
Content Extraction Signatures∗

Ron Steinfeld
School of Network Computing, Monash University,

Frankston 3199 Australia
ron.steinfeld@infotech.monash.edu.au

Laurence Bull
School of Computer Science and Software Engineering, Monash University,

Caulfield East 3145 Australia
laurence.bull@infotech.monash.edu.au

Yuliang Zheng
Dept. Software and Info. Systems,

University of North Carolina at Charlotte, Charlotte, NC 28223
yzheng@uncc.edu

February 20, 2002

Abstract

Motivated by emerging needs in online interactions, we define a new type of digital signature
called a ‘Content Extraction Signature’ (CES). A CES allows the owner, Bob, of a document
signed by Alice, to produce an ‘extracted signature’ on selected extracted portions of the original
document, which can be verified to originate from Alice by any third party Cathy, while hiding
the unextracted (removed) document portions. The new signature therefore achieves verifiable
content extraction with minimal multi-party interaction. We specify desirable functional and
security requirements for a CES (including an efficiency requirement: a CES should be more effi-
cient in either computation or communication than the simple multiple signature solution). We
propose and analyze four CES constructions which are provably secure with respect to known
cryptographic assumptions and compare their performance characteristics.

Key Words. Content-extraction, privacy, fragment-extraction, content blinding, fact verifi-
cation, content verification, digital signatures, provable security.

1 Introduction

During the course of a person’s lifetime one has the need to use ‘formal documents’ such as: Birth
Certificates; Marriage Certificates; Property Deeds; and Academic Transcripts etc. Such documents
are issued by some recognized and trusted authority and are thereafter used by the owner in dealings
with other people or organizations, to prove the truth of certain statements (based on the trust of
the verifier in the issuing authority).

In an electronic world, digital signatures, together with a Public Key Infrastructure (PKI), can
be used to ensure authenticity and integrity of electronic versions of formal documents. However,
as digital signatures become more widely used, situations can arise where their use significantly
increases the cost of desirable document processing operations, which do not constitute a secu-
rity breach. In other words, the standard use of digital signatures sometimes places additional

∗This is an updated version of a paper presented at ICISC 2001, Dec. 6-7 2001, Seoul, South Korea. The full
version of this paper is under preparation.

1

Yuliang Zheng
(IACR ePrint 2002/016)

Figure 1: An example of a multiparty interaction.

constraints on legitimate users beyond what is really required to prevent forgeries by illegitimate
users.

In this paper we consider one particular document processing operation which is made costly
by the use of signatures, namely the extraction of certain selected portions of a signed document.
That is, we consider the case when Bob, the owner of a document which was signed by Alice, does
not wish to pass on the whole document to a third (verifying) party Cathy or David. Instead, Bob
extracts a portion of the document and sends only that portion to Cathy or David as illustrated in
Fig. 1. We are assuming here (and will give motivating examples later) that Alice is agreeable for
Bob to perform such an extraction. Still, Cathy and David would like to verify that Alice is the
originator of the document portion they received from Bob.

Ignoring for now our other requirements, we explain the difficulty with standard uses of digital
signatures in this context. It is clear that if Alice simply signs the whole document using a standard
digital signature, then Cathy and David will not be able to verify it unless Bob sends the whole
document. The simplest solution is for Alice to divide the message into (say n) fragments and
sign each fragment, giving a set of signatures to Bob, who can then forward a subset of them,
corresponding to the extracted document fragments, to Cathy and David. Some problems with
this simplistic approach include both high computation (n signatures) for Alice, Cathy and David
as well as high communication overhead from Alice to Bob, Bob to Cathy and Bob to David (up
to n times the length of one signature). We want to do better than this simple scheme in
either:

i communication overhead savings; OR

ii computation savings;

as well as:

iii giving the signer ability to specify allowed extraction of document content; and

iv achieving provable security.

We call schemes that perform better at document fragment extraction than the simple scheme
above: Content Extraction Signatures (CES).

2

1.1 Contents of this Paper

Detailed definitions and some proofs are omitted in this version of the paper — they will be in-
cluded in the full version of this paper, under preparation. This paper is organized as follows. In
Section 2 we explain the real-life background motivating the introduction of Content Extraction
Signatures, and review related work. In Section 3, we describe our desirable functional and security
requirements from a CES (which differ from those of a standard digital signature — there is even
a new privacy requirement which has no counterpart in standard digital signatures), leading to a
definition of a CES as a new primitive satisfying these requirements. Section 4 presents four CES
schemes meeting our definition which are provably secure under well-known cryptographic assump-
tions. Our CES schemes do not employ new cryptographic techniques. However, we believe this
application for these known cryptographic techniques is novel, and in the case of the RSA schemes
exploits additional properties which are useful in this application (namely to reduce communica-
tion bandwidth) but are not used to advantage in most of the original uses of these techniques. In
Section 5 we close with some concluding comments.

2 Background

2.1 The Emerging Need

To motivate the rest of the paper, consider the commonplace although pertinent example illustrated
in Fig. 2 below. In this example, a university (A) issues a student (B) with a formal document: an
Academic Transcript (Original document). The student is required to include the formal document
with a job application document sent to a prospective employer (C). Note that the Academic
Transcript document is likely to include the student’s personal details, in particular the student’s
date of birth (DOB). To avoid age-based discrimination, the student B may not wish to reveal his
DOB to the employer C (indeed, in some countries it is illegal for the prospective employer to seek
the applicant’s DOB). The university (A) understands this and is willing to allow employers to
verify academic transcripts with the DOB removed (and possibly with other fields agreed to by A
removed as well, but not others which A may require to be included in any extracted document).
Yet if A signs the Academic Transcript using a standard digital signature the student B must send
the whole document to C to allow C to verify it.

Instead, we propose in this situation the use of a Content Extraction Signature (CES), as de-
scribed in this paper. The university (A) uses the Sign algorithm of a CES scheme to sign the
original document, divided into portions (submessages m0, m1,...) and produce a content extrac-
tion signature, given to student B along with the full document. The student then extracts a
subdocument A’ of the original document consisting of a selected subset of the document submes-
sages (e.g. not including m1, the DOB of B, but including all other submessages). He then runs an
Extract algorithm of the CES scheme to produce an extracted signature by the university A for the
extracted subdocument A’. Student B then forwards the subdocument A’ and the extracted signa-
ture for A’. The employer uses the Verify algorithm of the CES to verify the extracted signature on
A’. This process can also be repeated for other prospective employers as illustrated in Fig. 2.

2.2 Virtues of Content Extraction Signatures

If one views a document as a collection of facts or statements, the use of a CES with documents
enables a user to handle and process these statements in a more selective manner rather than having
to use the entire document. Apart from the efficiency of only sending the pertinent information,
more importantly, it enables the user, Bob, to embrace a minimal information model whereby all
of the extra details that are not required can be omitted from the transaction. Once the document
has been sent out, there are no mechanisms for expiring or recalling it. This is vitally important as
the privacy and use of the information is at significantly more risk than any time in history due to

3

 Original
 Document
m1 The quick brown fox ju over the

m2 The q brown fox jumped over the

m3 The quick brfox jumped over the

 .

