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ABSTRACT

In this work, we investigate deep learning based solutions to
blind quality assessment of stitched panoramic images (SPI).
The main problem to tackle is that the ground truth data is
usually insufficient. As a result, the learned model can easily
overfit data with specific content. Because most distortions
of SPIs lie within local regions, the problem cannot be allevi-
ated by commonly-used patch-wise training, which assumes
local quality equals global quality. We propose a multi-task
learning strategy which encourages learned representation to
be less dependent on image content. A siamese network with
two weight-shared CNN branches is trained to simultaneously
compare the quality of two images of the same scene and pre-
dict the quality score of each image. Since two images of the
same scene are processed by the same CNN, the CNN tends
to find their quality differences instead of content differences
under the constraint of the quality ranking objective. Because
two tasks share the same representations learned by the CNN,
the regression task can be further benefited from the quality-
sensitive representations. Extensive experiments demonstrate
the effectiveness of the proposed model and its superiority
over existing SPI quality assessment methods.

Index Terms— blind image quality assessment, stitched
panoramic image, multi-task learning, virtual reality

1. INTRODUCTION

Virtual reality (VR) targets at providing users with an im-
mersive and realistic experience in a virtual environment via
a wide field-of-view perceived on head mounted displays.
Image stitching is one of the key technologies to generate
360-degree panoramic images for VR applications. Typi-
cally, a panoramic image is obtained by stitching together
a sequence of images with overlapping areas into an image
with a large field-of-view. Since humans are generally the
ultimate users of such stitched panoramic images (SPI), per-
ceptual visual quality assessment tool becomes a necessity in
aiding the evaluation of user experience [1]. And specifically,
as there is no reference image for SPI, blind image quality
assessment (BIQA) metrics are highly desired.

To deal with the blind stitched panoramic image qual-
ity assessment (SPIQA) problem, a naive solution is to di-
rectly employ existing generic BIQA techniques, which can
be broadly classified into two branches: NSS-based meth-
ods [2, 3, 4, 5] and deep learning based methods [6, 7, 8,
9, 10]. For the first branch, it assumes that when an image
suffers from distortions, perturbations of statistical natural-
ness can be observed, measured and used to predict percep-
tual visual quality. For the second branch, one key issue is to
resolve the problem of insufficient ground truth. Therefore,
patch-wise training is widely used in previous deep learning
methods for data augmentation [6, 7, 8, 9]. Unfortunately,
SPI distortions such as ghosting, color and geometric distor-
tion [11] are usually presented in local regions rather than
the whole image, which makes both NSS-based methods and
deep learning based methods fail in the case of SPIs. NSS-
based methods’ failure mainly stems from its inability in cap-
turing local perturbations. Additionally, hand-crafted features
from previous NSS-based methods may also not suitable for
new types of distortions in SPIs. For deep learning based
methods, patch-wise training is also not applicable because it
labels quality of each image patch as its source image, based
on the assumption that image quality is evenly distributed.

The limitations of generic BIQA techniques promote re-
searchers to develop tailored quality metrics for SPI [11, 12,
13]. Ling et al. [12] uses convolutional sparse coding for
feature extraction, while its feature selection relies on a rule-
based process instead of a learnable process as CNN. Gao et
al. [13] proposed a quality evaluator that locates distortions
on SPIs and quantifies image quality based on detected dis-
tortions. But the proposed metric is not perceptual-driven.
Recently, the first public-available SPIQA dataset ISIQA and
a reduced-reference objective quality assessment method was
introduced [11]. However, it requires to compare an SPI with
its constituent images.

In this work, we present a novel deep learning based
blind SPIQA method. Like the aforementioned deep learn-
ing based solutions, similar problem also arises from lack
of ground truth data. Generally, the shortage of training
data can be relieved by data augmentation which essentially
increases the size of expressive space, or introducing extra
constraints to exclude low-quality solutions in the solution



space [14, 15]. Data augmentation can be achieved by col-
lecting more ground-truth or patch-wise training, while both
methods are not practical in the case of SPIQA. Our idea is
to optimize the solution space by introducing quality ranking
as an auxiliary learning task. Intuitively, a model works well
on quality scoring should also be good at quality ranking.
Therefore, using quality ranking as an extra constraint can
make the model more likely to do well in both tasks than
model merely trained subject to quality scoring.

