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Content Fragile Watermarking for H.264/AVC Video Authentication  

Discrete Cosine transform (DCT) to generate the authentication data that are treated as a 

fragile watermark. This watermark is embedded in the motion vectors (MVs) The 

advances in multimedia technologies and digital processing tools have brought with them 

new challenges for the source and content authentication. To ensure the integrity of the 

H.264/AVC video stream, we introduce an approach based on a content fragile video 

watermarking method using an independent authentication of each Group of Pictures 

(GOPs) within the video. This technique uses robust visual features extracted from the 

video pertaining to the set of selected macroblocs (MBs) which hold the best partition 

mode in a tree-structured motion compensation process. An additional security degree is 

offered by the proposed method through using a more secured keyed function HMAC-



SHA-256 and randomly choosing candidates from already selected MBs. In here, the 

watermark detection and verification processes are blind, whereas the tampered frames 

detection is not since it needs the original frames within the tampered GOPs. The 

proposed scheme achieves an accurate authentication technique with a high fragility and 

fidelity whilst maintaining the original bitrate and the perceptual quality. Furthermore, its 

ability to detect the tampered frames in case of spatial, temporal and colour manipulations, 

is confirmed.  

Keywords: Content protection; fragile watermarking; digital signature, video 

Authentication; H.264/AVC codec. 

1. Introduction  

The rapid advances of technology and the widespread use of computers made it possible for 

digital data to be widely generated, distributed and stored electronically. Such advances, 

however, pose a serious problem of content protection, hence, the digital data can be easily 

copied from the original version and widely distributed. Various countermeasures have evolved 

to prevent and detect such unauthorised modification. Digital Watermarking is one such 

technique that can be useful to resolve ownership problem of original content (Upadhyay & 

Singh, 2011). Digital video watermarking is the best approach to hide ownership data in videos 

in order to preserve the authenticity of the originator or of the content when required. 

The present paper covers a software implementation of an improved content-dependent 

authentication based watermarking scheme for the videos that are compressed by the current 

H.264/AVC standard (Wiegand, 2003). The watermark bits are embedded within frames which  

are defined by high motion activities resulting from the best 8×8 mode of the tree-structured 

hierarchical macroblock (MBs) partitions (Wiegand, 2003). The fragile watermark is generated 

by applying the Hashed Message Authentication Code-Secure Hash Algorithm-256 (HMAC-

SHA-256) (J. Kim, Biryukov, Preneel, & Hong, 2006) on robust visual features that are 

produced within luminance and chrominance Discrete Cosine Transform (DCT). The 

authentication and verification processes are blind while the tampering detection is not. Indeed, 



to achieve the latter, the original frames within the tampered GOP are required. The algorithm is 

sensitive to spatial, temporal and colour manipulations, and is able to detect the frames 

tampering. 

This paper covers a short overview of existing fragile watermarking schemes for content 

authentication. Section 2 covers the integrity verification of the compressed H.264/AVC video 

and followed by the proposed technique in section 3. Section 4 presents the experiments and the 

analysis of the results and section 5 covers some considerations for further improvements.  

2. Related works in fragile H.264/AVC video authentication 

Most of the H.264/AVC video authentication methods are software based implementations, 

however, few present hardware implementation (Joshi, Mishra, & Patrikar, 2015; Liu, Chen, 

Gong, Ji, & Seo, 2015). Our work deals with content authentication software based 

implementation. The state-of-the-art authentication schemes for H.264/AVC video fall into two 

broad categories: (1) content-dependent also called digital signature-based authentication where 

the watermark can be fragile or semi-fragile (Farfoura, Horng, Guo, & Al-Haj, 2015) according 

to the integrity criteria, and (2) content-independent authentication in which the watermark is 

only fragile (Le, Nguyen, & Tran, 2014). The authentication based on fragile watermarking, also 

called hard authentication (Bovik, 2010; Feng, Siu, & Zhang, 2013; Zhu, Swanson, & Tewfik, 

2004) is able to find the regions where the content has been modified. However, it is does not 

distinguish between malicious and un-malicious manipulations. In contrast, the authentication 

based on semi-fragile watermarking, called soft authentication (Feng et al., 2013), is robust 

against incidental modification such as compression, but fragile to other modifications. For the 

hard authentication, the following general requirements of the authentication system need to be 

met during implementation. These requirements are: (1) Sensitivity - meaning the approach 

must be able to detect any content modification or manipulation. For fragile authentication 

algorithms, not only content modification is sought but also the detection of any manipulation; 



(2) Localization – meaning the system should be able to locate the altered regions within the 

frames; (3) Bitrate preserving – implying that the bitrate must be unchanged before and after 

watermarking; (4) Imperceptibility – entailing that the watermarking method should maintain 

the quality of the original video; (5) Security– meaning that the watermark of the authentication 

system should be resistant to any falsification attempts; and (6) Capacity (data payload) – 

referring to the amount of information that can be embedded within the frames of a video, i.e. 

the higher the capacity, the better the system. 

