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Received: date / Accepted: date

Abstract We propose a motion vector based Video
Content Based Copy Detection (VCBCD) method. One
of the signatures of a given video is motion vectors ex-

tracted from image sequences. However, when consec-
utive image frames are used they are not descriptive
enough because most vectors are either too small or

they appear to scatter in all directions. We calculate
motion vectors in a lower frame rate than the actual
frame rate of the video to overcome this problem. As

a result we obtain large vectors and they represent a
given video in a robust manner. We carry out experi-
ments for various parameters and present the results.

Keywords Content Based Copy Detection · Similar
Video Detection ·Motion Vectors · Sequence Matching ·

Video Copy Detection

1 Introduction

Detecting videos violating the copyright of the owner
comes into question by growing broadcasting of digi-

tal video on different media. Content based copy de-
tection (CBCD) is an alternative way to watermarking
approach to identify the ownership of video. In this ap-
proach, the video itself is considered as a watermark.

Existing methods of video CBCD usually extract signa-
tures, key-frames or fingerprints from images of video
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stream and compare them with the database which con-
tains features of original videos. [3,13,14,16,15,6] Sev-
eral spatial or temporal features of videos are consid-

ered as signatures of videos such as intensity of pixels,
color histograms and motion.[9,4] The main advantage
of CBCD over watermarking is that signature extrac-

tion can be done even if the video is distributed over the
Internet or other media because the unique signature is
part of the video itself.

In CBCD algorithms, average color, color histogram,
and motion are used as feature parameters or vectors.

Each feature set has advantages over others. When a
movie is recorded from a movie theater by a hand-held
camera, then its color map, fps, size and position change

and edges get soften. Color based algorithms will have
difficulties detecting the camera recorded copy of an
original movie because the information it depends on

is significantly disturbed. However, motion in a copied
video remains similar to the original video.

Motion information was considered as a weak pa-
rameter by other researchers [4]. In the article [12] it is
shown that this is not true unless the motion vectors

are extracted from consecutive frames in a video with
a high capture rate. Most motion vectors are small or
close to zero in a typical 25 Hz captured video and they

may not contain any significant information. They also
appear to scatter in all directions due to incorrect mo-
tion vector calculation because neighboring pixel val-

ues are close to each other in consecutive video frames.
On the other hand, if we can detect the general mo-
tion trends in a video as representive of the video we

get a reliable feature set of parameters. In this article,
we calculate motion vectors in a lower frame rate than
the actual frame rate of the video. As a result we obtain

larger vectors compared to the motion vectors obtained



2 Kasım Taşdemir, A. Enis Çetin

at a higher rate and we experimentally show that they

represent a given video in a robust manner.

1.1 Motion Vector (MV) Extraction and Feature Sets

In general, motion vectors are extracted using consec-
utive frames in many video analysis and coding meth-

ods. In order to capture the temporal behavior more
efficiently we use every tth and (t+n)th, n > 1 frames
instead of the traditional approach of using tth and

(t+ 1)th frames. In our approach, we use every tth and
(t + n)th frame for motion vector extraction. For ex-
ample, human movements change slowly in a 25 fps

video. If two consecutive frames are used in motion vec-
tor extraction step, resulting motion vectors will have
small values because of the high capture rate of the

video. Furthermore, some of the image-blocks (or macro
blocks) inside the moving object may be incorrectly as-
sumed as stationary or moving in an incorrect direc-

tion by the motion estimation algorithm because sim-
ilar image blocks may exist inside the moving object.
By computing the MVs using every n-th frame (n > 1)

it is possible to get more descriptive motion vectors. In
Fig. 1, instead of using two consecutive frames we use
tth and (t+ 5)th frames for MV computation and, as a
result, MV displacements in the video will be high. As

shown in Fig. 1, moving objects are clearly emphasized.