 .

mn The quickn fox jumped over the

 +

CES ORIG

Subdocument B

m1 The quick browumped over the

m4 The quick brown fox jumped the

m10 The quick brown mped over the

 +

CES B

Subdocument A

m2 The quick browumped over the

m4 The quick brown fox jumped the

m7 The quick brown mped over the

m10 The quick brown mped over the

 +

CES A

A
(University)

B
(Student)

C
(Prospective Employer)

D
(Prospective Employer)

Figure 2: A real-life application for Content Extraction Signatures.

the ease with which it can be electronically relayed and stored. This is especially true with respect
to the Internet.

Our approach views a document as not just a collection of facts or statements. It also recog-
nises that the document, through its name or title, also provides a contextual framework for the
collection of facts or statements. In the simplistic approach of signing each fragment so that Bob
can selectively forward them to Cathy, Alice has no protection from contextual or semantic abuse
due to reordering of the fragments sent to Cathy by Bob.

In order to afford the document signer some control over what sub-documents may be generated,
we have included the notion of an Extraction Policy as a fundamental element of the CES. The
Extraction Policy enables the signer to have some control over the use of the content even though
the document has been forwarded to the user and no further contact will occur. A CES does not
require any further interaction with the author (after the initial signing), meaning that the author
is oblivious to all further uses of (and extraction from) the document by the user. It also permits
the lifespan of the document to be independent to the lifespan of the author.

While there may be others, we currently envisage two types of situations that may create a
need in practice to extract portions of a signed document before forwarding to the verifier:

i Privacy Protection: The full document contains some sensitive/secret portions, which the
document owner may not wish to reveal to some verifiers.

ii Bandwidth Saving: The full document may be very long, while the verifier is only interested
in a small portion of it.

2.3 Subdocument Presentation

The extraction of a subdocument along with its extracted signature (CES) raises the question:
Should we enforce the requirement that positions of the blinded content be flagged with some sort
of ‘blinded fragment indicator’ for the verifier? The simplistic multiple-signature approach does
not enforce this requirement. In our security model for CES (see section 3), we define a ‘CES-
Unforgeability’ notion which does enforce it (it preserves the total number of fragments in the
original document as well as the positions of blinded/unblinded fragments). This feature might be
used to simplify the signer’s Extraction Policy discussed above, by alerting the verifier to positions
of deleted fragments (e.g. fragments deleted by an attacker in order to change meaning of the
extracted document) without those deletions having to be explicitly ruled out by the Extraction

4

Policy (since explicitly ruling these deletions out can potentially make the Extraction Policy size
very large in the case of large documents).

In some applications, it may be preferable to not display the positions of blinded fragments to
the verifying person to achieve a better presentation, as the document is not cluttered throughout
with blinded fragment indicators. This might be achieved by letting the signer add an optional
statement to the Extraction Policy allowing such a display to be specified by the user who extracts
a subdocument, although the blinded fragment positions are still communicated to and verified
by the verification algorithm. In some other cases, the verifier, Cathy, might have some negative
attitudes towards Alice if she receives a subdocument that has indicators of blinded content in it,
even though it contained all of the information Cathy was seeking. So one can also require a special
privacy requirement, namely that a curious Cathy cannot, by looking at the extracted subdocument
and signature, tell whether she received all the submessages in the original document or not. We
do not deal with this requirement in the current model.

2.4 Related Work

Bellare, Goldreich and Goldwasser[14] introduced ‘incremental’ signatures which allow a signer to
efficiently update a signature after making an incremental operation on the signed document. Our
‘Content Extraction Signatures’ can be viewed as addressing the ‘deletion’ operation efficiently, but
allowing this operation to be performed without the signer’s secret key. While [14] use the standard
signature model where this operation would constitute forgery, it is not necessarily a forgery in our
‘Content Extraction Access Structure’-based CES-unforgeability definition (see section 3), which
allows the signer to specify which deletions are to be regarded as forgeries.

The ‘dual signature’ defined for the Secure Electronic Transaction (SET) protocol [6], can be
considered a special case of one of our schemes, although in that application it is again the signer
who performs the ‘extraction’, and there are only two submessages (payment information and order
information). It is therefore a different setting to ours.

The ‘XML-Signature’[7] proposed recommendation of the WWW Consortium (W3C) defines
a scheme which allows the signing of documents consisting of multiple online ‘data objects’, some
of which may become unavailable after signing. However, the content extraction application and
its requirements are not addressed in the recommendation. Indeed, the proposed recommendation
cannot be used without modification to achieve our privacy requirement for content extraction
signatures. Furthermore, our approach deals with self-contained documents.

Three of our CES schemes are modifications of batch signature generation and verification
schemes [16] [8][11]. However, our schemes are a new application for these techniques. In particular,
we use in a novel way the homomorphic property of the RSA schemes which is not used to save
bandwidth in standard batch signing and verifying where the output (in the case of signing) is n
signatures and the input (in the case of verifying) is n signatures. We are able to take advantage
of this feature because in our setting all the n signatures are intended for the same user (from
the point of view of batch signing) or are transmitted from a single user (but not the signer) from
the point of view of batch verification. Fiat [11] mentions another application of the length-saving
feature of his batching scheme for the purpose of saving bandwidth in distributed decryption.

3 Requirements and Definition of Content Extraction Digital Sig-
natures

In this section we explain informally the requirements which a CES scheme should satisfy leading
to an (informal) definition for a CES scheme and its desirable security notions. Refer to the full
paper for more precise formulations of these definitions.

5

3.1 Terminology and Document Model

First we introduce some terminology. We will assume that a document is divided into a number n of
smaller submessages, and that such documents are represented in a form which encodes an ordering
of the n submessages, their number, and allows some of them to be ‘blank’. We use length(M)
to denote the number of submessages in M. We use [n] to denote the set of submessage indices
{1, ..., n}. We use bold letters (e.g. M = (m1,m2, . . . ,mn)) to denote such a representation of
documents. This representation of a document M allows extraction of a subdocument M′ specified
by an extraction subset X consisting of the indices of the submessages to be extracted and included
in the subdocument. The subdocument M′ then still has n submessages, where the submessages
with indices not in X are set to ‘blank’, while the submessages with indices in X are equal to the
corresponding submessages with the same indices in the original document M. We denote by M[i]
the i’th submessage in document M. We use Cl(M) to denote the set of indices of ‘clear’ (i.e.
non-blank) submessages in a document M.

For example, if the original document is M = (m1,m2,m3,m4) and the extraction subset is
X = {1, 3}, then the extracted subdocument is M′ = (m1, ?,m3, ?), where ? denotes a blank
submessage. Also, we have Cl(M′) = {1, 3}. Note that by our definitions M′ is distinct from the
documents (m1,m3, ?, ?), (m3, ?,m1, ?), or (m1, ?,m3, ?, ?) which are not subdocuments of M.

3.2 Functional Requirements from a CES

Here we discuss the functional requirements from a CES, i.e. those which are concerned with honest
users of the scheme. The basic requirement from a CES scheme can be stated as follows.

Extraction Requirement: A Content Extraction Signature should allow anyone, given a
signed document, to extract a publicly verifiable extracted signature for a specified subdocument of
a signed document, without interaction with the signer of the original document.

