the structure of the path,
else, it returns a miss. For a root query: /a1/a2/.../ap, every level ¢ from 1 to
p of the filter is checked for the corresponding a;. The procedure succeeds, if
there is a match for all elements. For a partial path query, for every level i of
the filter: the first element of the path is checked. If there is a match, the next
level is checked for the next element and so on until either the whole path is
matched or there is a miss. If there is a miss, the procedure repeats for level i +
1. For paths with the ancestor-descendant axis //, the path is split at the // and
the sub-paths are processed. The complexity of the BBF filter-match is O(p?)
where p is the length (number of elements) of the query; in particular, for root
queries the complexity is O(p). The DBF filter-match operation checks whether
all sub-paths of the query match the corresponding filters; its complexity is also
O(p?). A detailed description of the filter match operations is given in [24].

3 Content-Based Linking

In this section, we describe how the nodes are organized and how the filters are
built and distributed among them.

Content-Based Routing of Path Queries in Peer-to-Peer Systems 35

3.1 Hierarchical Organization

Nodes in a P2P system may be organized to form various topologies. In a hi-
erarchical organization (Fig. H), a set of nodes designated as root nodes are
connected to a main channel that provides communication among them. The
main channel acts as a broadcast mechanism and can be implemented in many
different ways. A hierarchical organization is best suited when the participat-
ing nodes have different processing and storage capabilities as well as varying
stability, that is, some nodes stay longer online, while others stay online for a
limited time. With this organization, nodes belonging to the top levels receive
more load and responsibilities, thus, the most stable and powerful nodes should
be located to the top levels of the hierarchies.

root node
root node
main
root node & rootnode = channel

-@

Fig. 4. Hierarchical organization

Each node maintains two filters: one summarizing its local documents, called
local filter and, if it is a non-leaf node, one summarizing the documents of all
nodes in its sub-tree, called merged filter. In addition, root nodes keep one merged
filter for each of the other root nodes. The construction of filters follows a bottom-
up procedure. A leaf node sends its local filter to its parent. A non-leaf node, after
receiving the filters of all its children, merge them and produces its merged filter.
Then, it merges the merged filter with its own local filter and sends the resulting
filter to its parent. When a root computes its merged filter, it propagates it to
all other root nodes.

Merging of two or more multi-level filters corresponds to computing a bitwise
OR (BOR) of each of their levels. That is, the merged filter, D, of two Breadth
Bloom filters B and C' with i levels is a Breadth Bloom filter with ¢ levels: D
= {Dy, D1, ... D;}, where D; = B; BOR C}, 0 < j < i. Similarly, we define
merging for Depth Bloom filters.

Although we describe a hierarchical organization, our mechanism can be
easily applied to other node organizations as well. Preliminary results of the
filters deployment in a non-hierarchical peer-to-peer system are reported in [I§].

3.2 Content-Based Clustering

Nodes may be organized in hierarchies based on their proximity at the under-
lying physical network to exploit physical locality and minimize query response

36 G. Koloniari and E. Pitoura

time. The formation of hierarchies can also take into account other parame-
ters such as administrative domains, stability and the different processing and
storage capabilities of the nodes. Thus, hierarchies can be formed that better
leverage the workload. However, such organizations ignore the content of nodes.
We propose an organization of nodes based on the similarity of their content so
that nodes with similar content are grouped together. The goal of such content-
based clustering is to improve the efficiency of query routing by reducing the
number of irrelevant nodes that process a query. In particular, we would like to
optimize recall, that is the percentage of matching nodes that are visited during
query routing. We expect that content-based clustering will increase recall since
matching nodes will be only a few hops apart.

Instead of checking the similarity of the documents themselves, we rely on
the similarity of their filters. This is more cost effective, since a filter for a set of
documents is much smaller than the documents. Moreover, the filter comparison
operation is more efficient than a comparison between two sets of documents.
Documents with similar filters are expected to match similar queries.

Let B be a simple Bloom filter of size m. We shall use the notation BJ[i], 1 <
1 < m to denote the ith bit of the filter. Let two simple Bloom filters B and C' of
size m, their Manhattan (or Hamming) distance, d(B,C) is defined as d(B, C)
= |B[1] - C[1]| + |B[2] - C[2]| + ... + |B[m] - C[m]]|, that is the number of bits
that they differ. We define the similarity, of B and C as similarity(B,C) = m
- d(B,C). The larger their similarity, the more similar the filters. In the case of
multi-level Bloom filters, we take the sum of the similarities of each pair of the
corresponding levels.