(a)

(b)

Fig. 1 Effect of lower fps in the motion vector estimation al-
gorithm: (a) 151th frame and its corresponding MV pattern of
video “silent”. MVs are extracted using the next frame. The
MV magnitudes are small. (b)151th frame of video “silent”.
MVs are extracted using every 5th frame. The MV magni-
tudes are larger than (a).

We define the mean of the magnitudes of motion

vectors (MMMV) of macro blocks of a given frame as
follows:

MMMV (k) =
1

N

N−1∑

i=0

r(k, i) (1)

where r(k, i) is the motion vector magnitude of the
macro block in position i of kth frame, and N is the
number of macro blocks in an image frame of the video.

We also define the mean of the phase angles of motion
vectors (MPMV) of macro blocks of a given frame as
follows:

MPMV (k) =
1

N

N−1∑

i=0

θ(k, i), (2)

where θ(k, i) is the motion vector angle of the macro

block in position i of the kth frame of the video, and N

is the number of macro blocks. The angle θ is in radians
and θ ∈ (−π, π). So, the range of MPMV is also in the

same region: MPMV (.) ∈ (−π, π).

We use the discrete MMMV(k) and MPMV(k) func-
tions as the feature sets representing a given video. Ex-
ample MMMV and MPMV plots are shown in Fig. 2

and Fig. 7, respectively. Storage requirement is low as
both functions require a single real number for each
frame k of the video. It is possible to divide the image

frames into subimages and extract MMMV and MPMV
values for each subimage but we experimentally observe
that a single value for a given frame is sufficient to char-

acterize a video.

In the following subsection we describe the method
that we used for motion vector (MV) estimation in

video.

1.2 Motion Vector Extraction

We extract motion vectors from image frames using the

simple and efficient search (SES) algorithm [10] and
use an exhaustive search (ES) [2] for block matching.
However, other motion vector estimation methods can

be also used.

Block matching is performed on the current frame
(t) and a previous frame (t-u). The current frame is

divided into square blocks of pixel size N × N called
macro blocks (MB). Each block has a search area in the
previous frame which has the size (2W+N+1)×(2W+

N + 1) where W is the amount of maximum vertical
or horizontal displacement. Then, the best matching
block is searched in the previous frame using the current

block. The motion vector is defined as the (x, y) which
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makes the mean absolute difference (MAD) minimum.

The MAD is expressed as

MAD(x, y) =

1

N2

N−1∑

i=0

N−1∑

j=0

|Fc(k+ i, l+ i)−Fp(k+ x+ i, l+ y+ j)|

(3)

where Fc(., .) and Fp(., .) are pixel intensities of the cur-
rent and the previous frames respectively, (k, l) is the
horizontal and vertical coordinates of the upper left cor-

ner of the image block and (x, y) is displacement in
pixels.[10]

1.3 Exhaustive Search Algorithm

Another name of this algorithm is the Full Search algo-
rithm. This calculates MAD for all possible locations in

a given search window. As a result it gives the best pos-
sible match and the highest PSNR amongst any block
matching algorithms.[2] This algorithm is straightfor-

ward to implement and gives the best results. The dis-
advantage of this algorithm is its high computational
cost.

1.4 A Simple and Efficient Search Algorithm

This algorithm is a modified version of the three step

search (TSS) algorithm. [10,2] In the TSS algorithm a
block is searched in some reference points of locations in
the previous frame instead of searching all possible lo-

cations. First, points in the center and 8 points around
the center are checked. If the minimum is at the lower
right point, the search algorithm continues in the same

manner with a smaller search window. After applying it
three times, the location that gives the minimum MAD
is found. The motion vector is decided as a vector from

the center to that point.