As explained in the introduction, the extraction requirement can be met by a simple solution
of signing each submessage seperately using a standard digital signature. In order to make this
problem more interesting we have asked for an efficiency requirement as follows.

Efficiency Requirement: A Content Extraction Signature should be more efficient, either in
communication overhead (length of original or extracted signatures), or in computational require-
ments (signing or verifying), than the simple ‘multiple signature’ solution.

An additional requirement which may be useful in some applications is the following one. It
allows the extraction to continue ‘downstream’ as the document is passed from verifier to verifier,
allowing each one to continue the extraction process. It may be considered optional.

Iterative Extraction Requirement: A Content Extraction Signature
should allow the extraction of a signature for a subdocument of a source subdocument, given the
source subdocument and the extracted signature for it.

3.3 Security Requirements from a CES

Now we discuss the security requirements from a CES, i.e. those which prevent undesirable dis-
honest operations.

The most basic security requirement is, as for standard digital signatures, to ensure authenticity
via the unforgeability requirement. The unforgeability requirement for a CES must differ, however,
from the standard ‘existential unforgeability’ one, because in the latter, any proper subdocument
(i.e. a subdocument which is not equal to the original document) of the signed document is
considered a ‘new message’ and therefore the extraction (using public knowledge only) of a valid
signature for it constitutes existential forgery. As we have pointed out, however, we are considering
situations where it is desirable to relax this model, and allow extraction of signatures for certain
subdocuments. However, it is clear that in this model the signer must have full control to determine
which subdocuments signatures can be extracted for. The signer may want to force some portions

6

as manadatory for inclusion in any extracted subdocument. And it may be necessary to protect
against changes in meaning of extracted portions due to certain deletions.

We will address the above consideration through an Extraction Policy as an additional input to
the signing algorithm of the CES scheme, called the Content Extraction Access Structure (CEAS
for short). The signer uses this to specify which subdocuments the signer is allowing signatures
to be extracted for (the CEAS is therefore an encoding of the allowed extraction subsets, using
the terminology introduced above). This leads to the following unforgeability requirement for a
CES, assuming the strong ‘chosen message’ attack, where the attacker can query a CES signing
oracle on documents of the attacker’s choice. Note that any document D queried by the attacker
to the signing oracle is accompanied by a corresponding CEAS (also under the attacker’s choice)
specifying allowed extracted subdocuments.

CES-Unforgeability Requirement: It is infeasible for an attacker, having access to a CES
signing oracle, to produce a document/signature pair (M, σ), such that: (i) σ passes the verification
test forM and (ii)M is either (A) Not a subdocument of any document queried to the CES signing
oracle, or (B) Is a subdocument of a queried document D, but not allowed to be extracted by the
CEAS attached to the sign query D.

We remark that the definition of CES-unforgeability above is as strong as one may hope for
in our setting, i.e. it prevents forgeries for any documents which are not subdocuments of signed
documents. This implies, in particular, security against ‘submessage reordering attacks’ (where the
submessages in the forged document are the same as those in subdocument of a signed document but
in different positions or order) as well as ‘mixed subdocument attacks’ (where the forged document
contains submessages which have all appeared in signed documents but have never appeared together
in a signed document). Note that the simple multiple signature scheme is not secure against
both of the latter attacks and hence does not even have the CES-unforgeability property without
modification.

Unlike standard signatures, where unforgeability is the only security requirement, many appli-
cations of content extraction signatures by nature may also have a privacy security requirement.
Indeed, as mentioned in the introduction, the reason for the user to delete some submessages in the
signed document prior to handing it over to the verifier may be in order to hide the sensitive content
of these submessages from the verifier. But none of the above requirements on a CES exclude the
possibility that the extracted signature may in general leak some information on the content of the
unextracted (deleted) submessages. Indeed, this consideration has important implications on the
design and efficiency of our first two proposed CES schemes (see section 4). Hence, the privacy
requirement for a CES must be defined in order to allow an assessment of whether a scheme satisfies
the requirement or not. We give this definition here. We note that a similar requirement has been
defined in the context of ‘incremental cryptography’ [15].

CES-Privacy Requirement: It is infeasible for an attacker to distinguish between two ex-
tracted signatures σ0 and σ1, where σ0 is extracted for a subdocument D0 of the document
(m0, ...,mi−1,M0,mi+1, ...,mn) specified by extraction subset X such that i /∈ X (i.e. D0 has a
blank submessage in position i), and σ1 is extracted for subdocument D1 of the document
(m0, ...,mi−1,M1,mi+1, ...,mn) specified by the same extraction subset X(i.e. D1 = D0). This
holds even if the attacker can choose (M0,M1), X, i, and the remaining submessages mi.

The above definition is similar to the ‘indistinguishability’ based definition of semantic security
for encryption schemes. It ensures the attacker cannot obtain information about submessages
which have been blanked (i.e. those not extracted into the subdocument). Its precise formulation
(included in the full paper) follows the standard two-stage ‘find/guess’ attack experiment [17, 1].
In this formulation the attacker’s find algorithm chooses (M0,M1), X, i, and the mi’s. A uniformly
random bit b is chosen and the attacker’s guess algorithm is given σb and tries to guess b. The
requirement is that it is infeasible for guess to guess b correctly with non-negligible advantage over
random guessing.

7

3.4 Definition of a Content Extraction Signature

Consistent with the requirements discussed above, a Content Extraction Digital Signature (CES)
scheme D can be defined to consist of 4 algorithms:

1 KeyGen — Takes a security parameter k and generates a secret/public key pair (SK,PK).

2 Sign — Takes a secret key SK, a document M = (m1,m2, ...,mn), and a content extraction
access structure CEAS, and outputs a content extraction signature σFull.

3 Extract — Takes a document M, a content extraction signature σFull, an extraction subset
X ⊆ [n] and a public key PK, and outputs an extracted signature σExt.

4 Verify — Takes an extracted subdocument M′, an extracted signature σExt and a public key
PK, and outputs a verification decision d ∈ {Accept, Reject}.

In the above definition, the main differences from a standard digital signature are the following.
The Extract algorithm allows the user to extract (from a ‘full’ content extraction signature σFull)

a signature for the subdocument consisting of the submessages whose indexes are specified by the
extraction subset X. The extracted signature σExt can then be forwarded to the verifier along with
the extracted subdocument M′.

The ‘Content Extraction Access Structure’ (CEAS) is an encoding of the subsets of submessage
indexes in the original document which the signer can use to specify which extracted subdocuments
the user is “allowed” to extract valid signatures for. Therefore the CEAS is an encoding of a
collections of subsets of [n], where n = length(M) and M is the signed document. We assume these
subsets are encoded as bit strings in {0, 1}n so that if Cl(M′) ∈ CEAS for some document M′ then
length(M′) = n = length(M).

4 Proposed Content Extraction Signature Schemes

4.1 Schemes based on General Cryptographic Primitives

4.1.1 Scheme CommitVector.

We build this CES scheme out of two standard cryptographic primitives:
(i) A standard digital signature scheme S with signature and verification algorithms (S,V) and

key generation algorithm K. We require that S satisfies the standard unforgeability notion, i.e. it
is existentially unforgeable under adaptive chosen message attacks [19].

