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a b s t r a c t

The assessment of image quality is important in numerous image processing

applications. Two prominent examples, the Structural Similarity Image (SSIM) index

and Multi-scale Structural Similarity (MS-SSIM) operate under the assumption that

human visual perception is highly adapted for extracting structural information from a

scene. Results in large human studies have shown that these quality indices perform

very well relative to other methods. However, the performance of SSIM and other Image

Quality Assessment (IQA) algorithms are less effective when used to rate blurred and

noisy images. We address this defect by considering a four-component image model

that classifies image local regions according to edge and smoothness properties. In our

approach, SSIM scores are weighted by region type, leading to modified versions of

(G-)SSIM and MS-(G-)SSIM, called four-component (G-)SSIM (4-(G-)SSIM) and four-

component MS-(G-)SSIM (4-MS-(G-)SSIM). Our experimental results show that our new

approach provides results that are highly consistent with human subjective judgment of

the quality of blurred and noisy images, and also deliver better overall performance

than (G-)SSIM and MS-(G-)SSIM on the LIVE Image Quality Assessment Database.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Visual images are the most important and data-

intensive means for humans to acquire information, and

digital image acquisition, communication, storage proces-

sing, and display devices have become ubiquitous in daily

life. Since digital images are subject to a wide variety of

distortions in any of these, and since image traffic has

become quite dense, the assessment of digital image

quality has become an exceedingly important topic.

Subjective tests have long been considered to be the

Final Arbiter of image quality, but such tests are quite

time consuming and expensive, and cannot be imple-

mented in systems where real-sensitive quality scoring is

needed. Therefore, nowadays there has been an increasing

push to develop objective measurement techniques that

predict subjective image/video quality automatically.

Over the years, numerous objective metrics have been

proposed [1–21] to assess image quality. These include

many early algorithms that sensibly sought to incorporate

perceptual models [10–14,17,19] and distortion models

[16,20]; more recent algorithms based on the successful

Structural Similarity Image (SSIM) index [7–9] that

incorporate saliency [1], compression specificity [2],

multi-scales [8], amount and local information [15], and

wavelet-domain processing [21], and algorithms using

information-theoretic [5], singular-value decomposition

[4], the mahalanobis distance [18], and color [20]. A

successful visual signal-to-noise ratio (VSNR) has been
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proposed for IQA in [3], and the same group has also

studied the interesting question of the relationship

between image quality assessment with image usability

in subsequent image analysis tasks [6].

The simplest and most widely used image quality

indices remain the mean square error (MSE), computed

by averaging the squared intensity differences of

distorted and reference image pixels, and the related

peak signal-to-noise ratio (PSNR). However, the MSE

and its variants poorly correlate with human visual

perception of quality [22–25,34]. There are a number

of perceptual factors [26] that influence human percep-

tion of visual quality. Successfully incorporating these

into objective IQA metrics can lead to improved correla-

tions with visual perception [10].

Two prominent examples, the Structural Similarity

Image index (SSIM) [7] and the Multi-scale Structural

Similarity index (MS-SSIM) [8] operate under the

assumption that visual perception is highly adapted for

extracting structural information from a scene. Results in

large human studies have shown that these quality

indices perform quite well relative against human sub-

jectivity. However, the performance of SSIM and MS-SSIM

has been observed to be less competitive when used to

assess blurred and noisy images.

It is intuitively obvious that different image regions

have different importance for vision perception. Broadly,

this suggests that image content analysis should be a

primary direction of inquiry for improving quality

assessment algorithms. Neither SSIM nor MS-SSIM takes

into account factors such as the visual importance of

image features. A few researchers have explored the

possibility of improving the performance of the SSIM

indices, by assigning visual importance weights to the

SSIM values. In [27], the effect of using different pooling

strategies was evaluated. The authors suggest that good

performance can be achieved using an information-

theoretic approach using ‘‘information content-weighted

pooling.’’ In [28], a SSIM modification is introduced

wherein the SSIM values are weighted by a perceptual

importance function, but with desultory results. The

authors of [1] deepen this direction of inquiry by using

human fixation data to modify the SSIM and MS-SSIM

indices, gaining somewhat higher correlations with hu-

man subjectivity.

In this paper, we instead take a low-level approach to

the problem, where we seek to parse the image to be

assessed into regions of different low-level contents.