We use the following procedure to organize nodes based on content similarity.
When a new node n wishes to join the P2P system, it sends a join request that
contains its local filter to all root nodes. Upon receiving a join request, each
root node compares the received local filter with its merged filter and responds
to n with the measure of their filter similarity. The root node with the largest
similarity is called the winner root. Node n compares its similarity with the
winner root to a system-defined threshold. If the similarity is larger than the
threshold, n joins the hierarchy of the winner root, else n becomes a root node
itself. In the former case, node n replies to the winner root that propagates its
reply to all nodes in its sub-tree. The node connects to the node in the winner
root’s subtree that has the most similar local filter.

The procedure for creating content-based hierarchies effectively clusters
nodes based on their content, so that similar nodes belong to the same hier-
archy (cluster). The value of threshold determines the number of hierarchies in
the system and affects system performance. Statistical knowledge, such as the
average similarity among nodes, may be used to define threshold. We leave the
definition of threshold and the dynamic adaptation of its value as future work.

4 Querying and Updating

We describe next how a query is routed and how updates are processed.

Content-Based Routing of Path Queries in Peer-to-Peer Systems 37

4.1 Query Routing

Filters are used to facilitate query routing. In particular, when a query is issued
at a node n, routing proceeds as follows. The local filter of node n is checked,
and if there is a match, the local documents are searched. Next, the merged filter
of n is checked, and if there is a match, the query is propagated to n’s children.
The query is also propagated to the parent of the node. The propagation of a
query towards the bottom of the hierarchy continues, until either a leaf node is
reached, or the filter match with the merged filter of an internal node indicates
a miss. The propagation towards the top of the hierarchy continues until the
root node is reached. When a query reaches a root node, the root, apart from
checking the filter of its own sub-tree, it also checks the merged filters of the
other root nodes and forwards the query only to these root nodes for which
there is a match. When a root node receives a query from another root it only
propagates the query to its own sub-tree.

4.2 Update Propagation

When a document is updated or a document is inserted or deleted at a node,
its local filter must be updated. An update can be viewed as a delete followed
by an insert. When an update occurs at a node, apart from the update of its
local filter, all merged filters that use this local filter must be updated. We
present two different approaches for the propagation of updates based on the
way the counters of the merged filters are computed. Note that in both cases
we propagate the levels of the multi-level filter that have changed and not the
whole multi-level filter.

The straightforward way to use the counters at the merged filters is for every
node to send to its parent, along with its filter, the associated counters. Then,
the counters of the merged filter of each internal node are computed as the sum
of the respective counters of its children’s filters. We call this method CountSum.
An example with simple Bloom Filters is show in Fig. Bla). Now, when a node
updates its local filter and its own merged filter to represent the update, it also
sends the differences between its old and new counter values to its parent. After
updating its own summary, the parent propagates in turn the difference to its
parent until all affected nodes are informed. In the worst case, in which an update
occurs at a leaf node, the number of messages that need to be sent is equal to the
number of levels in the hierarchy, plus the number of roots in the main channel.

We can improve the complexity of update propagation by making the follow-
ing observation: an update will only result in a change in the filter itself if the
counter turns from 0 to 1 or vice versa. Taking this into consideration, each node
just sends its merged filter to its parent (local filter for the leaf nodes) and not
the counters. A node that has received all the filters from its children creates its
merged filter as before but uses the following procedure to compute the counters:
it increases each counter bit by one every time a filter of its children has a 1
in the corresponding position. Thus, each bit of the counter of a merged filter
represents the number of its children’s filters that have set this bit to 1 (and not

38 G. Koloniari and E. Pitoura

how many times the original filters had set the bit to 1). We call this method
BitSum. An example with simple Bloom Filters is show in Fig. Blc). When an
update occurs, it is propagated only if it changes a bit from 1 to 0 or vice versa.