(ii) A message commitment scheme C with committing algorithm Com(., .) and common pa-
rameters generation algorithm GenPar. Given a message m, Com(m, r; cp) denotes the commitment
to message m under random value r and common parameters cp. We require that C satisfy the
following standard properties —

1 Hiding: Given Com(m, r; cp), the message m is semantically secure [17]

2 Binding: It is hard to find any two distinct messages m 	= m′ and corresponding randomness
values r ∈ Rand(m; cp) and r′ ∈ Rand(m′; cp) such that Com(m, r; cp) = Com(m′, r′; cp)

3 Efficient Verification: Given m and r it is easy to compute c = Com(m, r; cp), or output
‘Reject’ if r /∈ Rand(m; cp).

In (2) and (3) above, we denote by Rand(m; cp) the set of valid randomness values for a com-
mitted message m.

The scheme is simple. To sign a document, one commits to the submessages and signs the
concatenation of the commitments. The CEAS is appended to the signature and is also appended

8

to each submessage before committing. The randomness values used in the commitments are also
appended. Extraction of a subset of submessages requires one to recompute the commitments to
the removed (unextracted) submessages and append them. The randomness values for the removed
submessages are removed. The result is the extracted signature. To verify the extracted signature
on an extracted subdocument, one recomputes the commitments for the extracted submessages and
verifies the signature on all of the commitments.

Computation. The main advantage of this scheme over the multiple signature one is that n
signatures are replaced by 1 signature (on a message of length proportional to n), but at a cost
of n commitments. This can give a saving in computation if the commitments can be computed
faster than signatures. In most practical cases the signature would probably be number-theory
based and signature computation would involve a modular exponentiation. This rules out the use
of number-theory based commitments, which would result in little or no savings. Fortunately,
an efficient provably secure statistically hiding commitment scheme can be constructed from any
collision-resistant hash function [20], and there exist fast candidates for such functions, such as
the well known Secure Hash Algorithm (SHA) [4]. Using this commitment scheme with a number-
theory based signature, one can achieve a computational saving by a factor close to n over the
multiple signature scheme, for sufficiently short submessages.

Signature Length. The signature length saving of this scheme over the simple one is small or
non-existent. This is because one must append the commitment randomness values for extracted
submessages and the commitments for the unextracted (removed) submessages.

Security. The scheme meets our security requirements for CES (as defined in Section 3), and we
can state the following results.

Theorem 1 (1) If the standard signature scheme S is existentially unforgeable under chosen mes-
sage attack and the commitment scheme C is binding, then scheme CommitVector has the CES-
Unforgeability property. (2) If the commitment scheme C is hiding, then scheme CommitVector has
the CES-Privacy property.

Proof. (Sketch) (1) We use an efficient CES-Unforgeability attacker ACES for scheme
CommitVector to construct two efficient attackers: Asig to break the unforgeability of scheme S
and Acom to break the binding of scheme C. We will prove our claim by showing that one of Asig or
Acom succeeds in its attack with non-negligible probability. Attacker Asig works as follows. It runs
ACES, and answers the latter’s sign queries using the signing oracle S(.) for scheme S. While doing
so, Asig stores in a table both Dj , the jth document queried by ACES to Sign (for j ∈ {1, . . . , qS},
where qS is the number of sign queries made by ACES), and also (cj [i], rj [i]), where cj [i] denotes
the commitment to the ith submessage of Dj under randomness rj [i], used by Asig to answer the
jth query to Sign. We let CEASj denote the CEAS attached to the jth Sign query of ACES.
Since ACES sees a perfect simulation of the real attack, it by assumption succeeds to break CES-
unforgeability of CommitVector with non-negligible probability ε by outputting a CES forgery pair
(D∗, σ∗Ext), where σ∗Ext = CEAS∗‖σ∗‖Conci∈Cl(M∗)r∗[i]‖Conci∈[n∗]−Cl(M∗)c∗[i], n∗

def= length(M∗).
For each i ∈ Cl(D∗), denote by c∗[i] the commitment to the i’th submessage of D∗ reconstructed
from randomness value r∗[i] in σ∗Ext. By definition of CES-unforgeability, we have that for each
j ∈ {1, . . . , qS}, at least one of the following three events occurs:

(i) There exists i ∈ Cl(M∗) such that D∗[i] 	= Dj [i] and c∗[i] = cj [i].

(ii) There exists i ∈ Cl(M∗) such that D∗[i] 	= Dj [i] and c∗[i] 	= cj [i].

9

Scheme CommitVector

(1) KeyGen(k): (1.1) Compute (SKS , PKS) ← K(k) (1.2) Compute
cp← GenPar(k) (1.3) Output PK = PKS‖cp and SK = SKS .

(2) Sign(M, CEAS, SK): (2.1) Parse PK = PKS‖cp (2.2) Compute
commitments c[i] ← Com(M[i], r[i]; cp) for i ∈ [n]. (2.3) Define
c ← Concni=1c[i] (2.4) Compute σc ← S(CEAS‖c, SK). (2.5)
Output σFull ← CEAS‖σc‖Concni=1r[i].

(3) Extract(M, σFull, X, PK): (3.1) Parse PK = PKS‖cp (3.2) Parse
σFull ← CEAS‖σc‖Concni=1r[i] (3.3) Compute missing commit-
ments c[i] ← Com(M[i], r[i]; cp) for i ∈ [n] − X (3.4) Output
σExt ← CEAS‖σc‖Conci∈Xr[i]‖Conci∈[n]−Xc[i].

(4) Verify(M′, σExt, PK): (4.1)Parse PK = PKS‖cp (4.2) Parse σExt =
CEAS‖σc‖Conci∈Cl(M′)r[i]‖Conci∈[n]−Cl(M′)c[i] (4.3) Recompute
commitments c[i] ← Com(M′[i], r[i]; cp) for i ∈ Cl(M′) or out-
put “Reject” if r[i] /∈ Rand(M′[i]) for some i. (4.4) Compute
c← Concni=1c[i] (4.5) Verify signature d← V(CEAS‖c, σc, PKS).
(4.6) Output “Accept” iff d = “Accept” and Cl(M′) ∈ CEAS.

(iii) Cl(M∗) /∈ CEASj .

Attacker Asig outputs the forgery pair (m∗, σ∗), where m∗ def= CEAS∗‖c∗[1]‖ . . . ‖c∗[n∗]. The
attacker Acom works as Asig, except that it uses a self-generated signature secret key to answer Sign
queries. It then searches for some j ∈ {1, . . . , qS} and i ∈ Cl(M∗) such that event (i) holds, and if
found outputs a binding collision [(D∗[i], r∗[i]), (Dj [i], rj [i])].

Now note that if event (i) occurs for some j ∈ {1, . . . , qS} then attacker Acom succeeds in
breaking the binding of commitment scheme C. If event (i) does not occur for all j ∈ {1, . . . , qS},
then Asig succeeds in breaking the unforgeability of signature scheme S because the message m∗ was
never queried to S(.) by Asig and σ∗ is a valid signature for m∗. This is because for each j, if event

(ii) occurs for some i then m∗ differs from the jth queried message mj
def= CEASj‖cj [1] . . . cj [nj]

to S(.) in the ith commitment, that is c∗[i] 	= c∗j [i]. And for each j for which event (iii) occurs,
we again have m∗ 	= mj because Cl(M∗) ∈ CEAS∗ and consequently CEASj 	= CEAS∗. So in
any outcome where ACES succeeds, one of Acom or Asig also succeed. This proves that one of the
attackers Asig and Acom succeeds with probability at least ε/2.