2 Video Copy Detection Using MMMV and

MPMV

Searching and comparing the movies violating the copy-
right issues with official movies may not be a challeng-

ing problem if we know that the copied movie has ex-
actly the same digital data as the original. However, in
most cases unofficial movies are published with a small

distortion or additions such as resizing, cropping, zoom-
ing in and out, adding a logo, changing the fps, chang-
ing color etc. Most encountered real life example is dis-

tribution of hand-held camera recorded movies of new

movies from the movie theater. Since this unofficially

made copy is a completely new record, it loses some of
the features of the original movie. For instance, colors
will change both due to the projector illuminating the

curtain and during the camera recording. Depending
on the quality of the recording device, its view point
and its orientation, recorded movie may lose edges in

frames or it may have different scale and perspective
than the original movie. Color histogram based CBCD
comparison methods have the disadvantage that they

depend on the distorted color information. However,
the motion vectors do not change as much as color
information. This section investigates the similarity of

MMMV-MPMV data of original movies and their hand-
held camera versions. Table 1 shows the properties of
the movies used in this section. Test videos have dif-

ferent size and fps. Videos with CAM extensions are
copies obtained using a hand-held camera. In Sect. 3 we
present extensive comparisons using a video database.
Although the original and hand-held camera recorded

Table 1 Properties of original movies (with DVD extension)
and the same movies recorded from a hand-held camera (with
CAM extensions).

Movie Name (Frames Per Second) FPS Video Size

Desperaux DVD 24 640x272
Desperaux CAM 25 608x304
Inkheart DVD 25 624x352
Inkheart CAM 25 704x304
Mallcop DVD 30 608x320
Mallcop CAM 24 720x320
Spirit DVD 24 640x272
Spirit CAM 25 656x272

videos have different fps and size, they have similar

MMMV plots as shown in Fig. 2. Original movie in
Fig. 2(a) and its hand-held camera recorded version
from a movie theater (Fig. 2(b)) show significant simi-

larities. The MVs are computed with a frame difference
of n=5. In order to obtain a value that gives information
about how much two movies resemble each other, the

absolute difference is calculated as distance, D. Differ-
encing the two features directly is not a good solution
because of two reasons. The first reason is that they

may have different fps values. So, each index of the
original video should be compared with its correspond-
ing index of the candidate video in terms of real time.

However, most of the indices do not correspond to the
same time instant. After calculating the indices corre-
sponding to the nearest time instant, we use a search

window in order to compare it with also its neighbors.
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0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

10

Video: Inkheart DVD
Magnitude of MVs

Video Frame Index

M
ea

n 
of

 m
ag

ni
tu

de
 o

f M
V

s

(a)

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

10

Video: Inkheart CAM
Magnitude of MVs

Video Frame Index

M
ea

n 
of

 m
ag

ni
tu

de
 o

f M
V

s

(b)

Fig. 2 Similarity of the MMMV plots of “Inkheart DVD”
and “Inkheart CAM”, (with n=5).

The second reason is that the sizes of frames of the
videos can be different. If frame sizes are different, mo-
tion vectors of videos will be also different. The video

with a larger frame size will have larger motion vec-
tors. The MMMV data of videos will be scaled version
of each other. In order to solve this problem we first

normalize the MMMV and MPMV of the videos before
making a comparison as follows:

MMMV (t) = V (t) =
MMMV (t)− µMMMV

σMMMV

(4)

where µMMMV is the mean and σMMMV is the stan-
dard deviation of the MMMV array, respectively.

The sum of absolute values of difference of normal-
ized MMMV values of two videos o-original and c-copy
are calculated as the distance D(o, c) as follows:

D(o, c) =
1

N

∑

t

min
|d|≤W

|Vo(t)− Vc(t+ d)| (5)

where W is the search window width. We time align

the videos manually and select W as 2 frames because

the fps of most commercial videos are between 20 and

30. In Eq. 5, N is the number of frames in the movie
MMMVo. If the original and the candidate video have
different fps, then their frame indices corresponding to

the same time instance should be calculated first. So,
instead of comparing corresponding frame indexes, the
aim is to compare image frames corresponding to the

same time instant.