Specifically, we use a popular four-component image

model to parse the reference and distorted images, and

derive region-weighted versions of SSIM and MS-SSIM,

which we call four-component SSIM (4-SSIM) and four-

component MS-SSIM (4-MS-SSIM), respectively. We find

that we are able to improve upon the performance of SSIM

and MS-SSIM against human subjectivity on the LIVE

Image Quality Database.

This paper is organized as follows. Section 2 reviews

SSIM, MS-SSIM and a gradient-based SSIM. The 4-SSIM

(and 4-MS-SSIM) indices are described in Section 3.

Section 4 gives experimental results and comparisons.

Finally, future directions are considered in Section 5.

2. Structural similarity indices

2.1. Single-scale SSIM

Based on the assumption that the HVS is highly

adapted to extract structural information from the view-

ing field, a new philosophy for image quality measure-

ment SSIM was proposed by Wang et al. [7]. It defines the

separate functional measures of luminance, contrast and

structural similarity between two signals x and y:

lðx,yÞ ¼
2mxmyþC1

m2
x þm2

yþC1
ð1Þ

cðx,yÞ ¼
2sxsyþC2

s2
x þs2

yþC2
ð2Þ

sðx,yÞ ¼
sxyþC3

sxsyþC3
ð3Þ

where mx and my are the (local) sample means of x and

y, respectively, sx and sy the (local) sample standard

deviations of x and y, respectively, and sxy is the (local)

sample correlation coefficient between x and y. Generally,

these local sample statistics are computed within over-

lapping windows, and weighted within each window,

e.g., by a Gaussian-like profile. The small constants C1, C2,

C3 stabilize the computations of Eqs. (1)–(3) when the

denominator(s) become small.

Combining the three comparison functions of

Eqs. (1)–(3) yields a general form of the SSIM index:

SSIMðx,yÞ ¼ ½lðx,yÞ�a½cðx,yÞ�b½sðx,yÞ�g ð4Þ

where a, b and g are parameters that mediate the

relative importance of the three components. Usually,

a=b=g=1, C2=C3, yielding the now-familiar specific form

of the SSIM index

SSIMðx,yÞ ¼
ð2mxmyþC1Þð2sxyþC2Þ

ðm2
x þm2

yþC1Þðs2
x þs2

yþC2Þ
ð5Þ

In [7], the SSIM index is deployed using an 11�11

sliding window over the entire image space. At each

image coordinate, the SSIM index is calculated within the

local window; the resulting SSIM index map can be used

to visualize the quality map of the distorted images.

Finally, the SSIM index values can be spatially pooled, e.g.,

by taking their sample mean, yielding a single descriptor

of the image objective quality.

2.2. Multi-scale SSIM

Wang et al. [8] developed a multi-scale SSIM

(MS-SSIM) index. In MS-SSIM, quality assessment is

accomplished over multiple scales of the reference and

distorted image patches by iteratively low-pass filtering

and down-sampling the signals (Fig. 1).

Processing in MS-SSIM is simple: index the original

image as Scale 1, the first down-sampled version as

Scale 2, and so on. The highest scale M is obtained after

M�1 iterations. At the jth scale, the contrast comparison

(Eq. (2)) and the structure comparison (Eq. (3)) are

calculated and denoted as cj(x, y) and sj(x, y), respectively.
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The luminance comparison (Eq. (1)) is computed only at

Scale M and denoted as lM(x, y).

The overall MS-SSIM index is obtained by combining

the measurement across scales via

MS�SSIMðx,yÞ ¼ lMðx,yÞ
YM

j ¼ 1

cjðx,yÞsjðx,yÞ ð6Þ

In the implementations described here, the highest

scale used is M=5.

MS-SSIM is able to capture distortions as they occur

across scales, as well as better matching the human visual

response. MS-SSIM significantly outperforms single-scale

SSIM.

2.3. Gradient-based SSIM (G-SSIM) and multi-scale G-SSIM

Chen et al. [29] developed an improved SSIM

algorithm, called Gradient-based Structural Similarity

(G-SSIM), which compares edge information between

the distorted image and the original image. G-SSIM

replaces the contrast comparison c(x, y) in Eq. (2), and

the structure comparison s(x, y) in Eq. (3), with a gradient

contrast comparison cg(x, y) and a gradient structure

comparison sg(x, y), respectively. The gradient is

generated using the Sobel operator.

