
Content + Collaboration - Recommendation

Joaquin DELGADO and Naohiro ISHII

Department of Intelligence & Computer Science
Nagoya Institute of Technology

Gokiso-cho, Showa-ku, Nagoya 466 JAPAN
jdelgado@ics.nitech.ac.jp

Abstract
Building recommender systems, that filters and suggests
relevant and personalized information to its user, has
become a practical challenge for researchers in AI. On the
other hand, the relevance of such information is a user-
dependent notion, defmed within the scope or context of a
particular domain or topic. Previous work, mainly in IR,
focuses on the analysis of the content by means of
keyword-based metrics. Some recent algorithms apply
social or collaborative information filtering to improve the
task of retrieving relevant information, and for refining each
agent’s particular knowledge. In this paper, we combine
both approaches developing a new content-based filtering
technique for learning up-to-date users’ profile that serves as
basis for a novel collaborative information-filtering
algorithm. We demonstrate our approach through a system
called RAAP (Research Assistant Agent Projec0
implemented to support collaborative research by
classifying domain specific information, retrieved from the
Web, and recommending these "bookmarks" to other
researcher with similar research interests.

Introduction

Undoubtedly, in the next generation of intelligent
information systems, collaborative information agents will
play a fundamental role in actively searching and finding
relevant information on behalf of their users in complex
and open environments, such as the Internet. Whereas
relevant can be defined solely for a specific user, and under
the context of a particular domain or topic. Because of this,
the development of intelligent, personalized, content-based,
document classification systems is becoming more and
more attractive now days. On the other hand, learning
profiles that represent the user’s interests within a
particular domain, later used for content-based filtering,
has been shown to be a challenging task. Specially because,
depending on the user, the relevant attributes for each class
change in time. This makes the problem even not suitable
for traditional, fixed-attribute machine learning algorithms.

Documents, as well as user’s profiles, are commonly
represented as keyword vectors in order to be compared or
learned. With the huge variety words used in natural
language, we find ourselves with a noisy space that has
extremely high dimensionality (104 - 107 features). On the
other hand, for a particular user, it is reasonable to think

that processing a set of correctly classified relevant and
irrelevant documents from a certain domain of interest,
may lead to identify and isolate the set of relevant
keywords for that domain. Later on, these keywords or
features can be used for discriminating documents
belonging to that category from the others. Thus, these
user-domain specific sets of relevant features, that we call
prototypes, may be used to learn to classify documents. It
is interesting enough to say that these prototypes may
change over time, as the user develops a particular view for
each class. This problem of personalized learning of text
classification, is in fact, similar to the one of on-line
learning, from examples, when the number of relevant
attributes is much less than the total number of attributes,
and the concept function changes over time, as described in
(Blum 1996).

On the other hand, cooperative multi-agent systems
have implicitly shared "social" information, which can be
potentially used to improve the task of retrieving relevant
information, as well as refining each agent’s particular
knowledge. Using this fact, a number of "word-of-mouth"
collaborative information filtering systems, have been
implemented as to recommend to the user what is probably
interesting for him or her. This is done based on the ratings
that other correlated users have assign to the objects being
evaluated. Usually, this idea has been developed for
specific domains, like "Music" or "Films" as in Firefly
(http://www.firefiy.net) or for introducing people
(matchmaking) as in Referral Web CKautz 1997).
Remarkably, some of these systems completely deny that
any information that can be extracted from the content.
This can be somehow convenient for domains that are hard
to analyze in terms of content (such as entertainment), but
definitely not suitable for mainly textual and content-driven
environments such as the World Wide Web (WWW).
Besides, these systems usually demand from the user, a
direct intervention for both classifying and/or rating
information, thus "manually" constructing users’ profiles.

In this paper we describe a multi-agent system called
RAAP (Research Assistant Agent Project) that intends
bring together the best of both worlds - Content-hased and
Collaborative Information Filtering. In /MAP, personal
agents both helps the user (a researcher) to classify domain

37

From: AAAI Technical Report WS-98-08. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

specific information found in the WWW, and also
recommends these URLs to other researchers with similar
interests. This eventually brings benefits for the users as
they are recommended only peer-reviewed documents,
especially if they perform information and knowledge
intensive collaborative work, such as scientific research.

System Description

The Research Assistant Agent Project (RAAP) is a system
developed with the purpose of assisting the user in the task
of classifying documents (bookmarks), retrieved from the
World Wide Web, and automatically recommending these
to other users of the system, with similar interests. In order
to evaluate the system, we narrowed our objectives to
supporting a specific type of activity, such as Research and
Development (R&D) for a given domain. In our
experiment, tests were conducted using RAAP for
supporting research in the Computer Science domain.