One problem caused by data insufficiency is overfitting
data with specific content. For example, when training with
holistic images, if most low-quality images in training set
have trees, the model may learn that an image is of low quality
if it has trees inside. Training with patches instead of holistic
images can resolve this issue, while it cannot be used in blind
SPIQA. Alternatively, we require each training image pair to
have the same scene. In this setting, features of two images
with similar content are learned by the same CNN and used
for both ranking and scoring. Because two images have simi-
lar content, the CNN becomes less sensitive to image content
in order to tell the difference between the two images for the
ranking purpose. Because two tasks share the same repre-
sentations learned by CNN, the scoring task can be further
benefited from the representations which are less dependent
on image content. A work similar to ours is RankIQA [10].
Though it enables neural network to initialize with appropri-
ate parameters, the solution is very likely to fall into a bad lo-
cal optimum because the solution space is still unconstrained
to an optimized region during the finetuning stage.

In summary, this work makes three main contributions:
Firstly, we introduce multi-task learning to the task of blind
SPIQA and develop an effective siamese network to address
its particular problem of ground truth insufficiency; Secondly,
in view of the characteristic of SPI and the limitations of ex-
isting patch-wise training schemes, a joint training strategy
of image pairs is proposed to reduce image content depen-
dency and prevent overfitting; Last but not least, the proposed
model markedly outperforms both existing NSS-based and
deep-learning based methods on the test SPI dataset.

2. PROPOSED METHOD

2.1. Problem formulation

The BIQA problem can be expressed as: given an input
image I, the model M(·) should predict its mean opinion
score (MOS). Therefore, the problem can be expressed as
q = M(I), where q represents quality score. We decompose
a deep learning based model M(·) into a feature extractor
f(·) which is usually a CNN, and a predictor h(·) which is
usually one or multiple stacking fully-connected (FC) layers.
Given image I, the feature extractor extracts feature x ∈ Rn.
Then the features are fed into the predictor to predict MOS,
which can be expressed as q = h(x). Therefore, the inference

process of a neural network can be formulated as:

q = hθ2 ◦ fθ1(I) (1)

where θ1 and θ2 are parameters of the feature extractor and
the predictor, respectively.

In the proposed multi-task learning method, learning-to-
rank is introduced as the auxiliary task. During the training
stage, given a pair of images, the model is expected to predict
the quality score of each image in the pair and the ranking
vector. Suppose two SPIs of the same scene I1, I2 are given
and q̂1, q̂2 are their ground truth quality score, ground truth of
ranking is given as a 2-dimensional one-hot encoded vector r̂.
When q̂1 > q̂2, r̂ = [1 0]T . When q̂1 < q̂2, r̂ = [0 1]T .

In practice, we use same feature extractor fθ1(·) and pre-
dictor hθ2(·) to extract features from both images and predict
quality score of each image. And a separate predictor hθ3(·)
is used to predict a ranking vector r with fused feature. The
inference process of the training stage is expressed as:

q1 = hθ2 ◦ fθ1(I1) (2)

q2 = hθ2 ◦ fθ1(I2) (3)

r = σ ◦ hθ3 ◦ g(fθ1(I1), fθ1(I2)) (4)

where r represents predicted ranking vector for the image
pair, g(·) represents a feature fusion function and σ(x(i)) =
ex(i)/

∑
j e

x(j) , which is the softmax function. Thus, the
model is not only trained subject to a scoring loss, but also
subject to a ranking loss. The overall loss function can be
formulated as:

L(q1, q2, r, q̂1, q̂2, r̂)

= λ1L1(q1, q̂1) + λ1L1(q2, q̂2) + λ2L2(r, r̂) (5)

where λ1, λ2 are weights for each task and L1(·), L2(·) are
loss functions for scoring and ranking, respectively. Noted
that during testing stage, only the scoring branch is taken.

2.2. Network architecture

As shown in Fig.1, network architecture is designed accord-
ing to the formulation in Sec.2.1. ResNet-18 [16] has been
used as feature extractor. Noted that its last output layer has
been removed. Therefore, the output of the ResNet-18 feature
extractor from its last global average pooling layer [17] is a
512-dimensional feature vector, which is fed into following
predictors. The design of predictors is also inspired by [16],
whose feature extractor is heavy while the predictor is light.
For the predictor of scoring task, instead of using multiple
stacking FC layers, only one single-unit FC layer is attached
to the feature extractor. The same design methodology has
been used for building the predictor of quality ranking. A
problem left in Sec.2.1 is how to fuse features of two images.
One desired result for using a feature fusion function is that,
when we swap the order of two inputs, the ranking results
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Fig. 1: Overview of the proposed method for blind SPIQA. Given a pair of SPIs of the same scene I1, I2, the model predicts
their quality score q1,q2 and one-hot ranking vector r. Zoomed-in part of I1 is undistorted while that of I2 has ghosting
artifact. The intermediate features from ResNet-18 backbone x1,x2 ∈ R512 are fused by element-wise subtraction.

should also be swapped. We prove that using element-wise
subtraction as the feature fusion function g(·) in our setting,
Eq.4 satisfies this condition. The proof is given as follows.