Let X0 and Y0 denote the gradient maps of the original

and the distorted images, respectively, and let x0 and y0,

respectively, be block vectors from X0 and Y0. Then:

cgðx,yÞ ¼
2sx0sy0 þC2

s2
x0 þs2

y0 þC2

ð7Þ

sgðx,yÞ ¼
sx0y0 þC3

sx0sy0 þC3
ð8Þ

where the sample statistics have the same definition as

in Eqs. (1)–(3), but applied on the gradient images.

Subsequently setting C2=C3, G-SSIM is given by

G�SSIMðx,yÞ ¼
ð2mxmyþC1Þð2sx0y0 þC2Þ

ðm2
x þm2

yþC1Þðs2
x0 þs2

y0 þC2Þ
ð9Þ

Applying the identical multi-scale method described in

Section 2.2 to G-SSIM results in multi-scale G-SSIM

(MS-G-SSIM).

Extensive experimental results have shown that the

SSIM and MS-SSIM indices correlate with the perception

of visual quality much better than does the PSNR, and

remain highly competitive with respect to other IQA

algorithms [7,8,30]. However, these studies also suggest

that performance might be improved when assessing the

quality of blurred and noisy images, as also shown in

Fig. 2. Most observers would agree that Fig. 2(a) is of

better quality than Fig. 2(b), yet SSIM (G-SSIM) and

MS-SSIM (MS-G-SSIM) give contrary assessment results.

By comparison, the 4-G-SSIM, 4-MS-SSIM and 4-MS-G-

SSIM algorithms, which we will describe, yield

C1 (x, y)

S1 (x, y)

C2 (x, y)

S2 (x, y)

CM (x, y)

SM (x, y) 
lM (x, y). . .

similarity 
measure

L 2 L L 22 ...signal 1

L 2 L L 22 ...signal 2

Fig. 1. Multi-scale structural similarity measurement. L denotes low-pass filtering; 2k denotes down-sampling by 2.

Image DMOS SSIM G-SSIM MS-SSIM MS-G-SSIM 4-SSIM 4-G-SSIM 4-MS-SSIM 4-MS-G-SSIM 

(a) noise 44.7534 0.3491 0.2623 0.8539 0.7292 0.50 0.3440 0.9122 0.7856 

(b) blurred 66.3322 0.6932 0.3217 0.8825 0.6802 0.5605 0.2075 0.8566 0.6384 

Fig. 2. Comparison of IQA algorithms on blurred and noisy images.
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assessments that appear to better agree with visual

perception of quality.

3. Modifying SSIM: 4-SSIM and 4-MS-SSIM

IQA algorithms generally operate without attempting

to take into account image content. Since algorithms for

image content identification remain in a nascent state,

IQA algorithms that succeed in assessing quality as a

function of content will await developments in

that direction. However, low-level content of visual

importance, sometimes called salient image features,

might be used to improve IQA algorithms. For example,

intensity edges certainly contain considerable image

information, and are perceptually significant [31]. Using

this observation we incorporate a four-component

image model into SSIM (or MS-SSIM), and thereby

develop four-component weighted SSIM (4-SSIM) and

MS-SSIM (4-MS-SSIM) indices. We have also developed

four-component indices using G-SSIM (and MS-G-SSIM),

which we term the 4-G-SSIM (and 4-MS-G-SSIM) indices.

The development of 4-SSIM and 4-MS-SSIM follows

four steps: (1) Calculate the SSIM (or MS-SSIM) map. (2)

Independent of the SSIM results, segment the original

(reference and distorted) image into four categories of

regions (changed edges, preserved edges, textures and

smooth regions). Changed and preserved edge regions are

found where a gradient magnitude estimate is large, while

smooth regions are determined where the gradient

magnitude estimate is small. Textured regions are taken

to fall between these two thresholds. (3) Apply non-

uniform weights to the SSIM (or MS-SSIM) values over the

four regions. (4) Pool the weighted SSIM (or MS-SSIM)

values, e.g., their weighted average, thus defining a single

quality index for the image (4-SSIM or 4-MS-SSIM). A

diagram depicting calculation of 4-SSIM (or 4-MS-SSIM) is

shown in Fig. 3.

3.1. Definition of 4-SSIM and 4-MS-SSIM

In the 4-SSIM algorithms, an image is partitioned into

four parts: changed edges (these include edge pixels that

exist in the reference image (or distorted image) but have

disappeared from the distorted image (or reference

image), preserved edges (these edge pixels coincide in

reference and distorted images), textures and smooth

regions. We seek to more heavily weight the degradations

at the preserved and changed intensity edges in the

IQA process. Textured regions, by contrast, often

mask degradations. Artifacts in smooth regions may be

quite obvious, especially if they are high-frequency or

edge-like.