An example is depicted in Fig. [fl Assume that node n4 performs an update;
as a result, its new (local) filter becomes (1, 0, 0, 1) and the corresponding
counters (1, 0, 0, 2). With CountSum (Fig.[H(a)), ny will send the difference (-1,
0, -1, -1) between its old and new counters to node ng, whose (merged) filter
will now become (1, 0, 1, 1) and the counters (2, 0, 1, 4). Node ns must also
propagate the difference (-1, 0, -1, -1) to its parent n; (although no change was
reflected at its filter). The final state is shown in Fig. B(b). With BitSum (Fig.
Blc)), ng will send to ny only those bits that have changed from 1 to 0 and vice
versa, that is (-, -, -1, -). The new filter of ny will be (1, 0, 1, 1) and the counters
(2, 0, 1, 2). Node ny does not need to send the update to ny. The final state is
illustrated in Fig. B(d). The BitSum approach sends fewer and smaller messages.

. i local filter i
nnnnfnnon Filtes —= [T51]7] [o[olol 1] | |
[3[3[el6] Lololol 1] Counter —— [olofo[1] G0 | [mensed e |

(o[1] [o[o[1]0] [o[1ol 1] (1o] 1] [oToT1T0]

DInann Bongn @2
nonn Mo[] noon ;
HOnE @ Horit] [ilololz G Go> HSHH]

a (b)

(i [eTe[el] [[eTelel]

LLiib] fofotel] G L] fofoteh] @2
nonnoonn nnon (o] 1] [eTe[io] \ (oTiTel]
2Lol2t2][olof2t o] \@9 Lol 3ol 1] [2lo[iT2] fofolzlol @2 & [GHieT

[l of1]1] [1lof1]1] (o o] 1]
Gholisl @0 G [l NEnE D) HH
() ()

Fig. 5. An example of an update using CountSum and BitSum

5 Experimental Evaluation

We implemented the BBF (Breadth Bloom filter) and the DBF (Depth Bloom
Filter) data structures, as well as a Simple Bloom filter (SBF) (that just hashes
all elements of a document) for comparison. For the hash functions, we used
MDS5 [6]: a cryptographic message digest algorithm that hashes arbitrarily length
strings to 128 bits. The k£ hash functions are built by first calculating the MD5
signature of the input string, which yields 128 bits, and then taking k£ groups of
128/k bits from it. We used the Niagara generator [7] to generate tree-structured
XML documents of arbitrary complexity. Three types of experiments are per-
formed. The goal of the first set of experiments is to demonstrate the appro-
priateness of multi-level Bloom filters as filters of hierarchical documents. To
this end, we evaluate the false positive probability for both DBF and BBF and
compare it with the false positive probability for a same size SBF for a variety of

Content-Based Routing of Path Queries in Peer-to-Peer Systems 39

query workloads and document structures. The second set of experiments focuses
on the performance of Bloom filters in a distributed setting using both a content-
based and a non content-based organization. In the third set of experiments, we
evaluate the update propagation procedures.

5.1 Simple versus Multi-level Bloom Filters

In this set of experiments, we evaluate the performance of multi-level Bloom
filters. As our performance metric, we use the percentage of false positives, since
the number of nodes that will process an irrelevant query depends on it directly.
In all cases, the filters compared have the same total size. Our input parameters
are summarized in Table 1. In the case of the Breadth Bloom filter, we excluded
the optional Bloom filter BBFy. The number of levels of the Breadth Bloom
filters is equal to the number of levels of the XML trees, while for the Depth
Bloom filters, we have at most three levels. There is no repetition of element
names in a single document or among documents. Queries are generated by
producing arbitrary path queries with 90% elements from the documents and
10% random ones. All queries are partial paths and the probability of the //
axis at each query is set to 0.05.

Table 1. Input parameters

Parameter Default Value Range

of XML documents 200 -

Total size of filters 78000 bits 30000-150000 bits
of hash functions 4 -

of queries 100 -

of elements per document 50 10-150

of levels per document 4/6 2-6

Length of query 3 2-6

Distribution of query 90% in documents

elements 10% random 0%-10%

Influence of filter size. In this experiment, we vary the size of the filters
from 30000 bits to 150000 bits. The lower limit is chosen from the formula k
= (m/n)in2 that gives the number of hash functions k£ that minimize the false
positive probability for a given size m and n inserted elements for an SBF:
we solved the equation for m keeping the other parameters fixed. As our results
show (Fig. B(left)), both BBFs and DBF's outperform SBFs. For SBFs, increasing
their size does not improve their performance, since they recognize as misses only
paths that contain elements that do not exist in the documents. BBF's perform
very well even for 30000 bits with an almost constant 6% of false positives, while
DBF's require more space since the number of elements inserted is much larger
than that of BBFs and SBFs. However, when the size increases sufficiently, the
DBF's outperform even the BBFs. Note than in DBFs the number of elements

40 G. Koloniari and E. Pitoura

inserted in each level i of the filter is about: 2d’ + Zév:i 41@7, where d is the
degree of the XML nodes and [the number of levels of the XML tree, while the
corresponding number for BBFs is: d*~!, which is much smaller.