Fragile authentication is compulsory in critical applications where the alterations can 

have drastic and costly effects. In our paper, we have targeted fragile watermarking techniques 

that have been developed for H.264/AVC video sequences. The watermark is embedded in the 

compressed domain (T. Kim, Park, & Hong, 2012; Kuo, Lo, & Lin, 2008; Qiu, Marziliano, He, 

& Sun, 2004; Wang & Hsu, 2008; Zhang & Ho, 2006), or directly in the compressed bitstream 

of the H.264/AVC encoder (Pröfrock, Richter, Schlauweg, & Müller, 2005; Razib, 

Shirmohammadi, & Zhao, 2007), or simply inserted as Supplemental Enhancement Information 

(SEI) in the H.264/AVC bitstream (Ramaswamy & Rao, 2006). In the compressed domain, Qiu 

et al. (Qiu et al., 2004) presented a hybrid watermarking scheme that used DCT coefficients for 

robust watermarking and motion vectors (MV) for fragile watermarking. The authentication 

scheme is content-independent, which means that the data is a binary sequence independent of 

the video content. The drawback of these kind of schemes is that the security cannot be 

guaranteed. The attackers can modify the unmarked coefficients to render the authentication 

non-operational, or to estimate the watermark from the watermarked video, and then embed it 

into other videos. Indeed, the authors (Qiu et al., 2004) mentioned that the robustness of their 

method is limited to transcoding attacks. Zhang et al. (Zhang & Ho, 2006) proposed a new 

complete fragile watermarking scheme that uses the tree-structured motion compensation, 

motion estimation (ME) and Lagrangian optimization of  H.264/AVC.  



The watermark embedding is based on the best mode decision strategy for the detection 

of any spatial or temporal alterations. Their algorithm is able to perform hard authentication in 

which the tampering contents is detected by the sensitive mode change. However, it is 

ineffective in locating the attacked areas. This weakness point is also witnessed in the approach 

presented by Wang et al. in (Wang & Hsu, 2008), where the authors introduced a complete 

fragile watermarking for H.264/AVC based on fixed watermark independent video content. In 

their results, the analysis of the recompression and GOP removal attacks ensured the 

authentication. A video authentication technique for H.264/AVC has been proposed by Kim et 

al. (T. Kim et al., 2012) where watermark bits are inserted into the MV of the inter coded MBs 

or in the mode number for intra coded MBs achieving a high payload, while ensuring low video 

quality degradation along with the same required size (in terms of bit rate) of the compressed 

watermarked bitstream. Kuo et al. (Kuo et al., 2008) presented a fragile video watermarking in 

H.264 via MV in which they extracted random features from 4x4 DCT transform of the previous 

video frame and embedded them in MV at the current video frame. Using the H.264/AVC Rate-

Distortion cost function, the best embedding locations are found by a statistical analysis of the 

MV. Moreover, their algorithm achieved the fragility in the case of transcoding while keeping a 

high visual quality video, however, the spatial and temporal tampering attacks have not been 

included.  

Pröfock et al. (Pröfrock et al., 2005) proposed a blind, fragile and effaceable 

watermarking approach to ensure that the integrity of the H.264 encoded video bitstream. This 

watermark is embedded in selected skipped MBs of H.264. They used the hard authentication 

process and managed to reach low video quality degradations and a low data rate, however, the 

achieved watermark payload is low. For the same purpose, the method in Razib et al. (Razib et 

al., 2007) uses MPEG-21 generic Bitstream Syntax Description (gBSD) to perform the 

adaptation, the encryption, and the authentication of a compressed H.264 video. Using MPEG-

21 gBSD requires the preservation and the knowledge of the bitstream as well as the content 



structure that is stored in the form of metadata. However, the metadata preservation, the 

decryption processing, the authentication and the adaptation lead to an additional overhead, and 

more importantly they might be inefficiently slow for the conventional applications such as 

video conferencing. The authors in (Ramaswamy & Rao, 2006) presented a digital signature-

based authentication where the signature, generated from the video content and treated as a 

watermark, is embedded as SEI in H.264/AVC bitstream. Their algorithm can detect the cause 

of the authentication failure and can localise the tampered frames, however, it increases the 

video bitrate that requires an extra bandwidth. A low complexity content-based hard 

authentication scheme is proposed by Horng in (Horng et al., 2014), in which the scheme 

concept is to extract fragile features from intra and inter prediction modes of intra and inter 

MBs. These constitute the authentication code which is embedded and extracted in a GOP 

within the related elements of the Network Application Layer (NAL) units of the compressed 

H.264 bitstream. In their approach, a generated content-based key is used to ensure the security 

of the authentication scheme, and the selection of the last nonzero quantized ac residuals are 

used to achieve the fragility. The hard authentication process is used. The algorithm achieved 

low video quality degradations as well as a low data rate, however, the preservation and the 

knowledge of the bitstream for the features extracted and embedding location is required. New 

features of H.264/AVC are studied in other algorithms (such as context-adaptive entropy 

coding, intra prediction mode and the reference index) for watermarking (Xu D & R, 2011; Xu, 

Wang, & Shi, 2014), but these algorithms are fragile to some common attacks. To provide 

complete fragile watermarking technique for H.264/AVC, more research is needed. All the 

above mentioned papers show clearly that the reported algorithms cannot achieve all the 

requirements of the H.264 video authentication system. Some of the existing techniques should 

be cleverly combined to improve the performance.  