Proposition 2.1. Suppose hθ3(x) = θT3 x, θ3 ∈ Rn×2,x ∈
Rn, feature fusion function g(x1,x2) = x1 − x2, x1,x2 ∈ Rn
and σ(x(i)) = ex(i)/

∑
j e

x(j) , x ∈ Rn. If σ ◦ hθ3 ◦
g(x1,x2) = [a b]T , then σ ◦ hθ3 ◦ g(x2,x1) = [b a]T

for a, b ∈ R.

Proof. Let x = x1 − x2, and θT3 x = [r(1), r(2)]
T , then

∵ σ ◦hθ3 ◦ g(x1,x2) = σ(θT3 x) = [ e
r(1)

e
r(1)+e

r(2)

e
r(2)

e
r(1)+e

r(2) ]
T

∴ σ ◦ hθ3 ◦ g(x2,x1) = σ(−θT3 x)
= [ e

−r(1)

e
−r(1)+e

−r(2)

e
−r(2)

e
−r(1)+e

−r(2)
]T = [ e

r(2)

e
r(1)+e

r(2)

e
r(1)

e
r(1)+e

r(2) ]
T

Thus, the inference process of ranking can be given as:

r = σ ◦ hθ3(fθ1(I1)− fθ1(I2)) (6)

Taking the feature difference x1 − x2 as input, a two-unit FC
layer followed by a softmax function is used to predict the
quality ranking vector r. To ensure the two branches of the
siamese network are simultaneously updated, the feature ex-
tractors and the predictors of quality score inference branches
share the same parameters.

2.3. Loss function

As formulated in Eq.5, the loss function for training the
siamese network is a combination of scoring loss and ranking
loss weighted by parameters λ1, λ2. For quality score regres-
sion, we use mean squared error (MSE) as the loss function.
The choice of quality ranking loss mainly follows sugges-
tions from [18, 19] and therefore we use cross-entropy (CE)

loss as the ranking loss. Since we treat weight parameters
λ1, λ2 as hyper-parameters, to reduce the number of hyper-
parameters, we only add a weight parameter to the scoring
loss. Therefore, the multi-task loss can be expressed as:

L(q1, q2, r, q̂1, q̂2, r̂) =

λ[MSE(q1, q̂1) +MSE(q2, q̂2)] + CE(r, r̂) (7)

3. EXPERIMENTS

3.1. Implementation details

Our network is firstly pretrained on KADID-10K [20] and
then finetuned and evaluated on the target dataset ISIQA [11].

1) Construction of pretraining set. Distorted images of
each scene are randomly combined into 2,000 image pairs.
There are 81 scenes in the KADID-10K, where 64 scenes are
chosen for pretraining and the rests are used for validation.
Thus, 128,000 image pairs are generated for pretraining.

2) Construction of training set and validation set. After
network pretraining, the network is finetuned and evaluated
on the ISIQA dataset. The evaluation process mainly follows
[11]. Since our GPU is not able to support training on images
with a full resolution from ISIQA, all images are downsam-
pled to 2000 × 400. 80% of the data are used for training
and the rest 20% are used for validation. To ensure no over-
lapping image content between training set and validation set,
the SPIs are divided according to scenes of their constituent
images. Specifically, there are 26 scenes in total, where 21
scenes are randomly chosen for training and the rest 5 scenes
are used for validation. We repeat this process 10 times and
report the medians and standard deviations of evaluation re-
sults. Spearman rank order coefficient (SRCC) and Pearson
linear correlation coefficient (PLCC) are used for evaluation.



Table 1: Comparison of different IQA models on ISIQA
across 10 sessions regarding SRCC and PLCC.

SRCC PLCC

MED † STD § MED † STD §

BRISQUE [3] 0.6225 0.0828 0.5954 0.0747
NIQE [2] 0.1524 0.1887 0.1051 0.1753
DIIVINE [21] 0.5683 0.1398 0.5880 0.1314

ResNet-18 [16] 0.6679 0.1084 0.6714 0.1477
RankIQA [10] 0.6140 0.1142 0.6144 0.1289
BSPIQA (proposed) 0.7593 0.0621 0.8022 0.0546
† Median value of SRCC and PLCC.
§ Standard deviation of SRCC and PLCC.
Note: Bold values in the table indicate the best results.