Using the results of this experiment, we choose as the default size of the filters
for the rest of the experiments in this set, a size of 78000 bits, for which both
our structures showed reasonable results. For 200 documents of 50 elements, this
represents 2% of the space that the documents themselves require. This makes
Bloom filters a very attractive summary to be used in a P2P computing context.

100 100
SBF —+—
¥ DBF —-%--
S 80 . 2 80 \/ BBF ---x--
8 X g
c AN c -~
g 60 K \ B g 60f B
\ .
2 ‘ 2 el
g 40 | \ B T 40 B
o \ o 7
Q Q
[} \ o /
K \ £ /
& 20| \ E s 20f 4
\ o
,,,,,,, P S S R 0 R S T g Lo
30000 60000 90000 120000 150000 0 25 50 75 100 125 150
size of filter number of elements per document

Fig. 6. Comparison of Bloom filters: (left) filter size and (right) number of elements
per document

Influence of the number of elements per document. In this experiment,
we vary the number of elements per document from 10 to 150 (Fig [B(right).
Again, SBFs filter out only path expressions with elements that do not exist
in the document. When the filter becomes denser as the elements inserted are
increased to 150, SBF's fail to recognize even some of these expressions. BBF's
show the best overall performance with an almost constant percentage of 1 to
2% of false positives. DBFs require more space and their performance rapidly
decreases as the number of inserted elements increases, and for 150 elements,
they become worse than the SBFs, because the filters become overloaded (most
bits are set to 1).

Other Experiments. We performed a variety of experiments [24]. Our exper-
iments show that, DBFs perform well, although we have limited the number of
their levels to 3 (we do not insert sub-paths of length greater than 3). This is
because for each path expression of length p, the filter-match procedure checks
all its possible sub-paths of length 3 or less; in particular, it performs (p - ¢ +
1) checks at every level i of the filter. In most cases, BBF's outperform DBFs for
small sizes. However, DBF's perform better for a special type of queries. Assume
an XML tree with the following paths: /a/b/c and /a/f/], then a BBF would
falsely match the following path: /a/b/l. However, DBFs would check all its
possible sub-paths: /a/b/l, /a/b, /b/l and return a miss for the last one. This
is confirmed by our experiments that show DBF's to outperform BBFs for such
query workloads.

Content-Based Routing of Path Queries in Peer-to-Peer Systems 41

5.2 Content-Based Organization

In this set of experiments, we focus on filter distribution. Our performance met-
ric is the number of hops for finding matching nodes. We simulated a network of
nodes forming hierarchies and examined its performance with and without the
deployment of filters and for both a content and a non content-based organiza-
tion. First, we use simple Bloom filters and queries of length 1, for simplicity. In
the last experiment, we use multi-level Bloom filters with path queries (queries
with length larger than 1). We use small documents and accordingly small-sized
filters. To scale to large documents, we just have to scale up the filter as well.
There is one document at each node, since a large XML document corresponds
to a set of small documents with respect to the elements and path expressions
extracted. Each query is matched by about 10% of the nodes. For the content-
based organization, the threshold is pre-set so that we can determine the number
of hierarchies created. Table 2 summarizes our parameters.

Table 2. Distribution parameters

Parameter Default Value Range

of XML documents per node 1 -

Total size of filter 200-800 -
of queries 100 -
of elements per document 10 -
of levels per document 4 -
Length of query 1-2 -
Number of nodes 100-200 20-200
Maximum number of hops First matching node found 20-200
Out-degree of a node 2-3 -
Repetition between documents Every 10% of all docs 70% similar -
Levels of hierarchy 3-4 -
Matching nodes for a query 10% of # of nodes 1-50%

Content vs. non content-based distribution. We vary the size of the net-
work, that is, the number of participating nodes from 20 to 200. We measure
the number of hops a query makes to find the first matching node. Figure [Zleft)
illustrates our results. The use of filters improves query response. Without using
filters, the hierarchical distribution performs worse than organizing the nodes in
a linear chain (where the worst case is equal to the number of nodes), because of
backtracking. The content-based outperforms the non content-based organiza-
tion, since due to clustering of nodes with similar content, it locates the correct
cluster (hierarchy) that contains matching documents faster. The number of
hops remains constant as the number of nodes increases, because the number of
matching nodes increases analogously.