The proposed approach targets the enhancement of our authentication scheme presented 

in (Ait Sadi, Bouridane, & Guessoum, 2009), and in a further improvement in our work in (Ait 



Saadi et al., 2010) by fulfilling the maximum number of the mentioned-above requirements, 

more particularly the bitrate preservation criteria, in which Ramaswamy’s technique has shown 

limitations (Ramaswamy & Rao, 2006). It is worth noting that we have already tackled in (Ait 

Sadi et al., 2009; Ait Saadi et al., 2010) the impairment of bitrate preservation reported in 

(Ramaswamy & Rao, 2006)  by modifying the embedding process. Indeed, we have shown that 

the stream size after the entropic coding is preserved and no extra bandwidth for the 

transmission of the video is required. The embedded watermark process is achieved in the last 

significant bits (LSB) of the selected MVs associated with areas of the highest motion activity.  

Compared to our previous work (Ait Sadi et al., 2009), the present work proposes an 

enhancement of the authentication performance in terms of security and sensitivity by bringing 

the following modifications: (1) for the watermark generation (as partly looked at in (Ait Saadi 

et al., 2010)) and (2) the security of the embedding which is reinforced by performing it on two 

levels. The watermark generation is based on the features of the luminance and chrominance 

components in order to identify spatial and colour manipulations. In relation to the security 

improvement, a more secured keyed function HMAC-SHA-256 is adopted at the first level to 

generate the watermark instead of the hash function MD5  (Ait Sadi et al., 2009) and  unkeyed 

SHA-256 (Ait Saadi et al., 2010). The added second level of security depends on a pseudo 

random sequence that is used to select the embedding position of the MBs. The selection of the 

embedding areas, which is achieved by using two fixed thresholds in (Ait Sadi et al., 2009; Ait 

Saadi et al., 2010), is performed quite differently in this work, where the threshold is 

dynamically selected based on the highest activity motion. In addition, the keyed watermark bits 

are substituted into the two last LSBs of the MV components instead of one bit as in (Ait Sadi et 

al., 2009) in order to increase the embedding payload of the 256 bits, which is delivered at the 

output of HMAC-SHA256 by contrast to the 128 bits delivered by MD5 or unkeyed SHA256 in 

(Ait Saadi et al., 2010). 



3. The proposed video authentication system  

The embedding process should be performed in a way that it does not increase the video 

stream‘s file-size, while maintaining the perceptual visual quality. Otherwise, the watermarking 

becomes a burden for the available bandwidth and the method cannot fulfil the bitrate 

maintaining requirement. Figure 1 shows the schematic block diagram of the proposed 

embedding process.   

3.1 Content fragile watermark generation  

Robust visual features, to which the human eye is sensitive, should be used to ensure the 

efficiency of authentication. It was demonstrated that robust visual features in the DCT domain 

(Chang, 2008; Farfoura et al., 2015; Horng et al., 2014; M. E. Farfoura, 2013 ; Q. Sun, He, & 

Tian, 2006; Weng & Preneel, 2007) are mostly DC coefficients which represent the mean values 

of every block and carry  most of the energy in the block. The robust visual features used for a 

fragile watermark generation consist of a set of coefficients extracted from INTRA and INTER 

prediction MBs including INTRA 16×16, INTRA 4×4, and INTER 4×4 prediction MBs for 

luma component and INTRA 8×8 prediction for chroma components (Wiegand, 2003). The 

feature data for the watermark generation consists of the quantized DC and the first two lower 

AC coefficients that are part of the low frequency coefficients in a zig-zag scan order of every 

block within INTRA 4×4 and INTER 4×4 MBs.  The choice of these coefficients is based on: 

(1) the DC coefficient which is a measure of the average energy over all the 4x4 pixels and on 

(2) the largest energy contained within the first several low frequency coefficients. The high-

frequency coefficients are almost close to zero and thus they are ignored during the quantization 

of DCT coefficients. In addition to the above and according to (Fridrich, 1999; Upadhyay & 

Singh, 2011), the DC and the two first AC coefficients are more stable than the other 

coefficients in the image manipulation. All the non-zero quantized Hadamard transform 

coefficients from both INTRA 16×16 luma and 8×8 chroma components form the feature data 



for a MB. These features are then collected in a buffer for each coded MB within each frame 

until reaching an instantaneous decoder refresh (IDR) mentioning the end of the GOP within 

H.264/AVC bitstream. The presence of an IDR indicates that there is no further subsequent 

pictures in the bitstream requiring references in the decoding order to the frames just before the 

I-frame  (Wiegand, 2003). In our experiments, the IDR frames are I-frames which are not 

referenced by any frames outside the current GOP (Closed GOP). GOP consists of the I-frame 

and all the other P-frames, which are temporally enclosed between of IDR frames. Therefore, a 

coded video subsequence begins with an IDR frame and ends when a new IDR frame is 

received, signalling the availability of a new subsequence to be coded or the end of 

transmission. At the end of each GOP, the features present in the buffer are hashed using a 

secure keyed function HMAC-SHA256 (J. Kim et al., 2006) which is created based on the SHA-

256 hash function and it is used as a Hash-based Message-Authentication Code (HMAC). The 

HMAC process initially mingles the features present within the buffer with the chosen secret 

key K. Then it hashes the resulting sequence with the SHA-256, and mixes it again with the 

secret key K, and then it applies the SHA-256 processing. The resulting 256 bits length hash 

sequence is used as a fragile watermark embedded in the MVs of the H.264/AVC. 