(2) We use a CES-Privacy attacker ACES to construct an attacker Ac to break the hiding property
of commitment scheme C. Attacker Ac simply runs the find stage of ACES to get a pair of submessages
(M0,M1), and then completes the commitment to Mb given to it (for a random bit b unknown to
Ac) to form a CES signature with Mb unextracted. It then gives the CES signature to the guess
stage of ACES and uses its output to predict b. Since ACES sees a perfect simulation, it follows that
Ac succeeds in predicting b with ACES’s success probability, hence breaking the hiding property of
commitment scheme C.
�

4.1.2 A Variant: Scheme HashTree.

This scheme is a modification of the previous scheme in order to improve its main shortcoming,
namely its large signature length. This length consists of two components (besides the single
S signature): the first is due to the randomness values for extracted submessages (this one is
proportional to m) and the second is due to the commitments for the unextracted submessages
(this one is proportional to n −m). The scheme HashTree significantly reduces the length of the

10

second component when m is much smaller than n. It does so in a simple way: We use a collision-
resistant hash function H(.) to construct a hash tree by modifying the signing algorithm to regard
the set of commitments as the leaves of a binary “hash tree”. The hash tree is a binary tree having
n = 2k leaf nodes, which are associated with the commitments (h1, ..., hn) of the n submessages.
Then, starting at the highest level of the tree below the leaves, we associate with each internal node
of the tree (down to the root node) the hash value of the concatenation of its two children nodes
above it. The tree has k+1 levels, the lowest one consisting of a single root node, with its associated
hash value hroot. The signer signs the root hash value hroot with appended CEAS encoding, as in
scheme CommitVector. Extraction consists of appending to the signature the hash values associated
with intermediate tree nodes which are required in order to compute the root hash value from the
commitments of the extracted submessages available in the subdocument. The randomness values
for the extracted submessage commitments are also appended as before. Verification recomputes
the root hash and verifies the signature on it.

Hash trees have been widely discussed in the literature for improving the efficiency of authen-
tication protocols (see [18]). This scheme can be regarded a modification of the batch signature
of Pavlovski and Boyd [16] except that in our application the verifier recomputes the root hash
value from any number m of leaves (extracted submessage commitments) while in their application
it was recomputed from only one leaf. For simplicity we have omitted some details in the above
description. We refer the reader to [16] for a discussion of how to handle any number of leaves
(submessages). We also note also that the privacy afforded by the use of commitments in our
scheme may also be useful in the batch signatures of [16], where the signer effectively performs the
extraction into subdocuments of one submessage each, and may not wish one verifier from learning
anything about the content of the other submessages signed in the batch.

Computation. This scheme maintains the computational efficiency of the previous scheme, apart
from some additional hashing (of total length proportional to n) to build the hash tree. As men-
tioned before, since fast collision-resistant hash functions are available this does not reduce com-
putational efficiency significantly except for very large n.

Signature Length. As for the previous scheme the extracted signature still contains the m
randomness value for the extracted m submessages, so this component of signature length is still
proportional to m. But in this variant, the component of signature length due to unextracted
submessages (which in previous scheme was proportional to the number n − m of unextracted
submessages) is significantly reduced for smallm. For example, in the extreme case when we extract
a single submessage (m = 1), the previous scheme required the user to send n− 1 commitments for
the removed submessages, while in this scheme the user only needs to send the log2(n) hash values
associated with the ‘sibling’ nodes of the nodes on the path from the clear submessage commitment
leaf node to the tree root. More generally, one can show that the worst-case overhead for a given
m is approximately m log2(n/m) sibling hash values for m < n/2 and n−m for m > n/2.

Security. The security properties of the scheme can be proved as for the previous scheme. The
main difference is that for this scheme, the CES-unforgeability property also relies on the collision-
resistance of the hash function H(.) used to build the hash tree. We have the following results,
whose proof is similar to that of Theorem 1, together with the well known collision-resistance
property of the Hash tree.

Theorem 2 (1) If the standard signature scheme S is existentially unforgeable under chosen mes-
sage attack, the commitment scheme C is binding, and the hash function H(.) is collision-resistant
then scheme HashTree has the CES-Unforgeability property. (2) If the commitment scheme C is
hiding, then scheme HashTree has the CES-Privacy property.

11

Remark: In both HashTree and CommitVector schemes, the signer sends the user all n commit-
ment ‘randomness values’ ri and user sends the verifier a subset of m of these. A well-known trick
to reduce the signer-to-user communication is for the signer to generate the ri’s using a Pseudo-
Random Number Generator (PRNG) from a single short seed (say r) and send just r to the user.
The CES-Privacy property we defined can still be proven in this case if the PRNG is secure in
the standard ‘indistinguishability from random’ sense. This trick does not, however, reduce the
user-to-verifier communication. To also reduce the latter, one may ask if it is possible to design a
special PRNG with a ‘seed extraction’ property, which can be informally stated as follows: Given
a (short) seed r (generating Pseudorandom numbers r1, . . . , rn), and any subset X ⊆ [n], it is easy
to compute a short ‘extracted seed’ rX which allows one to generate the ri for i ∈ X, but none of
the other ri’s for i /∈ X (moreover the ri for i /∈ X should be indistinguishable from random even
knowing rX). An RSA-based candidate for this type of PRNG, having constant (independent of
|X|) length extracted seeds, is suggested in [3]. Briefly, in this PRNG, the original seed consists
of the prime factors of an RSA modulus N = pq and a random element r ∈ ZZ∗

N . There are also
n fixed relatively prime public exponents e1, . . . , en. From the seed we generate a sequence of n
pseudorandom numbers ri = H(r

∏
k∈[n]−i

ek mod N) for some one-way hash function H(.). The ex-

tracted seed rX = r
∏

k∈[n]−X
ek mod N can easily be used to generate ri for i ∈ X. Unfortunately we

cannot prove the pseudorandomness of this PRNG with respect to the RSA one-wayness assump-
tion without additional ‘non-standard’ assumptions (e.g. assuming H(.) to be a random oracle).
This PRNG would also increase the computational requirements of the scheme. Finally, note that
essentially the same construction was previously proposed [2] in the context of ‘hierarchical access
control’.

4.2 Schemes Based on RSA

The previous two CES schemes improve upon the computation of the simple multiple signature
solution. But their signature length is linear in the number of submessages. In this section we show
how to achieve the reverse tradeoff. We propose RSA-based CES schemes whose signature length is
significantly shorter than that of the simple multiple signature solution. The CES signature length
for these schemes is approximately equal to that of a single standard RSA signature, independent
of n. However, in computation these schemes do not save over that required for the (batch version)
of the simple multiple-signature solution.

4.2.1 Scheme RSAProd

This scheme does not reduce the length of signatures communicated between the signer and user.
However it reduces the length of extracted signatures communicated to the verifier.