In the next experiment (Fig. [(right)), we keep the size of the network fixed
to 200 nodes and vary the maximum number of hops a query makes from 20 to

42 G. Koloniari and E. Pitoura

100 ¥ ¥ ¥
; no filter —+—

/ p non content -->--

sk 4 content ---%--

60 -]

40

number of hops

20

recall (percentage of matching nodes found)

L L
50 100 150 200
number of nodes maximum number of hops

Fig. 7. Content vs non content-based organization: (left) finding the first matching
node and (right) percentage of matching nodes found for a given number of hops
(recall)

200. Note that in the number of hops, the hops made during backtracking are
also included. We are interested in recall, that is, the percentage of matching
nodes that are retrieved (over all matching nodes) for a given number of nodes
visited. Again, the approach without filters has the worst performance since
it finds only about 50% of the results for even 200 hops. The content-based
organization outperforms the non content-based one. After 50 hops, that is, 25%
of all the nodes, it is able to find all matching nodes. This is because when the
first matching node is found, the other matching nodes are located very close,
since nodes with similar content are clustered together.

We now vary the number of matching nodes from 1% to 50% of the total
number of system nodes and measure the hops for finding the first matching
node. The network size is fixed to 100 nodes. Our results (Fig. Blleft)) show that
for a small number of matching nodes, the content-based organization outper-
forms further the other ones. The reason is that it is able to locate easier the
cluster with the correct answers. As the number of results increases both the
network proximity and the filter-less approaches work well as it becomes more
probable that they will find a matching node closer to the query’s origin since
the documents are disseminated randomly.

100 S T T ser, tent —+—
y 5 e % , non content
N No f{"e; j;: 2 IR -t % SBF, content —-x-
on conten 3 B , SBF, non content -- -
80 | i Content ---%-- 2 80 7 B BBF, content &

£ K / DBF, non content —-l—

@ e DBF, content --© -
s 60 £
£ oor 1 5
4 £
3 5
g 40 B 2
H g
£
8
20 P b g
N 4
R g
P 8

0 10 20 30 40 50 50 100 150 200
percentage of matching nodes maximum number of hops

Fig. 8. (left) Number of hops to find the first result with varying number of matching
nodes and (right) recall with multi-level filters

Content-Based Routing of Path Queries in Peer-to-Peer Systems 43

Using multi-level filters. We repeated the previous experiments using multi-
level filters [24] and path queries of length 2. Our results confirm that multi-level
Bloom filters perform better than simple Bloom filters in the case of path queries
and for both a content and a non content-based organization. Figure [§(right)
reports recall while varying the maximum number of hops.

5.3 Updates

In this set of experiments, we compare the performance of the CountSum and
BitSum update propagation methods. We again simulated a network of nodes
forming hierarchies and use Bloom filters for query routing. We used two met-
rics to compare the two algorithms: the number and size of messages. Each node
stores 5 documents and an update operation consists of the deletion of a docu-
ment and the insertion of a new document in its place. The deleted document
is 0% similar to the inserted document to inflict the largest change possible to
the filter. Again, we use small documents and correspondingly small sizes for the
filters. The origin of the update is selected randomly among the nodes of the
system. Table 3 summarizes the parameters used.

Table 3. Additional update propagation parameters

Parameter Default Value Range
of XML documents per node 5 -
Total size of filter 4000 -
of updates 100 -
Number of nodes 200 20-200

Repetition between deleted and inserted document 0% -

Number and average size of messages. We vary the size of the network from
20 to 200 nodes. We use both a content-based and a non content-based organi-
zation and simple Bloom Filters. The BitSum method outperforms CountSum
both in message complexity and average size of messages (Figll). The decrease in
the number of messages is not very significant; however the size of the messages is
reduced to half. In particular, CountSum creates messages with a constant size,
while BitSum reduces the size of the message at every step of the algorithm.
With a content-based organization, the number of messages increases with re-
spect to the non content-based organization. This is because the content-based
organization results in the creation of a larger number of more unbalanced hi-
erarchies. However, both organizations are able to scale to a large number of
nodes, since the hierarchical distribution of the filters enables performing up-
dates locally. Thus, even for the content-based organization, less than 10% of
the system nodes are affected by an update.