3.2 Watermark embedding 

The watermark embedding is performed on MV components within P-frames characterized by 

high motion activities and belonging to selected MBs. To secure the watermark insertion, the 

same key K used in HMAC-SHA-256 function is employed to generate a pseudo random 

sequence which is chosen as the embedding position of the MBs.  Two constraining aspects 

have been considered to carefully select the MV to be embedded. First, the neighbouring blocks 

of skipped MBs are discarded because, in the decoder, the MV of skipped MBs are derived from 

motion vector prediction only. Therefore, a motion vector error in the skipped MB, that cannot 

be compensated, is introduced due to the insertion in the neighbouring blocks. On the other 



hand, modifying these blocks may increase the video bitrate. The second limitation we found is 

that we need to avoid insertion in zero motion and low motion blocks. Indeed, any alteration in 

these blocks will be sensitive to human visual system and results in video bitrate increase. 

Hence, the MVs within the best 8×8 mode (including four sub-block modes chosen from 4×4, 

4×8, 8×4 and 8×8) are selected. These selected blocks correspond to the areas with a high 

motion. In Figure 2, the degradation of the subjective visual quality introduced by the 

embedding process does not take into account the two restrictions mentioned above.  

The frames with high motion activities are picked according to the intensity of the 

motion activity within each frame. For a given P-frame, the spatial activity matrix is calculated  

as (X. Sun, Divakaran, & Manjunath, 2001):   

          (1) 

and         (2) 

where (i,j) indicates the block indices within MBs. 

For each P-frame, the average of the activity matrix C
avg

 is given as: 

        (3) 

where M and N are the width and height of the MBs (in our case, M=N=16).  

The motion activity of the frame which is defined as standard deviation of motion vector 

magnitude, is calculated as:  

      (4)     

The frames with high motion activity are only chosen if the standard deviation satisfies 

the following condition: 

            (5) 



where T is are thresholds which are obtained experimentally.  

By applying the proposed selection, it is difficult for the human eye to detect distortions 

introduced during the watermark embedding process. In the proposed scheme, one unit of length 

of each component in MVx and MVy corresponds to ¼ pel. Before being watermarked, each 

component of the selected MV is quantized to the nearest full-pel position. By doing so, the 

maximum distortion of a MV is only ½ pel for each component.  To comply with such a scheme, 

the quantization process is applied as:   
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where the operator ‘&’ (AND) is used to remove the last LSB bits of both above components.  

The watermark bits are then hidden in the last two original LSBs of MVx and MVy as: 
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where  represents the watermark bits with the values of -1, 0, 1 and 2 corresponding to a pair of 

bits 11, 00, 01, 10, respectively.  

In order to minimize the distortion caused by the inserted watermark, the embedding 

process must ensure the following synchronization condition: 

)MVy(Q)MVyQ(    and     )MVx(Q)MVx(Q ==                                                   (8) 

The output MV within the P-frame is composed of the blocks in which the motion vector   has 

been watermarked 
}{  MVy,MVxMV =

and the un-watermarked blocks, leading to the following 

MVs at the P-frame: 
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Figure 3 outlines the flowchart of the content fragile watermark generation and the 

embedding process. 

3.3 Watermark extraction and Digital signature verification 

The extraction process is performed at the H.264/AVC decoder, and the watermark is extracted 

in a blind fashion implying that the original video sequence is not needed at the extraction. This 

is a similar to the embedding process. This process includes the computation of the frames with 

the highest activity motion, the selection of the embedding position of the MBs based on the key 

K, the entropy decoding of MV and the application of the two conditions which are performed in 

the insertion process. The watermark bits are then extracted from the last two bits of LSB of 

MVx  and MVy  components for each MV .  

At the verification stage, the visual features used are the same as in the embedding. 

These features are extracted before the inverse quantization and the transform operations in 

H.264/AVC decoder. At the end of each GOP, these features are encrypted using the HMAC-

SHA-256 function based on the same key K to produce the hash values which are compared 

with the extracted watermark bits. Any alteration to the features or to the hash values induces in 

a mismatch as consequence of the secret key K which is used in the hashing.  Therefore, the 

content is authenticated only if the original and computed hash values correspond. In case of an 

authentication failure, the tampered frames detection is performed offline. To determine the 

tampered frames location within the tampered GOP, the receiver calculates the hash digests of 

all the frames in the GOP at the decoder level, and it also requests the sender to compute and 

send the hash values of every frame. Afterward, the receiver compares the hash values frame by 



frame between the altered and original GOPs. If the hash values of the encoder and decoder of 

any frame does not match, the decoder indicates the corresponding tampered frames. 

4. Experiments and results  

Our approach is incorporated in the H.264 JM-10.1 reference software using constrained 

baseline profile (Suehring). This profile, common to the main and high profiles, remains the 

core of the H.264 extensions developed by the JVT (Joint Video Team) group. Thus, the input 

video sequence is configured to produce an I-frame every 15 frames, therefore, generating a 

GOP with IPPPP… structure. The results obtained are independent of the version of the Joint 

Model (JM) reference software, since each version of H.264/AVC is an update of the previous 

one (Ohm & Sullivan, 2013). Consequently, the extension to current version of H.264/AVC 

software (JM 18.5) only requires the change of the configuration file in the baseline profile 

(Profile IDC=66) according to the parameters illustrated in Table 1.  