The scheme is a modification of an RSA batch “screening” verifier, proposed by Bellare et al. [8].
This verifier is based on the homomorphic property of RSA, i.e. hd1 ·hd2 mod N = (h1 ·h2)d mod N .
The verifier multiplies the RSA signatures in a batch and checks whether the result is the signature
of the product of the hash values. This allows “screening” of m signatures at the cost of only one
RSA verification plus 2 · (m− 1) multiplications modulo N .

The crucial observation which forms the basis of this scheme is that in the content extraction
signature setting, all the signatures in the ‘batch’ (where a batch corresponds here to the submes-
sages contained in the extracted subdocument and their signatures) are available to the user, who
can perform the signature multiplication step above prior to forwarding to the verifier. Now all
the user has to send is a single product of signatures modulo N , which is the same length as a
single RSA signature, independent of the number of submessages m. The verifier then only needs
to check that he received a signature for the product of the submessage hash values.

12

Scheme RSAProd

(1) KeyGen(k): Pick 2 random k/2 bit primes p and q. Compute N =
pq. Choose a public exponent e relatively prime to (p− 1)(q − 1).
Compute d = e−1 mod (p− 1)(q− 1). Set PK = (N, e) and SK =
(N, d). Output (SK,PK).

(2) Sign(M, CEAS, SK): Compute T : In version 1 (Non-Stateful),
choose T uniformly random in {0, 1}ltag . In version 2 (Stateful),
T ← counter and counter ← counter + 1. For each i ∈ [n], define
hi

def= H(CEAS‖T‖i‖M[i]). Compute σi
def= hdi mod N . Output

σFull
def= (CEAS‖T‖σ1‖ . . . ‖σn).

(3) Extract(M, σFull, X, PK): Parse σFull = CEAS‖T‖σ1‖ . . . ‖σn.
Compute σf

def=
∏
i∈X σi mod N . Set σExt

def= T‖CEAS‖σf . Out-
put σExt.

(4) Verify(M′, σExt, PK): Set X = Cl(M′). Parse σExt =
T‖CEAS‖σf . For each i ∈ X compute hi

def=
H(CEAS‖T‖i‖M′[i]). Test whether σef =

∏
i∈X hi mod N .

Output “Accept” iff the test is passed, and X ∈ CEAS.

Computation. The scheme needs the signer to produce n standard RSA signatures, so signer
computation is identical to that of the trivial solution. The verifier’s work is one signature veri-
fication plus (m − 1) multiplications modulo N . Our Verify algorithm is faster than the screener
of [8], due to two reasons. First, we offload the signature multiplication step to the Extract algo-
rithm. Second, we do not need to perform the ‘pruning step’ of eliminating duplicate messages,
which is necessary in [8] in order to avoid the attack described in [9]. In our setting the sequence
numbers appended to the submessages by the verifier guarantee distinctness and allow us to prove
CES-unforgeability without pruning. This is an additional use for the sequence numbers besides
the need to avoid submessage reordering attacks.

Signature Length. Although the full signature length from signer to user is still n times the
length of a single RSA signature, once the user extracts a subdocument the resulting extracted
signature has only the length of one RSA modulus (plus a small overhead for the CEAS encoding
and CES tag). It is therefore much shorter than both the simple multiple signature solution and
the previous two commitment-based schemes.

Security. We have the following security result for the scheme. This result holds in the standard
model, i.e. without any random oracle assumption on the hash function H(.). In this model the
hash function H(.) is chosen by the signer at key generation time and the algorithm for H(.) is
published with the signer’s public key.

Theorem 3 (1) If the Full-Domain-Hash RSA signature m → H(m)d mod N (FDH− RSA) is
existentially unforgeable under chosen message attack and CES-Tags are never reused by the CES
Sign algorithm then scheme RSAProd has the CES-Unforgeability property (2) Scheme RSAProd has
the CES-Privacy property.

Proof. (Sketch) (1) By Lemma 1 in appendix A it suffices to prove the ‘weak ordered’ (WO) CES-
Unforgeability property for the simplified version of scheme RSAProd which does not append the

13

CES tag and CEAS to submessages before hashing (i.e. only the submessage sequence number
is appended). We use a ‘weak ordered’ CES-Unforgeability attacker ACES for scheme RSAProd to
construct a chosen message attacker AFDH to break the existential unforgeability of the signature
scheme FDH− RSA. Attacker AFDH works as follows. It runs ACES, and answers the latter’s
sign queries by simulating the Sign algorithm using the signing oracle SFDH. = H(.)d mod N for
scheme FDH− RSA. While doing so, AFDH stores in a table the documents queried by ACES to
Sign (we denote by Dj the jth queried document). Since ACES sees a perfect simulation of the real
attack, it by assumption succeeds to break WO-CES-unforgeability of RSAProd with non-negligible
probability ε by outputting a forgery pair (D∗, σ∗Ext), where σ∗Ext = σ∗. By definition of WO-
CES-unforgeability, there is a submessage index i such that D∗[i] 	= Dj [i] for all j. Hence the

message m∗ def= i‖D∗[i] has never been queried by AFDH to its signing oracle SFDH. So AFDH breaks
the existential unforgeability of FDH− RSA by outputing the forgery (m∗, σ∗FDH) if it can compute
σ∗FDH

def= SFDH(m∗) = H(m∗)d mod N without queryingm∗ to SFDH. AFDH does so as follows. Since
σ∗ is by assumption a valid CES signature for document D∗, we have σ∗ =

∏
k∈X H(k‖D∗[k])d mod

N , that is σ∗ = σ∗FDH · R mod N , where R def=
∏
k∈X−{i}H(k‖D∗[k])d mod N and X def= Cl(M∗).

So AFDH queries the messages k‖D∗[k] for all k ∈ X − {i} to SFDH and multiplies the answered
signatures modulo N to compute R, which it then uses to compute the desired forged signature
σ∗FDH = σ∗/R mod N . The proof is completed by observing that the queried messages k‖D∗[k] for
k 	= i are all distinct in their sequence prefix from the forgery message m∗.

(2) The CES-Privacy is trivial since the extracted signature is independent of the unextracted
submessages.
�

If we use the random oracle model [13] for the hash function H(.), then Theorem 3 and Lemma 2
in appendix give the following result.

Corollary 1 If the RSA function is one-way and CES-Tags are never re-used by Sign, then then
RSAProd has the CES-unforgeability property in the random oracle model.

Remark 1: To achieve CES-unforgeability it is essential that CES tags are never re-used by the
Sign algorithm. In the stateful version of Sign a tag length of lT = 80 bit suffices for up to 280

CES signatures, but for the unstateful version, one needs lT = 160 bit for approx. the number of
signatures to avoid birthday collisions.
Remark 2: This scheme does not have the optional ‘Iterative Extraction’ property described in

section 3. Indeed, it is not hard to show that iterative extraction is as hard as inverting the RSA
one-way function. However, iterative extraction would not be required in many applications. The
following variant does allow iterative extraction.
Remark 3: It is clear from the proof of Theorem 3 that the scheme can be generalized to use

any one-to-one trapdoor one-way group homomorphism in place of RSA, where the group operation
and inversion are efficient.