We define another measure of the distance between
two video clips based on estimating the Vc(t) sequence
of the video clip c using the Vo(t) of the video clip o as

follows:

D(o, c) =
1

N

∑

t

|Vo(t)−

L∑

k=−L

wk,tVc(t− k)| (6)

where wk,t are the weights of the 2L + 1 order linear
estimator. The weights are adaptively updated using
the well-known LMS algorithm:

wk+1,t = wk,t + λe(t)Vc(t) (7)

where λ is the adaptation constant and

e(t) = Vo(t)−
L∑

k=−L

wk,tVc(t− k) (8)

is the estimation error at frame t. The parameter λ can

be selected as in the normalized LMS algorithm.

The distance D of a video of an original movie Ink-
heart and the same video recorded with a hand-held

camera is shown in Fig. 3. The last plot shows the ab-
solute of frame by frame MMMV difference. Since the
MMMV plot of the two videos are similar, their aver-

age of absolute difference value is small, 0.35. However,
the distance of two different videos are not small as
shown in Fig. 4. Since the two different movies have

different camera motions and object movements, their
MMMV plots are not similar, D(o, c) = 2.91. How-
ever, distance of original video o and hand-held camera

recorded video c is 0.35, D(o, c) = 0.35.
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Fig. 3 MMMV plots of videos “Inkheart DVD” and “Ink-
heart CAM” videos. The distance between the MMMV plots,
D(o, c) = 0.35.
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Fig. 4 MMMV plots of “Inkheart DVD” and “Mall-
cop.CAM” videos. The distance between the MMMV
plots,D(o, c) = 2.91.

Comparison of distances of 8 test videos are listed

in Table 2. Rows of Table 2 are original videos and
columns are hand-held camera recorded versions. The
diagonal elements of Table 2 is a measure of similarity

of the original and copy of the video. Diagonal elements
are expected to be smallest value in a given row because
a video should be similar to its copy and different from

the others. Diagonal elements are the smallest values

Table 2 Average MMMVN distance of test videos. Diag-
onal results show the distance of original and its copy. V1
to V4 stands for the names of the test videos ”Desperaux”,
”Inkheart”, ”Mallcop”, ”Spirit”.

Distance V1 CAM V2 CAM V3 CAM V4 CAM

V1 DVD 0.44 1.23 0.9 0.86
V2 DVD 1.2 0.08 0.68 0.74
V3 DVD 0.85 0.54 0.18 0.75
V4 DVD 1.06 0.76 0.67 0.29

which mean that the original videos are most similar to
their camcorder copy in terms of MMMVN . Although

the camera recordings of video “Desperaux CAM” is at
a very low quality and it has significant morphological
distortions it successfully paired with its original ver-

sion. Sample screen shots of same frames of videos of
“Desperaux CAM” and “Desperaux DVD” are shown
in Fig. 6. Side portions of the video is lost because of

zoom in of the hand-held camera and camera focus is
not adjusted so it is very blurred. MMMV plot and
the distance plot of “Desperaux DVD” and “Desper-

aux CAM” are shown in Fig. 5.

(a)

(b)

Fig. 5 The same frames of videos “Desparaux.DVD” and
“Desparaux.CAM”, (a) the original movie frame and (b) the
same frame for the video recorded by a hand-held camera. It
is highly distorted.
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0 20 40 60 80 100 120
−5

0

5
Desperaux DVD

M
M

M
V

N

0 20 40 60 80 100 120
−5

0

5
Desperaux CAM

Frame Index, k

M
M

M
V

N

Fig. 6 MMMV plots of “Desparaux.DVD” and “Despa-
raux.CAM” video clips. The distance between the MMMV
plots, D(o, c) = 0.44.

As discussed above angle information of motion vec-
tors can be also used for video copy detection. The
MPMV plots of “Inkheart DVD” and “Inkheart CAM”

are shown in Fig. 7. The original video and the recorded
video have very similar MPMV plots. Comparison re-
sults of test videos are listed in Table 3. Diagonal el-

ements of the Table 3 are the smallest elements in a
given row in Table 3. The distance between the original
video and the corresponding copy pair is the smallest.