We may partition an image into four components

using the computed gradient magnitude. Ref. [32] gives a

simple image three-component partition method that we

modify it to obtain a partition into four types of regions.

The following steps explain the process:

Step 1: Compute the gradient magnitudes using a Sobel

operator on the original and the distorted images.

Step 2: Determine thresholds TH1=(0.12)gmax and

TH2=(0.06)gmax, where gmax is the maximum gradient

magnitude value computed over the original image. The

threshold values 0.12 and 0.06 affect the image compo-

nent partition in the following way: the smaller the first

value, the more ‘‘edgey’’ the region is. The smaller the

second value, the less the smooth region is.

Step 3: Assign pixels as belonging to changed edge,

preserved edge, texture, and smooth regions, as follows:

Denoting the gradient at coordinate (i, j) on the

original image by p0(i, j) and the gradient on the distorted

image as pd(i, j), the pixel classification is carried out

according to the following rules:

R1: If p0(i, j)4TH1 and pd(i, j)4TH1, then the pixel is

considered as a preserved edge pixel.

R2: If (p0(i, j)4TH1 and pd(i, j)rTH1) or (pd(i, j)4TH1

and p0(i, j)rTH1), then the pixel is considered as a

changed edge pixel.

R3: If p0(i, j)oTH2 and pd(i, j)4TH1, then the pixel is

regarded as part of a smooth region.

R4: Otherwise, the pixel is regarded as part of a

textured region but is not an edge pixel.

Fig. 4 shows a reference image and a compressed

version of it. Also shown are the identified changed and

preserved edges, the identified smooth regions, and the

identified textured regions.

3.2. Determining the weights

Edges play an important role in the perception of

images, and edges that are distorted, e.g., by blur, can

Gradient 
Magnitude

SSIM Map 

Reference Image
and

Distorted Image 

Edges
Regions

Texture Regions 

Smooth Regions 

SSIM Map 
for Preserved Edge 

SSIM Map 
for Texture 

SSIM Map 
for Smooth

Weight1 

Weight4

Weight3

∑
4-SSIM

(4-MS-SSIM)

Structure 
Information

Changed Edges 

Preserved Edges 

SSIM Map 
for Changed Edge 

Weight2 

Fig. 3. Diagram for calculating 4-SSIM (or 4-MS-SSIM).
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greatly impact the perceived quality of an image. We

therefore modify the SSIM and MS-SSIM indices by

allocating greater weight to the scores at edge regions

than on smooth and textured regions. To keep things

simple, we fixed the weight for all edge regions at 0.5,

0.25 for changed edges and preserved edge regions,

respectively. When no changed edge region is found

(when the distorted image is equal to the reference

image) or no preserved edge region (for heavily distor-

tions) exists, the weight 0.5 is set for all edge regions.

Smooth regions are important also, and the eye is

sensitive to artifacts such as false contouring, blocking,

and high-frequency noise in smooth regions. While the

distortion of textures can also be perceptually significant,

some distortions can be obscured or masked by the

presence of textures. As a simple approach, we apply the

same weights on smooth and texture regions, fixing both

at 0.25 (hence the sum of all weights is unity).

4. Experimental results and discussion

4.1. Comparisons on 5 distorted images having similar SSIM

values

As a first example, we used the reference ‘‘Lena’’ image

(shown in Fig. 5(a)) to produce 5 distorted images having

nearly identical SSIM values, as shown in Fig. 5(b–f). The

human subjective impression of the quality of these

 (b) Gaussian noise (c) Speckle noise (d) Salt-pepper noise (e) JPEG compressed (f) Blurred 

SSIM 0.64 0.64 0.64 0.64 0.64 

4-SSIM 0.74 0.72 0.61 0.59 0.49 

Fig. 5. Evaluation of ‘‘Lena’’ image contaminated by different distortions: (a) Original ‘‘Lena’’ image, 512�512, 8 bits/pixel; (b) Gaussian noise

contaminated image; (c) speckle noise contaminated image; (d) salt–pepper noise contaminated image; (e) JPEG compressed image and (f) blurred image.