To show the effectiveness of the proposed scheme, our experiments are performed on 

video sequences in QCIF format (YUV 4:2:0) which are commonly used in video processing to 

assess the fragility of the authentication against spatial, temporal, and colour tampering. The 

tempering includes frames reordering, frames replacing, spatial cropping, rotation and colour 

changing. The simulations comprise Akio, Miss America and Claire sequences (Group A) which 

are characterized by a low spatial detail and a low amount of motion. They also include 

Foreman, Flowers, Carophone and Table sequences (Group B) that exhibit a medium spatial 

detail and high amount of motion, or a high spatial detail and a medium amount of motion. The 

performance of the proposed scheme is evaluated in terms of (1) the maximum payload; (2) the 

perceptual quality of a watermarked video expressed in terms of Peak Signal-to-Noise Ratio 

(PSNR), the Video Quality (VQM) and Structural SIMilarity index (SSIM) metrics; (3) file-size 

preservation; (4) tamper localization capability; and (5) the fragility against incidental 

distortions.  



4.1 Effect on Payload  

The amount of payload bits or watermark capacity with respect to the video degradation is an 

important metric in the fragile watermarking. In our proposed algorithm, the watermark capacity 

per frame is mainly determined by (a) the motion activity and (b) the distortion introduced by 

the embedding. For the video sequences with significant motion activities (the motion activity of 

frame σ ≥ 3,870), many MBs are allocated with the 8×8 mode. Therefore, a significant amount 

of MVs are produced. However, if the video contains modest motion activities, the number of 

suitable MV decreases and less watermark bits can be embedded into the video sequences. Table 

2 illustrates the comparative results between the embedding performed by changing only the last 

LSB bit of MV (Ait Sadi et al., 2009; Ait Saadi et al., 2010).  

The proposed scheme shows an improvement in terms of average payload per GOP 

compared to (Ait Sadi et al., 2009; (Ait Sadi et al., 2009; Ait Saadi et al., 2010) while keeping 

the subjective visual quality. In addition, the size of the watermarked video file is preserved. 

The average payload per GOP, given in Table 2, is nearly three times higher for most the 

sequences belonging to Group B compared to (Ait Sadi et al., 2009). Thus, the motion activity is 

significant due to the fact that the foreground and the background are both in a moving scene. 

The number of best 8×8 modes increases resulting in large values of MV in each frame that can 

be watermarked. However, for the video sequences of Group A, despite the fact that the average 

payload per GOP has practically doubled, the number of MVs belonging to the best 8x8 mode is 

not sufficient to embed the 256 bits of fragile watermark. To achieve the full embedding of the 

256 bits in each GOP the sequences that pertain to Group A, we have increased the number of 

frames within a given GOP to 25 frames as shown in Table 3.   



4.2 Imperceptibility test  

The H.264 reference software JM-10.1 provides users with PSNR which is an objective measure 

of the visual quality of the compressed video. This metric is then read from the log file built 

during the execution by the H.264/AVC codec. The PSNR remains almost unchanged as seen in 

Table 2 for the sequences of group A which includes video clips with low motion and many 

homogeneous regions (the sequences are mostly static with limited motion in some frames). 

However, a slight decrease has been noticed in the PSNR values (0.025 to 0.315 dB) for video 

sequences of Group B with more motions and textured areas. For an objective evaluation, the 

simulation results of the frame by frame YPSNR performance on the luma of the two video 

sequences Table and Foreman is illustrated in Figure 4. One can see clearly from this figure that 

the average PSNR of the luma (Y) samples in all frames of the original and watermarked video 

sequences is less than 0.268 (dB) for all of the intra frames concluding that the visual quality is 

preserved. 

The software tools  VQM and SSIM (MSU, Graphics & Media Lab (Video Group)) are 

used to measure the temporal and structural perceptual qualities. A value of VQM that is close 

to 0 means the presence of a smaller distortion. In our experiments, the evaluation has been 

carried out only on Group B sequences. As shown in Table 4, VQM values are all under 0.4 in 

the range of 0.292 to 0.398, resulting in an insignificant discrepancy between the original and 

the watermarked video sequences. It is clear that our approach, by maintain the low values of 

VQM, provides a good imperceptibility. The SSIM index is generally used in the evaluation of 

the watermarked videos against the original in terms of similarities or discrepancies by 

calculating luminance, contrast and structural similarities. It combines these similarities to 

return a unique value. As reported in the literature it ranges from 0 to 1. A SSIM value close to 1 

indicates a high similarity of two videos and 0 is a total discrepancy. Table 4 clearly shows that 

the obtained values range between the minimum of 0.968 and the maximum of 0.998 with most 



the remaining values above 0.97.  Consequently, there is no perceptual alteration on the video 

after the embedding process as all values are very close to 1. 

4.3 Sensitivity test   

The localization capability of the proposed fragile watermarking is assessed on Foreman 

sequence (Figure 5(a)). in the first experiment, we apply spatial alterations including attacks by 

DC, cropping and rotation of frames within the watermarked sequence. Figure 5(b) shows the 

watermarked Foreman sequence, whilst considering the embedding conditions. Figures 5(c) to 

5(d) show the results obtained from different tests of spatial alterations. We started by DC attack 

which is performed by tampering the original coefficients of the 4×4 block while maintaining a 

constant mean value of the block.  The mean value in DCT domain corresponds to the DC 

component. Figure 5(c) illustrates the noted distortion when the DC attack is carried out on the 

52 
th

 MB of the 10
th

 frame within the first GOP. These results show clearly that the change only 

occurs at the AC values, and that it leads to an imperceptible quality degradation and a digital 

signature modification. One can see that all embedded signatures are similar to the one extracted 

from GOPs of the sequence with the exception of the first GOP signature which is different. The 

modified area is therefore detected and localized in the first GOP. The cropping manipulation, 

shown in Figure 5(d), consists in deleting the word “SIEMENS” displayed on the background of 

the 8
th

 frame within the first GOP. The method has also the ability to detect the illegal 

manipulations such as rotation of the 9
th

 frame (Figure 5(e)). The digital signature within the 

first GOP (manipulated) differ from the original.  