44 G. Koloniari and E. Pitoura

CountSum, content —+—

BitSum, content --<--

CountSum, non content ---%--
BitSum, non content &

N

o

S
T
L

N
=3
S
T
L

a
=]
T
L

number of messages
=]
average message size (in bytes)

8

) S 1008y % a 1
[

4l & sk :

2 4

0 L L L 0 L L L

50 100 150 200 50 100 150 200

number of nodes number of nodes

Fig. 9. BitSum vs CountSum update propagation: (left) number of messages (right)
average message size

Using multi-level Bloom filters. We repeat the previous experiment using
multi-level Bloom filters as summaries. We use only the BitSum method that
outperforms the CountSum method as shown by the previous experiment. We
used Breadth (BBFs) and Depth Bloom Filters (DBFs), both for a content and
a non content-based organization. The nodes vary from 20 to 200. The results
(Fig. [I0) show that BitSum works also well with multi-level Bloom filters. The
content-based organization requires a larger number of messages because of the
larger number of hierarchies created. DBF's create larger messages as the bits
affected by an update are more. However with the use of BitSum, DBFs scale
and create update messages of about 300 bytes (while for CountSum, the size
is 1K).

18 400
— BBF, content —+—
8 350 = ~"3 BBF, non content --3--
3 B DBF, content ---%--
3 c 300 [- - DBF, non content &
S = N}
1] Q L o
] N 250 %..
S & 200 - * e
o 8 3 k-
] G 150
£ 6 E
2 4 %’, 100
o] $ s B
0 I I I 0 I I I
50 100 150 200 50 100 150 200
number of nodes number of nodes

Fig. 10. BitSum update propagation with multi-level Bloom filters: (left) number of
messages (right) average message size

6 Related Work

We compare briefly our work with related approaches regarding XML indexes
and the use of Bloom filters for query routing. A more thorough comparison can
be found in [24]. Various indexing methods for indexing XML documents (such as

Content-Based Routing of Path Queries in Peer-to-Peer Systems 45

DataGuides [9], Patricia trees [10], XSKETCH [11] and signatures [12]) provide
efficient ways of summarizing XML data, support complex path queries and offer
selectivity estimations. However, these structures are centralized and emphasis
is given on space efficiency and I/O costs. In contrast, in a P2P context, we are
interested in small-size summaries of large collections of XML documents that
can be used to filter out irrelevant nodes fast with the additional requirements
that such summaries can be distributed efficiently. Finally, when compared to
Bloom filters, merging and updating of path indexes is more complicated.

Perhaps the resource discovery protocol most related to our approach is the
one in [5] that uses simple Bloom filters as summaries. Servers are organized into
a hierarchy modified according to the query workload to achieve load balance.
Local and merged Bloom filters are used also in [14], but the nodes follow no par-
ticular structure. The merged filters include information about all nodes of the
system and thus scalability issues arise. In both of the above cases, Bloom filters
were used for keyword queries and not for XML data, whereas, our work sup-
ports path queries. Furthermore, the use of filters was limited to query routing,
while we extend their use to built content-based overlay networks.

More recent research presents content-based distribution in P2P where nodes
are “clustered” according to their content. With Semantic Overlay Networks
(SONs) [18], nodes with semantically similar content are grouped based on a
classification hierarchy of their documents. Queries are processed by identifying
which SONs are better suited to answer it. However, there is no description
of how queries are routed or how the clusters are created and no use of filter
or indexes. An schema-based (RDF-based) peer-to-peer network is presented in
[16]. The system can support heterogeneous metadata schemes and ontologies,
but it requires a strict topology with hypercubes and the use of super-peers,
limiting the dynamic nature of the network.

7 Conclusions and Future Work

In this paper, we study the problem of routing path queries in P2P systems of
nodes that store XML documents. We introduce two new hash-based indexing
structures, the Breadth and Depth Bloom Filters, which in contrast to tradi-
tional hash based indexes, have the ability to represent path expressions and
thus exploit the structure of XML documents. Our experiments show that both
structures outperform a same size simple Bloom Filter. In particular, for only
2% of the total size of the documents, multi-level Bloom filters can provide effi-
cient evaluation of path queries for a false positives ratio below 3%. In general
Breadth Bloom filters work better than Depth Bloom filters, however Depth
Bloom filters recognize a special type of path queries. In addition, we introduce
BitSum, an efficient update propagation method that significantly reduces the
size of the update messages. Finally, we present a hierarchical organization that
groups together nodes with similar content to improve search efficiency. Con-
tent similarity is related to similarity among filters. Our performance results
confirm that an organization that performs a type of content clustering is much

46 G. Koloniari and E. Pitoura

more efficient when we are interested in retrieving a large number of relevant
documents.