3) Hyperparameters. We use one GeForce GTX 1080Ti
for training. The ResNet-18 backbone is initialized with Ima-
geNet pretrained weights. For both pretraining and finetuning
stage, we adopt Adam optimizer with learning rate 3× 10−5,
and we find λ = 0.01 in Eq.7 is the best weight for the scor-
ing task. For the pretraining stage, the model is trained for 1
epoch with batch size 32, and reaches 0.788 in SRCC. And
for the finetuning stage, the model is trained for 20 epochs
with batch size 8.

4) Compared models. For NSS-based methods, we choose
BRSIQUE [3], NIQE [2] and DIIVINE [21] as [11] for com-
parison. Noted that we have not compared with the model
proposed in [11], since the model requires to compare SPIs
with their constituent images while our model is a blind IQA
model. We refer to and validate the reported results in [11].
For deep learning based methods, we choose ResNet-18 and
RankIQA for comparison. Since their original settings cannot
be directly applied to the case of blind SPIQA, we reimple-
ment and adjust their settings for fair comparison:

ResNet-18 baseline [16]. Because our siamese network
takes ResNet-18 as the backbone feature extractor, we also
need to compare our method with a ResNet-18. We alter the
last layer of ImageNet pretrained ResNet-18 to a single unit
FC layer as Sec.2.2. Then the model is further pretrained on
KADID-10K and evaluated on the target set ISIQA.

RankIQA [10]. RankIQA uses pairwise ranking as a
proxy task for pretraining the network while we propose to
learn ranking and scoring simultaneously. To compare with
it, we also use pretraining set generated from KADID-10K to
pretrain the siamese network merely on ranking task subject
to CE loss. Then a single branch is taken to finetune on target
dataset ISIQA on MOS regression subject to MSE loss.

3.2. Experiment results

The performance of different image quality assessment mod-
els on the test dataset is shown in Table 1. As seen from the
table, the proposed model, namely BSPIQA, achieves the best
performance among all methods regarding SRCC and PLCC.

30 40 50 60 70
Ground truth

20

30

40

50

60

70

Pr
ed

ict
io

n

BSPIQA (Proposed)

30 40 50 60 70
Ground truth

20

30

40

50

60

70

Pr
ed

ict
io

n

RankIQA

30 40 50 60 70
Ground truth

20

30

40

50

60

70

Pr
ed

ict
io

n

ResNet-18

Fig. 2: Scatter plots and linear regression of the predicted
results for ResNet-18, RankIQA, and proposed BSPIQA.

As for NSS-based IQA models, BRISQUE is a notch above
DIIVINE, and both of them are far better than NIQE. How-
ever, comparing NSS-based methods to the other three deep
learning methods, we can see that even the ResNet-18 base-
line can work better than the best one BRISQUE. And the
proposed model improves the medians of SRCC and PLCC
markedly over the best NSS-based method by around 0.14
and 0.21, respectively. We believe that the performance of
deep learning based methods are higher because handcrafted
features of previous NSS-based methods are not fully appli-
cable to the current SPIQA problem. While for deep learning
based methods, the features are automatically learned by the
CNN, and the quality of learned features depends on the de-
sign of the network architecture and learning strategy.

For deep learning based methods, our BSPIQA works
better than the ResNet-18 baseline, which indicates that
by adding the proposed auxiliary task, the quality predi-
cation performance can be effectively improved. Besides, by
comparing the results of RankIQA and ResNet-18 baseline,
the performance of RankIQA becomes even lower than the
ResNet-18 baseline. We can also see from Fig.2 that our
model has a better correlation with human perception than
the other two deep learning methods. These results further
support the idea that training merely on the scoring task
can lead to overfitting, even if the model is initialized with
optimized parameters. By introducing learning-to-ranking
as the auxiliary task and training with image pairs of the
same scene, the solution space can be well optimized and the
content dependency can be effectively reduced.

4. CONCLUSION

This paper introduces a novel deep learning based approach
for blind SPIQA. To harvest an effective learning-based
BIQA model, a crucial factor is how to cope well with the
general problem of ground truth insufficiency. To this end, we
adopt the multi-task learning paradigm and develop a siamese
network with pair-wise ranking as the second learning task to
shrink the solution space and a joint training strategy of image
pairs to reduce content-dependency and prevent overfitting.
The experimental results demonstrate the effectiveness of
the proposed model in addressing the raised particular chal-
lenges in blind SPIQA, which cannot be properly handled by
conventional patch-wise training techniques.
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