So, MPMV data of similar videos are found to be the
most similar data amongst test videos.
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Fig. 7 The MPMV plots of “Inkheart DVD” and “Inkheart
CAM” video clips. The distance between the MPMV plots,
D(o, c) = 0.22.

Table 3 Average distance D of MPMV data of test vidoes.
Diagonal results show the distance between the original and
its copy. V1 to V4 stands for the names of the test videos
”Desperaux”, ”Inkheart”, ”Mallcop”, ”Spirit”.

Distance V1 CAM V2 CAM V3 CAM V4 CAM

V1 DVD 0.29 0.96 0.7 0.74
V2 DVD 1.03 0.15 0.85 0.86
V3 DVD 0.98 0.87 0.4 0.74
V4 DVD 0.62 0.75 0.59 0.24

As discussed above MMMV or MPMV information

can be used as a feature of the video. Comparison re-
sults show that they can be used for detection of artifi-
cially or manually modified versions of original videos.

Each has superior sides. As it is shown in Table. 3,
phase information is more resistant to loss of some infor-
mation and significant deformations in the video. Even

magnitude data of the videos were not enough to de-
tect the “Desperaux DVD” and “Desperaux CAM” as
similar videos, phase data gave correct matching. On

the other hand, MPMV is not rotation invariant but
MMMV is rotation invariant. Therefore, both features
should be used at the same time.

3 Experimental Results

A video database is available in Ref. [1]. Original videos
in this database are compared with the transformed ver-

sions of the same videos. There are 47 original videos
taken from Ref. [1]. Duration of the videos are 30 sec-
onds. Each video has eight different transforms. The list

of transformations is given in Table 4. As a result there
are a total of 47× 9 = 423 videos in the database. For
each parameter set 1457 comparisons are performed.

Table 4 Video transformations

Transformation Name Transformation Type

T1 A pattern inserted
T2 Crop 10% with black window
T3 Contrast increased by 25%
T4 Contrast decreased by 25%
T5 Zoom 1.2
T6 Zoom 0.8 with black window
T7 Letter-box
T8 Gaussian noise, µ = 0, σ = 0.001
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8 Transformations: (a) original frame, (b) a pattern is
inserted, (c) crop 10% with a black frame, (d) contrast in-
creased by 25%, (e) contrast decreased by 25%, (f) zoom by
1.2, (g) zoom by 0.8 with in the black window, (h) letter-box,
(i) additive Gaussian noise with µ = 0 and σ = 0.001.

Original videos are compared with test videos in

the database and its 8 transformations. For each test,
the list of distance between the compared videos are
calculated using Eq. 5 for different parameters or data

types such as MMMV, MPMV etc..
The performance of each test is plotted using its re-

ceiver operating characteristics (ROC) curve. The ROC

curve is a plot of false positive rate Fpr and false nega-
tive rate Fnr, or true positive rate Tpr. Let Fp, Fn and
Tp the number of false positives (clips that matched

with a different video), false negative (clips that should
match, but did not) and true positive (hit; clips that
matched correctly in the positive set). False positive ,

negative rates and true positive rate are defined as

Fpr(τ) =
Fp

Np

, Fnr(τ) =
Fn

Nn

, Tpr = (τ) =
Tp

Np

(9)

where Np and Nn are the number of maximum possible
false positive and false negative detections. Threshold
is τ and its value is varied from 0 to its maximum value

with an increment of 1%.
Effect of increasing the frame skipping parameter n

from 1 to 7 in motion vector extraction step is shown

in Fig. 3. We can obtain more descriptive features of
videos based on motion vectors if we use every 7th frame
instead of the current and the next frame in motion

estimation step. As it is shown in Fig. 10 there is a
dramatic increase in detection ratio with increasing n

and we get the best result when n = 7 where the Area

Under Curve (AUC) is 0.9996.
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Fig. 9 Effect of increasing the frame distance n = 1 to n = 7
on MMMV ROC curves.
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Fig. 10 Effect of varying n on AUC ofMMMV ROC curves.
The best result is obtained when n = 7.