Fig. 4. From left-to-right: (a) original reference image; (b) JPEG compressed image; (c) preserved edge pixel image; (d) changed edge pixel image; (e)

smooth pixel image and (f) texture pixel image. In the latter four cases black indicates membership in the classes preserved edge, changed edge, smooth,

and texture, respectively.
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images is markedly different, yet the simple SSIM index

does not distinguish them. Conversely, the 4-SSIM scores

shown in the caption do distinguish the distorted images,

and in a manner that appears coincident with human

perception of quality. If this proves to be verifiable, then it

represents an apparent advantage of four-component

weighted SSIM and of the idea of using low-level

content in IQA algorithms.

4.2. Comparisons on 5 distorted images having similar

MS-SSIM values

We also used the reference ‘‘Lena’’ image (Fig. 5(a)) to

produce 5 distorted images having very similar MS-SSIM

scores relative to the reference image, as shown in

Fig. 6(a–e). Again, these 5 distorted images have

apparently different image qualities, yet even the highly

regarded MS-SSIM does not distinguish them effectively.

In this case, the 4-MS-SSIM index delivers assessment

results that appear much more consistent with the human

impression of quality. When judging these results, it is

important to compare the relative quality scores of each

algorithm with itself, rather than between algorithms.

Broadly, one seeks a monotonic function of computed

quality against a scale of perceptual quality, which is more

important than the absolute separation of the scores.

Table 1

Spearman rank order correlation coefficient (SROCC)

JPEG2000 JPEG WN GBlur FF All data

PSNR 0.8898 0.8409 0.9853 0.7816 0.8903 0.9092

SSIM 0.9317 0.9028 0.9629 0.8942 0.9411 0.9250

4-SSIM 0.9549 0.9041 0.9867 0.9681 0.9635 0.9460

G-SSIM 0.9326 0.9038 0.9367 0.9364 0.9451 0.9448

4-G-SSIM 0.9516 0.9061 0.9736 0.9690 0.9620 0.9626

MS-SSIM 0.9536 0.9108 0.9780 0.9539 0.9350 0.9532

4-MS-SSIM 0.9551 0.9109 0.9883 0.9693 0.9416 0.9593

MS-G-SSIM 0.9311 0.8804 0.9447 0.9692 0.9381 0.9514

4-MS-G-

SSIM

0.9434 0.8969 0.9734 0.9704 0.9440 0.9626

VIF [5] 0.9563 0.9093 0.9854 0.9678 0.8662 0.9559

VSNR[3] 0.946 0.908 0.979 0.941 0.906 N/A

 (a) Salt-pepper noise (b) Speckle noise (c) Gaussian noise (d) JPEG compressed (e) Blurred 

MS-SSIM 0.66 0.66 0.66 0.66 0.66 

4-MS-SSIM 0.72 0.71 0.71 0.68 0.66 

Fig. 6. Evaluation of ‘‘Lena’’ image contaminated by different distortions: (a) Salt–pepper noise contaminated image, (b) speckle noise contaminated

image; (c) Gaussian noise contaminated image; (d) JPEG2000 compressed image and (e) blurred image.

Table 2

Linear correlation coefficient (LCC) after nonlinear regression.

JPEG2000 JPEG WN Gblur FF All data

PSNR 0.8878 0.8596 0.9862 0.7840 0.8752 0.9293

SSIM 0.9368 0.9297 0.9793 0.8741 0.9452 0.9388

4-SSIM 0.9601 0.9321 0.9770 0.9685 0.9728 0.9489

G-SSIM 0.9382 0.9343 0.9537 0.9076 0.9479 0.9563

4-G-SSIM 0.9580 0.9416 0.9835 0.9618 0.9584 0.9710

MS-SSIM 0.9578 0.9426 0.9860 0.9579 0.9346 0.9435

4-MS-SSIM 0.9602 0.9420 0.9905 0.9723 0.9394 0.9440

MS-G-SSIM 0.9378 0.9137 0.9669 0.9731 0.9445 0.9492

4-MS-G-

SSIM

0.9510 0.9316 0.9836 0.9755 0.9479 0.9555

VIF [5] 0.9633 0.9422 0.9887 0.9737 0.8828 0.9579

VSNR [3] 0.953 0.943 0.978 0.934 0.902 N/A
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4.3. Experimental comparison on LIVE image database

In order to further provide more extensive and

convincing statistical quantitative comparisons, we eval-

uated the performances of 4-SSIM, 4-MS-SSIM, 4-G-SSIM,

4-MS-G-SSIM, SSIM, G-SSIM, MS-SSIM, MS-G-SSIM and

PSNR on the LIVE Image Quality Assessment Database

[33]. This database includes five types of distorted

images: JPEG2000: 227 images, JPEG: 233 images, white

noise (WN): 174 images, Gaussian blur (Gblur): 174

images and Fastfading (FF) noise: 174 images. Difference

Mean Opinion Scores (DMOS) are also available for each

distorted image.