An interesting issue for future work is deriving a method for self-organizing
the nodes by adjusting the threshold of the hierarchies. Other important top-
ics include alternative ways for distributing the filters besides the hierarchical
organization and using other types of summaries instead of Bloom filters.

References

1. D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S.
Rollins, Z. Xu. Peer-to-Peer Computing, HP Laboratories Palo Alto, HPL-2002-57.

2. S.D. Gribble, E.A. Brewer, J.M. Hellerstein, D. Culler. Scalable Distributed Data
Structures for Internet Service Construction. In OSDI 2000.

3. B. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors. CACM,
13(7), July 1970.

4. L. Fan, P. Cao, J. Almeida, A. Broder. Summary Cache: A Scalable Wide-Area

Web Cache Sharing Protocol. In SIGCOMM 1998.

T.D. Hodes, S.E. Czerwinski, B.Y. Zhao, A.D. Joseph, R.H. Katz. Architecture for

Secure Wide-Area Service Discovery. In Mobicom 1999.

The MD5 Message-Digest Algorithm. RFC1321.

The Niagara generator, http://www.cs.wisc.edu/niagara

Napster. http://www.napster.com/

R. Goldman, J. Widom. DataGuides: Enabling Query Formulation and Optimiza-

tion in Semistructured Databases. In VLDB 1997.

10. B. F. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, M. Shadmon. Fast Index
for Semistructured Data. In VLDB 2001.

11. N. Polyzotis, M. Garofalakis. Structure and Value Synopses for XML Data Graphs.
In VLDB 2002.

12. S. Park, H J. Kim. A New Query Processing Technique for XML Based on Signa-
ture. In DASFAA 2001.

13. C. Faloutsos, S. Christodoulakis. Signature Files: An Access Method for Documents
and Its Analytical Performance Evaluation. ACM TOIS, 2(4), October 1984.

14. A. Mohan and V. Kalogeraki. Speculative Routing and Update Propagation: A
Kundali Centric Approach. In ICC 2003.

15. A. Crespo, H. Garcia-Molina. Semantic Overlay Networks for P2P Systems. Sub-
mitted for publication.

16. W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst, A.
Loser. Super-Peer-Based Routing and Clustering Strategies for RDF-Based Peer-
To-Peer Networks. In WWW 2003.

17. G. Koloniari, E. Pitoura. Bloom-Based Filters for Hierarchical Data. WDAS 2003.

18. G. Koloniari, Y. Petrakis, E. Pitoura. Content-Based Overlay Networks of XML
Peers Based on Multi-Level Bloom Filters. VLDB International Workshop on
Databases, Information Systems and Peer-to-Peer Computing, 2003.

19. A. Crespo, H. Garcia-Molina. Routing Indices for Peer-to-Peer Systems. In ICDCS
2002.

20. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan. Chord: A Scal-
able Peer-to-Peer Lookup Service for Internet Applications, In SIGCOMM 2001.

21. S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker. A Scalable Content-
Addressable Network. In SIGCOMM, 2001.

o

© XN

Content-Based Routing of Path Queries in Peer-to-Peer Systems 47

22. Knowbuddy’s Gnutella FAQ,
http://www.rixsoft.com/Knowbuddy/gnutellafaq.html

23. E. Pitoura, S. Abiteboul, D. Pfoser, G. Samaras, M. Vazirgiannis. DBGlobe: a
Service-oriented P2P System for Global Computing. SIGMOD Record 32(3), 2003

24. G. Koloniari and E. Pitoura. Content-Based Routing of Path Queries in Peer-
to-Peer Systems (extended version). Computer Science Dept, Univ. of Ioannina,
TR-2003-12.

	Introduction
	Routers for XML Documents
	System Model
	Query Routing
	Multi-level Bloom Filters

	Content-Based Linking
	Hierarchical Organization
	Content-Based Clustering

	Querying and Updating
	Query Routing
	Update Propagation

	Experimental Evaluation
	Simple versus Multi-level Bloom Filters
	Content-Based Organization
	Updates

	Related Work
	Conclusions and Future Work