In the second experiment, the sensitivity to temporal attacks is investigated through re-

encoding, transcoding, reordering and frame dropping. For the compression attack, the 

watermarked Table sequence is compressed using MPEG2 standard. As a result, the watermarks 

within GOPs are completely removed due to the change of the GOP frames’ structure and to the 

alteration of the MVs. To simulate a transcoding attack, the watermarked Table video is 



recompressed with the same encoding parameters as the original encoder used to watermark the 

video, apart from the value of the quantization parameter which has been changed to 32. 

Similarly, the watermarks are damaged as in the previous experiment. Therefore, the proposed 

algorithm is able to efficiently detect the transcoding attack while keeping the video perception 

unaltered (Figure 6). Frame dropping and reordering are intentional attacks which take 

advantage of the temporal redundancy of video sequences to destroy efficiently the embedded 

watermark, without causing any visual degradation in the video sequence. In our method, every 

GOP contains an independent watermark to authenticate itself. The reodring attack is 

reproduced by swapping the 9th and the 10th  frmas around within the first GOP of Foreman 

sequence (Figure 7(a)). The dropping attack is performed by removing the 56th and the 58th 

frames in the fourth GOP of the same sequence (Figure 7(b)). 

The sensitivity of temporal attacks comes from the fact that, in the proposed algorithm, 

(1) the temporal features are taken into account by including the set of coefficients extracted 

from INTER 4×4 prediction MBs, and (2) the embedding location is based on the MVs of the 

best 8×8 mode MBs. As a result, any frame manipulation applied to the content or the position 

of the frame(s) within a GOP leads to a change of the extracted features from INTER 4×4 

prediction MBs within the original frame(s), and it also leads to a new mode allocation. 

Effectively, by applying a small change in the content, the original best 8×8 mode can change to 

large partition modes and the locations of suitable MVs change in the video. Consequently, 

resulting best mode affects the correct extraction of the embedded watermark within it. This 

modification is propagated to the following watermark bits which eventually destroys the 

watermark sequence. Figure 8 illustrates the Normalize Correlation (NC) values resulting from 

temporal attacks where NC measures the correlation between the embedded and the original 

watermarks within each GOP. NC varies from 0 indicating a complete destruction of the 

embedded watermarks, to 1 meaning that the watermark is unchanged. Our results indicate that 



the NC values are close to zero within the temporal attacked GOPs indicating that the watermark 

video are completely destroyed. 

Figure 9 illustrates the benefit of including the chrominance components as features in 

the watermark generation. The attack is achieved by changing the colour of the wall behind 

Foreman in the 7
th

 frame of the sequence, thus resulting in a different signature of the altered 

GOP.  

It is worth noting that the efficiency of the adopted authentication operation for the 

aforementioned attacks emanates from the hash viable properties. In fact, since the adopted 

HMAC-SHA-256 hash is a one way process and the probability of yielding the same hash value 

from two different sets of inputs is close to zero, the hash values  produced from the original and 

the attacked videos are quite different and thus detectable. 

4.4 Computational complexity of the watermarking   

The computational complexity is related to the processing time required by the different stages 

in our architecture. For the video encoding part, it encompasses the time spent by the H.264 

encoder to generate the watermark of each GOP and the one needed to embed it within the MV 

components. This computational time is evaluated as the difference between the run times with 

and without watermarking. The simulation has been performed on a personnel computer 

equipped with 3.2 GHz dual-core CPU and 2GB RAM. Table 5 shows the corresponding 

average run times. This evaluation has been carried out only on Group B sequences. It can be 

seen from Table 5 that the encoding time when including the watermarking is increasing by 3.3-

11.4 seconds compared to the original video. This slight increase arises from not only the 

watermark generation but also the identification of the best 8×8 mode and the MV components 

where to insert the watermark. 



For the video decoding part on the other hand, Table 5 shows that  the authentication and 

the detection of the failure in GOPs is  done seamlessly  since the  additional run time in this 

case is insignificant. It is worth noting that the additional run time is the time pertaining to the 

GOP processing. As mentioned earlier, a time penalty is experienced when localizing the 

tampered frame within the unauthenticated GOP. 

4.5 Comparison with previous works 

Table 6 summarizes the comparison of the proposed scheme with other fragile authentication 

techniques using either content-dependent or content-independent watermarking for H.264/AVC 

codec. First, when comparing the content-dependent watermarking techniques, the scheme in 

(Ramaswamy & Rao, 2006) requires higher memory resources since it has introduced a larger 

file-size  whereas the proposed technique does not entail any increase in file-size. More 

importantly, the proposed method achieves excellent performance in terms of video quality. 