RAAP consists of a bookmark database with a particular
view for each user, as well as a software agent that
monitors the user’s actions. Once the user has registered an
"interesting" page, his agent suggests a classification
among some predefined categories, based on the
document’s content and the user’s profiles (Fig. 1).

Figure 1 Agent’s Suggestion

The user has the opportunity to reconfirm the suggestion
or to change classification into one, that he or she considers
best for the given document as shown in Fig.2.

In parallel, the agent, implemented in JavaTM, checks for
newly classified bookmarks, and recommend these to other
users that can either accept or reject them when they
eventually login the system and are notified of such
recommendation, as illustrated in Fig.3.

During the first time registration into the system, the
user is asked to select the research areas of interest. This
information is used to build the initial profile of the user for
each class. The agent updates the user’s profile for a
specific class every k-number of documents are’
successfully classified into it. In that way, RA4P only uses
up-to-date profiles for classification, reflecting always the

latest interests of the user. During this process the agent
learns how to improve its classification and narrow the
scope of the people to whom it recommends in a way we
shall explain in the following sections.

Figure 2 Suggested Classification

Learning to Classify

In our system, a document belonging to a user uj, s as a
finite list of terms, resulting of filtering out a stoplist of
common English words, from the original document
fetched from the WWW using its URL. These documents
are either explicitly "bookmarked" or "accepted" by the
user. In case of being "rejected", sometimes it can also be
"saved" by the user’s agent as negative example. Under
this notion, and from now on, we will be using the words
"document", "page" and "bookmark" without distinction.
We will also be using "class", "category" and "topic" in
the same way.

Because we are trying to build a document classification
system that learns, it is of our interest to keep track of the
positive and negative examples among the documents that
have been already classified. In RAAP, positive examples
for a specific user uj and for a class cy, are the documents
explicitly registered or accepted by uj and classified into cy.
Note that accepting a recommended bookmark is just a
special ease of registering it. On the other hand, negative

38

examples are deleted bookmarks, incorrectly classified
bookmarks or rejected bookmarks that happens to be
classified into G. In the case of rejected bookmarks the
document is only classified by the agent - we don’t ask the
user to reconfirm the classification for rejected bookmarks.
In this sense, and as measure of precaution, we only take
rejected bookmarks that fall into a class in which the user
has at least one bookmark correctly classified (a class in
which the user has shown some interest).

Let C ÷ be the set of all documents classified as positive
t,j

examples for user u~ and class cj
Let C 7~ be the set of all documents classified as negative

I,j
examples for user ui and class cj

Now for a given user, we want to build a classifier Q for
each category, as a list of terms, in order to apply the dot
product similarity measure (Eq. 1), widely used in IR for
the purpose of ranking a document D respect a given query.
The classifier most similar to the document would indicate
candidate class.

sim(Q,D)= ~ w(r,Q)w(r,D)
r~Q

(1)

For term weighting, we chose TFIDF (Eq. 1.1), as it is one
of the most successful and well-tested term weighting
schemes in IR. It consists of the product of tf~,~ the term-
frequency (TF) of term l- in the document d
idf~=log2(N/dt~)+l, the inverse document frequency (IDF),
where N is the total number of documents of collection and
dt~. is the total number of occurrences of ~-in the collection.
Note that we maintain a different collection for each user.

Relevance Feedback

Given the unique terms in Q, P={ ~’l, ~’2, r3 rr}, named P
as for Prototype, it is it easy to see that both Q and D can
be represented as numerical vectors, containing the
respective weights of these terms in Q and D. Their dot
product is, in fact, the similarity measure explained before.
We can also express Q and D as numerical vectors,
containing the term frequency of each elements of P within
them, denoted respectively, as:

Tf(D) =< tf,,~,0",,,D ,tf~,, D tf,,,o > and

Tf(Q) =< tf,,,o,tf,:,o,tf~,,O,..., tf,,, O >

We can now describe mathematically a very simple
approach to the process of relevance feedback as:

Tf(Qi+,)= Tf(Qi)+aTf(D)
(2)

Where a = 1 if D e C+
#,j

a = -1 if D ~ C~;

And then, recalculate ~1/+1 based on the values of TJ(Q’+1)

which accumulates the term frequency history.

Another approach found in the literature, is the Rocchio’s
Algorithm [3]:

÷ bj r (2.1)

Note that ~ C,;j
Usual values are:
[3=-4 and y--4J3

The basic problem of these algorithms and the main
reason why we couldn’t use them "as is" for our system is
that they do not take into account the possibility that the
dimension of the vectors may change m time. In other
words, that unique terms listed in P can be added or deleted
in order to reflect the user’s current interests (feature
selection).