4.2.2 A Variant: Scheme MERSAProd

The previous scheme achieves very low extracted signature length for the user to verifier commu-
nication. However the initial signature produced by the signer and given to the user is still n
RSA signatures long. The following variant scheme MERSAProd also reduces this ‘initial’ signature
length down to almost the length of a single RSA signature. It is a modification of a batch signature
generation algorithm due to Fiat [11] and as such also gives savings in signer computation over the
previous scheme. However, the scheme loses the fast verification property of the previous scheme.

Fiat [11] discovered that while standard RSA is hard to batch (see [12]), ‘Multi-Exponent RSA’
(MERSA) can be batched. In MERSA, the signer’s public key consists of a unique RSA modulus
N = pq but many public exponents ei, pairwise relatively prime and prime to (p − 1)(q − 1) (for

14

efficiency these n public exponents are normally chosen as the first n odd prime numbers). To each
public exponent ei there exists a corresponding secret exponent di = e−1

i mod (p−1)(q−1). Given
a sequence h1, ..., hn of n message hash values to be signed, Fiat’s batch signing algorithm computes
(more efficiently than performing n exponentiations) the n ‘distinct-exponent’ signatures hdii mod

N . Fiat’s algorithm is divided into 3 stages. Stage 1 outputs the product r def= Πni=1h
e/ei
i mod N ,

where e def=
∏n
i=1 ei. Stage 2 signs the product and outputs r1/e =

∏n
i=1 h

1/ei
i mod N . Stage 3

‘separates’ the product into the n indvidual multi-exponent signatures h1/ei
i mod N . A crucial

property of Fiat’s algorithm for application in our scheme MERSAProd is the following one: the
separation algorithm (Stage 3) does not require the signer’s secret key.

Our scheme MERSAProd is a natural extension of scheme RSAProd to the MERSA case, modified
to take advantage of the above useful property of Fiat’s algorithm to save on signature length. It
is described as follows. The key generation algorithm publishes in the public key an RSA modulus
N and the first nB primes ei (i = 1, ..., n) as public exponents, keeping the corresponding di as
secret exponents. The Sign algorithm runs only stages 1 and 2 of Fiat’s algorithm to compute the
product r =

∏
i∈[n] h

di
i mod N , where hi denotes the hash hi of the ith submessage (with appended

CEAS, CES Tag and submessage sequence number i, as in scheme RSAProd). Only the product r
(single RSA signature length) is sent to the user (together with CEAS and CES Tag). The Extract
algorithm runs stage 3 of Fiat’s algorithm to break up the product r into the individual signatures
hdii and then multiplies the ones corresponding to the extracted submessages in the extraction
subset X as in scheme RSAProd, to compute σf =

∏
i∈X h

di
i mod N , to achieve the same single

RSA signature length of extracted signatures. The Verify algorithm verifies σf on document M′ by

checking if σef =
∏
i∈X h

e/ei
i mod N , where e def=

∏
i∈X ei, and X = Cl(M′). Note that this test is

equivalent to testing if
∏
i∈X h̄

e/ei
i = 1 mod N where h̄i = hi for all i except i = L

def= mini∈X ei,
for which we define h̄L = hL/σ

eL
f mod N . Fiat’s stage 1 algorithm is again used to compute the

product
∏
i∈X h̄

e/ei
i mod N efficiently.

Computation. One can show that in using Fiat’s algorithm in the above scheme, the computa-
tion involved (ignoring one-off computations which are dependant only on the public exponents)
for the signer (Stages 1 and 2) is bounded in the order of n log2

2(n) + log2(N) multiplications mod
N . The extraction computation is in the same order, although we note that the user need only run
Fiat’s Stage 3 algorithm to extract and store the n signatures once, and then is able to combine
any subset of m of them using only m − 1 modular multiplications. This might be useful if the
user is supplying several distinct extracted subdocuments to multiple verifiers. Finally, the verifier
performs the Stage 1 of Fiat’s algorithm but using only m messages, giving a computational load
in the order of m log2(n) log2(m) multiplications modulo N .

Signature Length. Both initial signature length (as output by signer) and extracted signature
length are only a little longer than than a single RSA signature length (due to appended CES tag
and CEAS encoding).

Security. We can state the following. The proof is analogous to the proof of Theorem 3.

Theorem 4 (1) If each of the n distinct-exponent FDH signature schemes Si(m) def= H(i‖m)di mod
N (for i = 1, ..., n) is existentially unforgeable even under a chosen message attack giving acccess
simultaneously to all the n oracles Si(.), and if CES-Tags are never reused by the CES Sign algo-
rithm, then scheme MERSAProd has the CES-Unforgeability property (2) Scheme MERSAProd has
the CES-Privacy property.

Using the random oracle model for H(.) we again obtain a stronger result using Lemma 3.

15

Corollary 2 If the RSA function is one-way for each of the public exponents ei (for i ∈ [n]) and
CES-Tags are never reused by Sign, then MERSAProd has the CES-unforgeability property in the
random oracle model.

4.3 Performance Summary

A summary of the performance parameters of the proposed CES schemes is given in Tables 1 and
2. We use the following symbols in the tables: n (no. of submessages in original document),
m (no. submessages in extracted subdocument), TS (sig. gen. time), TV (sig. ver. time), TC
(commitment generation time), THA (Hashing time), N (RSA modulus), TRSAMULT (mult. time
modulo N), lS (signature length), lH (hash length), lC (commitment length), lr (commitment
randomness length), lT (CES tag length), lCEAS (CEAS encoding length), lm (submessage length-
assumed uniform), lseq (submessage sequence number length). We define lR

def= lm+lCEAS+lT+lseq.
For algorithm running time variables the value in brackets denotes the input length. We defined
f(n,m) def= min(mlog2(n/m), n −m). For Extract time of scheme MERSAProd, we only count the
signature multiplication step.

Scheme Approx. Sign Time Typ. T.S. S-U Length

CommitVector TS(nlC + lCEAS) + nTC(lm) 100 lCEAS + lS + nlr
HashTree TS(lH + lCEAS) + nTC(lm) + (n/2)(THA(2lC) + THA(2lH)) 100 lCEAS + lS + nlr
RSAProd n(THA(lR) + T RSA

S) 1 lCEAS + lT + nlRSA
S

MERSAProd O(n log2
2 n + log2 N)T RSA

MULT + nTHA(lR) 1 lCEAS + lT + lRSA
S

Trivial nTS(lR) 1 lCEAS + lT + nlS

Table 1: Comparison of signer computation time and signer to user communication overhead.
Column ‘Typ. T-S’ denotes typical Sign Time Saving factor. Column ‘S-U Length’ denotes Signer-
to-User sig. length.

Scheme Extract Extract Typ. Approx. Verify
Time Length Length Time

CommitVector negligible lCEAS + lS + mlr+ 169kb TV(nlC + lCEAS) + mTC(lm)
(n − m)lC

HashTree negligible lCEAS + lS + mlr+ 169kb TV(lH + lCEAS) + mTC(lm)+
f(n, m)lC m(THA(2lC) + log2(n)THA(2lH))

RSAProd mTMULT lCEAS + lT + lRSA
S 1.28kb T RSA

V + m(T RSA
MULT + THA(lR))

MERSAProd mTMULT lCEAS + lT + lRSA
S 1.28kb O(m log2 m log2 n)TMULT + mTHA(lm)

Trivial negligible lCEAS + lT + mlS 32.3kb mTV(lm)

Table 2: Comparison of user and verifier computation, user to verifier communication overhead.