Indeed, as seen in Table 6, the PSNR degradation is evaluated at only 0.315 dB which is 

perceptually insignificant. Furthermore, in terms of the tampering detection, the proposed 

scheme exhibits a high sensitivity to spatial, temporal and colour manipulations compared to 

Kuo et al's (Kuo et al., 2008) method which did not include the effect of temporal and colour 

alterations. Second, when comparing the current approach with the content-independent 

watermarking algorithms, it can be noted from Table 6 that even though most of algorithms are 

sensitive to some  spatial manipulations such as transcoding or compression, they either provide 

no information necessary to characterize the attacks or they have neglected to include some 

attacks such as spatial tampering (Qiu et al., 2004), temporal and colour tampering (Kuo et al., 

2008). By contrast, our approach is able to localize where the authentication failure at GOP 

level is, while keeping the video quality and the file-size of the compressed bitstream 

unchanged. The only impairment is the additional time consumption induced by the detection of 

the failure within the frames of the identified tampered GOP. 



While the work in (Horng et al., 2014) achieves better performance compared to our 

proposed approach both in terms of YPSNR and VQM, it implied inconsiderable perceptual 

distortion because the embedding is performed only on I-frames. On the other hand, our 

proposed MV-based embedding ensures a better perceptual quality of the video sequences. 

Furthermore, the SSIM values of our proposed method span approximately the same 

interval as in (Horng et al., 2014) and their reported average values are very close to the 

advantage of a higher payload capacity with our scheme. Indeed, in spite of its ability in 

preserving the coding efficiency, the work in (Horng et al., 2014) experiences less payload 

capacity, more particularly with the video sequences of the Group B. 

In terms of computational complexity, the method adopted in reference (Horng et al., 

2014) allows to  attain a more viable performance. This comes from the fact that the different 

steps of the embedding and detection processes are performed on the bitstream level using the 

syntactic elements of the NAL. Accordingly, when applying our approach in a similar way, it 

would show its advantage fullness and bring a valuable complexity reduction.  

5. Conclusion  

In our paper, an efficient content fragile watermarking scheme of H.264/AVC video for 

authentication and frames tampering detection is explained. This approach individually 

authenticates each GOP within the video. An extraction of robust visual features in the 

H.264/AVC encoder transform’s domain are performed in order to create a unique fragile 

watermark that is afterward inserted into a selected the MB with high intensity motion. The 

results of this simulation have demonstrated that almost all the criteria of the content 

authentication are satisfied. This approach not only verifies the authenticity and the integrity of 

the video, but also maintains the same bitrate in the encoder output. For the video characterized 

by high motion activities and textured area, the average PSNR value of the watermarked video 



content decreases by relatively small value of 0.3 dB, while preserving the file-size of the 

watermarked H.264 stream. Moreover, the scheme has a good sensitivity and provides the 

detection of spatial, temporal and colour frames tampered within the video. However, the 

algorithm takes more time to detect the tampered frames. Our future research will focus on 

reducing the computational complexity by enhancing the run-time of the tampered frames 

within the unauthenticated GOP to render the algorithm more suitable to real-time applications.  
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Figure 1. Schematic block diagram of the proposed embedding process. 

 

 

 
Figure 2. Visual quality results without respecting the two first conditions of insertion (a) 

original frame from Table sequence (b) Insertion in MV belonging to 16×16 partition mode (c) 

Insertion in MV belonging to 8x8 partition mode without observing the two restrictions. 

 



 

Figure 3. Flowchart of the proposed embedding process. 
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Figure 4. Frame by-frame YPSNR of the original and watermarked sequence (a) Table,    (b) 

Foreman with QP=28. 

  



 

Figure 5. Foreman frames within the 1
st
 GOP: (a) Original frames, (b) watermarked frames, (c) 

DC attack, (d) cropping attack and (e) rotation attack.  

 

 

Figure 6. Table Frames within the 1
st
 GOP after transcoding attack. 

 

 

 

 

 



 

 

 

 

 

 

Figure 7. Reordering and dropping attacks on the first and Fourth GOPs of Foreman sequence. 

 

 

Figure 8. Sensitivity to temporal attacks applied on Table sequence video. 

 

 

Figure 9. Colour attack applied on the 7
th

 frame of Foreman sequence. 

 

  

(a) Reordering attack on the first GOP of Foreman sequence. 

(b) Foreman frames after dropping the 56
th

 and 58
h
 frames within the fourth GOP 



 

 

Table 1. Configuration parameters of the encoder 

Profile Baseline (Profile IDC=66)

Number of frames 150 for all test sequences except for Table which includes 88 frames 

Frame rate 

Source Bit Depth luma 

Source Bit Depth chroma 

Motion estimation 

RD optimization 

Entropy coding 

Search range 

Quantization parameter 

Intra period 

30 fps 

8 

8 

Full Search 

0 

CAVLC 

16 

28 

15, only the first frame is intra 

 

Table 2. Simulation results of payload and PSNR for sequences belonging to the two groups 

with  σ ≥ 3,870  and comparison with the work in (Ait Sadi et al., 2009). 