Instead, we propose a new algorithm for incrementally
building these vectors in order to reflect effectively the
user’s current interests. For this, at first, we shall give a
couple of useful definitions:

Definition 1: We define positive prototype for a class G,
user uy at step t, as a finite set of unique indexing terms,
chosen to be relevant for G, up to step t (see feature
selection).

P/,(~)+ = {~’1, ~’2, ~’3,..., l’r

Definition 2: We define negative prototype for a class c,
user u~ at step t, as a subset of the corresponding positive
prototype, whereas each one of its elements can be found at
least once in the set of documents classified as negative
examples for class ci.

R(’)-,.j _ e,!;.)+ / v 3d. CTj. ^ (¢,., > O)

39

Now we construct the vector of our positive prototype as
follows,

At timer +1
¯ 0+I)+if (?,..~ = ?,!~>+){

r:(Q;.7 ,.) = r:(e:,,,+) + r:(D;’;+)
Update 0~+l,+ , based on Tf(Q[’~’)+)

} else{
forall r ̄ g:~+’)* - P,.Ij)÷ do{

calculate w(r,d) for the n - most recently processed

documents ¯ C~,j and update these values in (3(’+l)+=,.j

}}}
Where n is the number of documents used as basis for feature selection.

This algorithm is to be applied in the same way for the
negative prototype.

We can now re-define the similarity measure between a
class c: and a document D as:

sim:(%,D)=(O:.o + -(’)((~(,)- o o D;j)-,~,j D;,j. (3)

Lets now express this equation in words¯ For a given
user u~, the similarity between a class c; and an incoming
document D at step t, is equal to the similarity of D, with
respect of the classifier of the corresponding positive
prototype minus the similarity of D, with respect of the
classifier of the corresponding negative prototype. This
follows the intuitive notion that a document should be
similar to a class if its similar to the class’ positive
prototype and not similar the class’ negative prototype. It is
important to say that the initial positive prototype for each
class is a list of selected core keywords from that domain
that were integrated into the system to provide at least an
initial classification.

Finally, we use a heuristic for RAAP’s ranking. This
heuristics states that it is more likely that a new document
is to be classified into a class in which the user has shown
some interest before. We chose the class with the highest
ranking among these.

Feature Selection
Automatic feature selection methods include the removal
&non-informative terms according the corpus statistics. In
comparative studies on feature selection for text
categorization (Yang 1997), information gain (IG)
shown to be one of the most effective for this task.
Information gain is frequently employed as a term-
goodness criterion in the field &machine learning.

Given all these interesting properties we decided to use
IG for selecting informative terms from the corpus. We re-
define the expected information gain that the presence or
absence of a term x gives toward the classification of a set
of pages (S), given a class c: and for a particular user u~ as:

E,.j(r,S) = I(S)- [P(r = present)I(S~=p ,) (4)
+ P(r = absent)I(Sw=~,,t

where,

I,.j(S) = ~ - P(Sc)log2(p(Sc))
c~(c:.j,cG) In

Eq. 4, P(r=present) is the probability that r is present on a
page, and (S~=p,~,~,t) is the set of pages that contain at least
one occurrence of r and S~ are the pages belonging to class

C.

Using this approach, in RAAP, the user’s agent finds the
k most informative words from the set S of the n most
recently classified documents. As in Syskill & Webert
(Pazzani, Muramatsu and Billsus 1996) we chose k=-128
and arbitrary selected n=3 for our experiments.

Out of the selected 128 terms, 28 are to be fixed, as they
constitute the core list of keywords or a basic ontology for
a topic, given for that class as an initial classifier. Within
the rest 100 words, we adopt the following scheme for
adding or replacing them in the positive prototype:

1. Perform stemming (Frakes and Baeza-Yates 1992)
over the most informative in order to create the list
of terms.

2. Replace only the terms that are in the prototype
but not in the list of the most informative terms.

3. As shown in the algorithm for constructing the
classifier, update the weights of the newly added
or replaced terms with respect of the n documents
processed by the agent for this purpose.

We conclude this section saying that even if IG is a
computationally expensive process, in RAAP this is
drastically improved both by having n low and only
updating the weights for the selected terms with respect of
these documents. We also provide a mechanism in which
the "memories" of the terms that repeat in time, are left
intact, given that their accumulated weight and information
value is high.

confidence I rerrporal I~=¢dr~

fact°r, whereml~ilmted~lis the number
of users in the

Learning to Recommend

For the purpose of learning to who recommend a page
saved by its user, the agent counts with 2 elements. The
user vs. category

3 4 7
4 3 2 o14
1 13 7 2 =3
2 5 3 7 ’2

matrix Mm~ and ,k~ ~ lahii Jo~x Gina
the user’s

Table Illser-Cate~orv Matrix
system and n the number of categories. The first one is
automatically constructed by counting, for that user, the
number of times a document is successfully classified into
a certain class. During the initial registration in RAAP, the

40

matrix is initialized to one for the classes that the user has
shown interest.