In Ref. [4] it is stated that ordinal signature intro-

duced in Ref. [11] outperforms the Motion Signature.
This is true when the motion vectors are extracted us-
ing the current and the next frame (n = 1). On the

other hand, if motion vectors of videos are extracted us-
ing every 5th frame, motion vector based MMMV plot
is closer to the ideal case than the ROC curve of ordinal

signature as shown in Fig 11. The area under the ROC
curve (Fnr vs Fpr) of ordinal signature is 0.0311 which
is higher than the area under the ROC curves of both

MMMV and the MPMV signatures.
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(a)

Fig. 11 The ROC curve (Fnr vs Fpr) of the ordinal sig-
nature. In this video database, the MMMV and the MPMV
signatures have better performance than the ordinal signa-
ture when the frame difference parameter n = 5.

As pointed above the ROC curves of the proposed
MMMV and MPMV methods are very close to each
other as shown in Fig. 12. It is experimentally shown

that the MMMV and the MPMV are good descriptive
features for videos. In this database, the best results
are obtained with the frame difference parameter n = 7

as it is shown in Fig. 10.

Number of Feature Parameters Per Frame

Extracted features are stored in a database. The size of
the database is important for practical reasons. There-
fore, the number of features extracted for each frame is

another important criteria for CBCD algorithms. Ta-
ble 5 summarizes the feature per frame (FPF) values of
several algorithms. The FPF values of algorithms ex-

cept MMMV and MPMV are taken from Ref. [9].
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Fig. 12 The ROC curves of proposed methods when the
frame difference parameter n = 5. (a) MMMV and (b)
MPMV.

Table 5 Sizes of feature spaces

Technique Features Per Frame

ViCopT[8] 7
AJ[5] 4.8
STIP[7] 73
Temporal[9] 0.09
Ordinal Meas.[4] 9
MMMV 1
MPMV 1

Table 5 shows that MMMV and MPMV algorithms

consume less space for signatures than the other algo-
rithms except the method called “Temporal”.[9]

4 Conclusions

In this article, we experimentally show that motion vec-

tors are substantial signatures of videos as long as they
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are extracted in lower frame rates. Therefore, motion

vectors can be used in CBCD algorithms.

Videos that have higher motion content give more

reliable results and the videos having intensive motion
activity are easier to distinguish when the neighboring
image frames are used. However, videos containing slow

moving objects have very little motion vectors and the
vectors may appear to be random when the current and
the next frame are used for motion vector computation.

In order to obtain reliable signature vectors for all

videos motion vectors of the current and the next nth

frame (n > 1) are used in motion vector estimation
algorithms. Resulting motion vectors provide a reliable

representation for all types of videos. Magnitude and
phase angles of motion vectors are used separately as
feature parameters of a given video. It is experimentally

shown that both the magnitude and the phase of vectors
can be considered as unique signatures of the video. The
proposed motion-based feature parameters are resistant

to illumination and color changes in video.

Motion vectors do not change significantly up to a
level of resizing, cropping and blurring of the video.
Most video copy detection methods are not robust to

cropping. The MPMV feature is a robust feature in
action videos because the moving objects are cropped
in video as they are the information bearing part of

a typical video and the direction of the object is the
same in both the original and the cropped copy. If the
recorded video is in low quality, then phase information

is less affected than the magnitude information of the
frames. However, MPMV is not rotation invariant but
MMMV is rotation invariant. Therefore, it is better to

use both MMMV and MPMV at the same time.

Another important comparison criteria of the CBCD

algorithms in terms of the practical results is the size
of the feature set in a database. The MMMV and the
MPMV information do not occupy much space in the

database as other methods. They both occupy one byte
(one feature) per frame in the database.
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