The ‘Typ. Time Saving’ (Approximate Sign time saving ratio over simple multiple signature
scheme, or over the batched one in the case of scheme MERSAProd) and ‘Typ. Length’ (referring
to extracted signature length) figures were estimated for the following practical example. We took
n = 100, m = 99 (one unextracted submessage), lCEAS = 100 bit (a simple CEAS specifying
whether a submessage is optional or mandatory for extraction), and lm = 64 bit (typ. numerical
fields). For the first two schemes we assumed a DSS signature [5] with lS = 320 bit, and the
commitment scheme of [20], using SHA-1 [4] as the collision-resistant hash function (k = 160 bit),
and an affine universal hash family hA,b : {0, 1}L → {0, 1}k with h(r) = Ar + b, A ∈ {0, 1}L×k a
Toeplitz matrix, and b ∈ {0, 1}k, where arithmetic is performed in the vector space {0, 1}k over
the binary field {0, 1}. The commit randomness length is lr = 2(k + L)− 1. To achieve a provable
upper bound of 2−δ on distinguishing advantage of a privacy-breaking attacker, it is shown in [20]
that one can take L = 3(k + δ) − 1. We assumed a reasonable δ = 80, giving randomness length

16

lr = 2(4k + 3δ − 1)− 1 ≈ 1.7kbit, and commitment length lC = 160 bit. For the RSA schemes, we
assumed |N | = 1024 bit and lT = 160 bit.

Notice the reversed tradeoff between the commitment-based schemes (efficient in computation
but not in signature length) and the RSA schemes (efficient in signature length but not in compu-
tation), where in both cases the saving factor over the simple multiple signature scheme is in the
order of n.

5 Conclusion

Motivated by emerging needs in online interactions and the need to embrace a minimal information
model, we introduced a Content Extraction Signature (CES) as a digital signature which can be
verified with knowledge of only selected extracted portions of the signed document (while hiding
unextracted portions), at a communication or computation cost which is lower than the simple
multiple signature solution. We defined the security and functional requirements for such signatures,
and proposed four CES schemes with various performance tradeoffs. Practical application and
implementation issues of our CES schemes are the subject of a forthcoming paper.

References

[1] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway. Relations Among Notions of Security
for Public-Key Encryption Schemes. In CRYPTO ’98, LNCS 1462.

[2] G.C. Chick and S.E. Tavares. Flexible Access Control with Master Keys. In CRYPTO ’89.

[3] R. Steinfeld. A Pseudo-Random Generator with Seed Extraction. Manuscript, Sep. 2001.

[4] NIST. Secure Hash Standard (SHS). Federal Information Processing Standards Publication
180-1. April 1995.

[5] NIST. Digital Signature Standard (DSS). Federal Information Processing Standards Publica-
tion 186. November 1994.

[6] MasterCard and VISA. Secure Electronic Transaction (SET) Specification Books 1-3 (Version
1.0). May 31, 1997.

[7] XML Core Working Group. XML-Signature Syntax and Processing: W3C Proposed Recom-
mendation. August 20, 2001. Available from http://www.w3.org/TR/xmldsig-core.

[8] M. Bellare and J.A. Garay and T. Rabin. Fast Batch Verification for Modular Exponentiation
and Digital Signatures. In EUROCRYPT ’98, LNCS 1403. Springer-Verlag, Berlin, 1998.

[9] J.S. Coron and D. Naccache. On the Security of RSA Screening. In PKC ’99, LNCS 1560.
Springer-Verlag, Berlin, 1999.

[10] D. Naccache and D. M’Raihi and S. Vaudenay and D. Raphaeli. Can D.S.A be improved? In
EUROCRYPT ’94, LNCS 950. Springer-Verlag, Berlin, 1999.

[11] A. Fiat. Batch RSA. In CRYPTO ’89, LNCS 435. Springer-Verlag, Berlin, 1990.

[12] H. Shacham and D. Boneh. Improving SSL Handshake Performance via Batching. In CT-RSA
2001, LNCS 2020. Springer-Verlag, Berlin, 2001.

[13] M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign with RSA
and Rabin. In EUROCRYPT ’96, LNCS 1070. Springer-Verlag, Berlin, 1996.

17

[14] M. Bellare and O. Goldreich and S. Goldwasser. Incremental Cryptography: The Case of
Hashing and Signing. In CRYPTO ’94, LNCS 839, Springer-Verlag, Berlin, 1994.

[15] M. Bellare and O. Goldreich and S. Goldwasser. Incremental Cryptography and Application
to Virus Protection. In Proc. of 27th STOC ACM, 1995.

[16] C.J. Pavlovski and C. Boyd. Efficient Batch Signature Generation Using Tree Structures. In
CrypTEC’99. City University of Hong Kong Press, 1999.

[17] S. Goldwasser and S. Micali. Probabilistic Encryption. J. of Computer and System Sciences,
pages 270-299, vol. 28, no. 2, 1984.

[18] A. Menezes and P. van Oorschot and S. Vanstone. Handbook of Applied Cryptography. CRC
Press, 1997.

[19] S. Goldwasser and S. Micali and R. Rivest. A Digital Signature Scheme Secure against Adap-
tively Chosen Message Attacks. SIAM Journal on Computing, pages 281-308, vol. 17, no. 2,
1988.

[20] S. Halevi and S. Micali. Practical and Provably-Secure Commitment Schemes from Collision-
Free Hashing. In CRYPTO ’96, LNCS 1109. Springer-Verlag, Berlin, 1996.

A Appendix

The following definition and Lemmas are required for security results stated in the paper. Refer to the full
paper for proofs. The following definition is for a weaker notion of unforgeability than the full one defined
in the paper.

Definition 1 A CES scheme D is said to have the weak ordered (WO)
CES-unforgeability property if the following holds: It is infeasible for an attacker, having access to a CES
signing oracle, to produce a document/signature pair (M, σ), such that: (i) σ passes the verification test
for M and (ii) M contains a submessage at some position i which has never appeared in position i in any
document queried to the CES signing oracle.

Lemma 1 Any CES scheme which has the weak ordered CES-Unforgeability property can be used to construct
a CES scheme which has the full CES-unforgeability property.

The construction used in proving Lemma 1 involves choosing a unique ‘CES tag’ for each signed document
and appending it (and a A CEAS encoding) to each submessage before applying the original CES Sign
algorithm.

The following lemmas were also used in the security analysis of the RSA schemes.

Lemma 2 (Bellare-Rogaway[13]) If H(.) is a random oracle onto ZZ∗
N and the RSA function is one-way,

then the FDH signature S(m) def= H(m)d mod N is existentially unforgeable under chosen message attack.

Lemma 3 If H(.) is a random oracle onto ZZ∗
N and the RSA function is one-way for each ei (i = 1, ..., n),

then the n distinct-exponent FDH signature schemes Si(m) def= H(i‖m)di mod N (for i = 1, ..., n) are exis-
tentially unforgeable even under a chosen message attack giving acccess simultaneously to all the n signing
oracles Si(.).

18