  

 

 

 

 

 

 

Video 

sequence 

Average Payload 

per 

GOP(bits) 

PSNR (dB) The file-size of the video 

stream (MBytes ) 

 

proposed 

approach 

 

Work 

in 

(Ait 

Sadi et 

al., 

2009) 

 

Original 

video 

 

 

Proposed 

video 

Watermarking 

 

Difference 

between 

original  and 

proposed 

watermarked 

video  

 

Work 

in 

(Ait 

Sadi 

et al., 

2009)  

 

Difference 

between 

proposed 

work and 

(Ait Sadi 

et al., 

2009) 

 

Original 

video 

 

 

Proposed 

video 

Watermarking 

G
ro

u
p

 A
 

Miss 

America 

162 88 40.056 40.056 0 40.04 0.016 5.43 5.43 

Claire 238 135 39.681 39.681 0 39.67 0.011 5.43 5.43 

Akiyo 248 133 38.205 38.205 0 38.17 0.035 5.43 5.43 

Bridge-

close 

518 264 34.847 34.847 0 34.85 0.03 5.43 5.43 

G
ro

u
p

 B
 

Carphone 2960 1495 37.340 37.315 0.025 37.29 0.025 5.43 5.43 

Coastguard 5334 2806 34.181 34.026 0.155 34.02 0.006 5.43 5.43 

Flower 8578 4304 34.336 34.308 0.028 34.31 0.02 5.43 5.43 

Foreman 7688 2569 36.687 36.45 0.237 35.75 0.3 5.43 5.43 

Suzie 2760 1349 37.357 37.141 0.216 37.12 0.021 5.43 5.43 

Table 9992 5182 35.23 34.915 0.315 34.91 0.05 3.22 3.22 

 

 

Table 3. Simulation results of payload and PSNR for sequences belonging to group A with 25 

Frames within GOP (σ ≥ 3,870). 

Video sequence 

Of Group A 

Average Payload per 

GOP(bits) 

PSNR (dB) The file-size of the video 

stream (MByte ) 

Miss America 265 

283 

301 

555 

40.056 5.43 

Claire 39.681 5.43 

Akiyo 38.205 5.43 

Bridge-close 34.847 5.43 

 



 

Table 4. Simulation results of VQM and SSIM. 

 Videos VQM SSIM  Videos VQM SSIM 

G
ro

u
p

 A
 

Miss America 0.192 0.998 

G
ro

u
p

 B
 

Carphone 0.292 0.987 

Claire 0.206 0.978 Coastguard 0.234 0.998 

Akiyo 0.187 0.995 Flower 0.290 0.995 

Bridje close 0.245 0.981 Foreman 0.351 0.976 

   Suzie 0.289 0.983 

   Table 0.398 0.968 

 

Table 5. Run time video coding for sequences belonging to Group B 

Video  

Sequences 

Group B 

Run-time video coding (sec) Run-time video decoding (sec) 

Without 

watermarking 

With 

watermarking 

Difference 

 

Without 

watermarking

With 

watermarking 

Difference 

Carphone 21.60 24.86 3.26 15.1 15.31 0.21 

Coastguard 22.21 26.31 4.10 16.2 16.44 0.22 

Flower 23.39 30.33 6.94 16.47 16.73 0.26 

Foreman 30.48 35.54 5.06 17.6 17.78 0.18 

Table 32.80 44.20 11.4 17.81 18.05 0.24 

 

  



Table 6. Comparison of the proposed scheme with other hard authentication techniques for 

H.264/AVC codec. 

Parameters 
(Qiu et al., 

2004) 

(Zhang & 

Ho, 2006) 

(Wang & 

Hsu, 2008) 

(T. Kim et al., 

2012) 

(Kuo et al., 

2008) 

(Ramaswamy & 

Rao, 2006) 

(Horng et al., 

2014) 

Proposed 

method 

Type of 

watermarking 
content-independent  Content-dependent (Features extracted in transform Domain) 

Features 

extraction 
 luma  luma luma 

luma & chroma 

Type of data of 

every block 
    AC Coeffs. 

DC & AC coeffs. 

of luma 

nonzero 

quantized ac 

residuals 

DC & AC 

coeffs. of luma 

& chroma 

Embedding 

space 

Motion 

Estimation 

AC coeffs. 

(I frame) 

AC coeffs.  

(P & B 

frames) 

MV for inter-

coded MBs or on 

the mode number 

for intra-coded 

MBs 

Motion 

vectors 

SEI 

(Supplemental 

Enhancement 

Information) of 

GOPs 

I4-blocks of I-

frames 

 

Motion vectors 

Payload 1 bit /MBs 
Low  

(150 bits) 

Low  

(400 bits) 
High Not mentioned 

 

Signatures for all 

video 

(y*160 ) bits    

y : total number 

of GOP in video 

High 

High : Signature 

for all video 

(y*256 ) bits 

y : total number 

of GOP in video 

Increase in  file-

size  
None None + 1% +1% ∼2% + 4% Large  None 

None 

Detect spatial 

manipulations 
no yes 

Only GOP 

remove & 

re-encoding 

Frames removal &  

recompression 
transcoding yes yes 

yes 

Detect temporal 

manipulations 
no no no no Not mentioned no yes 

yes 

Detect color 

manipulations 
no no no no Not mentioned no no 

yes 

Detect 

tampered 

location 

no 

Yes 

(Frame 

level) 

Yes  

(Frame 

level) 

no 
Yes 

(Frame level) 

Yes 

(Frame level) 
yes 

Yes 

(Frame level) 

PSNR 
Small 

degradation 
Maintained - 0.12dB -0.06 dB - 0.27 dB Maintained --0.005 

- 0.3 dB 

Computational 

complexity 
Low Low Low High Not mentioned Low Low 

High (in 

tampered 

frames 

locations) 

 

 

 