The first idea was the user-category matrix to calculate
the correlation between a user ux and the rest, using the
Pearson-r algorithm (Eq. 5). Then recommend the newly
classified bookmarks to those with highest correlation.

corret (llx,Ur) i=l

_[’~ -~ " u ~
(5)

~’~x,i--~X,’) E(Ur,i- r,i)U a..a
| l=l i =1

Y,14 j,i

where u~.,i = i=J ;j ~ {x,r}
n

One
problem with this approach, is that the correlation is only
calculated as an average criterion of likeness between two
users, regardless of the relations between the topics. That
is, if the agent decides to recommend a bookmark
classified into a class x, but it happens to be that its user is
highly correlated to another user based on the values in the
matrix respect other classes, then the bookmark would be
recommended to that user anyway. These classes can be
presumably unrelated to the class of the bookmark, which
is undesirable since we only want the agents to recommend
bookmarks to people that have interest in the topics to
which it belongs or in related ones. What we really want is
to give more weight in the correlation between users to
those classes more related to the class of the bookmark that
is going to be recommended. For this reason we introduce
the equation of similarity between two classes for a user ui
at step t, as the dice coefficient between the positive
prototypes of the classes (Eq. 6).

2 × P<’)+ n p(t)+ Where [AtaB[is the
i,m t,n numbs" of common

relit(cm’c")= t2(,)+ + 12(o+ terms, andlAtisthe (6)

~,m i,n number of terms in
A.

Given the class of the bookmark cj, the class similarity
vector is defined as:

f~J =<re~[(¢J’cl)’rel~(¢J’c2)""’rel[(¢J ’c.)> (6.1)

where n =# of classes

Now we multiply this vector by the user-category
matrix obtaining a weighted, user-category matrix.

(7) WM=Rj×M

Using this new User-Category matrix similar to the one
shown in Table 1, but with modified (weighted) values,
proceed to calculate the weight between the subject user ux
(who recommends) and the others ui (candidates to receive
the recommendation) as the correlation between them

multiplied by the corresponding confidence factor.

Weight (Ux,U,) correl(u,,u,)*confidence (us.u,) (8)

In Eq. 8, the confidence factor of user u~ with respect u/,
is a function with a range between 0.1 and 1. It returns 1
for all new users respect others, and it decreased or
increased by a factor of 0.01 every time a bookmark
recommended by user ux is accepted or rejected by u~
respectively. Note that confidence(u, u), confidence(ui, ux).
This means that the confidence is not bi-directional, but
differs for every combination of pair of users.

For deciding to who recommend we used a threshold of
0.5 for the minimum weight and to avoid circular
references in the recommendation chain, the agents verify
that the recommended document is not already registered
in the target’s database.

Conclusion and Future Work
The contributions of this paper are threefold:
1. We proposed the combination of content-based

information filtering with collaborative filtering as
the basis for multi-agent collaborative information
retrieval. For such purpose the system RAAP was
explained in detail.

2. A new algorithm for active learning of user’s
profile and text categorization was introduced.

3. We proposed a new algorithm for collaborative
information filtering in which not only the
correlation between users and also the similarity
between topics is taken into account.

As future work we are looking forward test RAAP in
broader environments and compare it with other similar
systems, as well as improve the efficiency of both the
classification and recommendation processes.

Acknowledgements

This work was supported by the Hori Foundation for
the Promotion of Information Science.

References
¯ Blum, A. 1996. On-line Algorithms in Machine Learning (a

survey). Dagstuhl workshop on On-Line algomhms
¯ Yang, Y., Pedersen, J. 1997. Feature selection in statistical

learning of text categorization", In Proceedings of the
Fourteenth International Conference on Machine Learning
(ICML ’97).

¯ Pazzani,M.,Muramatsu,J.,and Billsus, D., 1996. Syskill &
Webert: Identifying interesting websites, In Proceedings of
the American Narwhal Conference on Araficial Intelligence
(AAAl’96), Menlo Park, Calif.: AAAI Press.

¯ Kautz, H., Selman, B. and Shah, M., 1997. The Hidden
Web. AIMagazqne, AAAI Press.

¯ Frakes, W,,Baeza-Yates,R. 1992. lnforrnaaon Retrieval:
Data Structure & Algorithms. Printiee Hall, NJ.

41