Three performance metrics were used to evaluate the

algorithms. The first is the Spearman rank order

correlation coefficient (SROCC). The second is the linear

correlation coefficient (LCC) between DMOS and the

algorithm scores following nonlinear regression. The third

is the RMSE (after nonlinear regression). The nonlinearity

chosen for regression was a five-parameter logistic

function [30].

4.3.1. Results on entire LIVE database

The results, presented in Tables 1–3, are reported for the

different distortion types as well as on the entire dataset. In

the experimental results of the 5 independent datasets, no

reference image is included in the presentations to human

subjects. In the test results overall data, the hidden reference

images are included. This follows the reporting of the LIVE

study and other publications.

As can be seen, 4-SSIM outperforms SSIM and PSNR on

all types of distorted images, and also performs better

Fig. 7. Scatter plots for DMOS versus single-scale QA score for all images.

Table 3

RMSE after nonlinear regression.

JPEG2000 JPEG WN Gblur FF All data

PSNR 7.4764 8.1925 2.6493 9.7945 7.9847 8.1096

SSIM 5.6861 5.9073 3.2403 7.6636 5.3866 7.9653

4-SSIM 4.5448 5.8079 3.4191 3.9301 3.8205 7.3012

G-SSIM 5.6240 5.7159 4.8198 6.6222 5.2606 6.7652

4-G-SSIM 4.6575 5.3989 2.9006 4.3171 4.7102 5.5310

MS-SSIM 4.6705 5.3530 2.6711 4.5281 5.8715 7.6657

4-MS-SSIM 4.5391 5.3832 2.2003 3.6908 5.6577 7.6319

MS-G-SSIM 5.6407 6.5169 4.0886 3.6363 5.4229 7.2796

4-MS-G-

SSIM

5.0256 5.8275 2.8919 3.4679 5.2568 6.8220

VIF [5] 4.3634 5.3724 2.3977 3.5946 7.7529 6.6406

VSNR [3] 4.963 5.339 3.339 5.692 7.193 N/A
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than MS-SSIM on JPEG2000, WN, GBlur and FF distortions.

Overall, 4-MS-SSIM outperforms MS-SSIM. G-SSIM

outperforms SSIM, and 4-G-SSIM far outperforms G-SSIM.

Interestingly, G-SSIM is not as effective in multi-scale

form, and MS-G-SSIM proved somewhat inferior to

MS-SSIM. Yet the numbers are so close as to be

statistically insignificant. However, the four-component

weighted method effective improves MS-G-SSIM, yielding

4-MS-G-SSIM, which overall outperforms MS-G-SSIM in

whole dataset. According to the three performance

metrics overall data, 4-G-SSIM yields the best IQA

performance on the LIVE database. Figs. 7 and 8 depict

scatter plots of DMOS versus all above-described SSIM

and MS-SSIM variant indices for all images, which also

suggest that 4-G-SSIM has the best prediction

performance relative to DMOS.

4.3.2. Results on LIVE noise and blurred database

In order to show the advantages of the four-compo-

nent weight method in detail relative to the prior SSIM

algorithms and their variants, we also studied the

experimental results to rate algorithm performance

specifically on blurred and noisy images, as shown in

Table 4. As can be seen, four-component weighted 4-SSIM

(4-G-SSIM, 4-MS-SSIM, 4-MS-G-SSIM) greatly improves

the performance of each SSIM index (G-SSIM, MS-SSIM,

MS-G-SSIM), which makes them more competitive,

especially in applications where images are noisy or

blurred, relative to other IQA methods.

4.3.3. The discussion of weight

In any case, in order to explore the relevance of the

various weights of 4-SSIM, we varied the weight for edge

regions from 0 to 1.0, in steps of 0.1. To simplify things,

we applied the same weight to changed edge and

preserved edge regions. Equal weights were also allocated

to textured and smooth regions, with the total weight

summing to unity. Using this protocol, the plot of SROCC

for 4-SSIM when tested on the LIVE Image Quality

Assessment Database [33], as a function of the weight

on the edge regions, is shown in Fig. 9. As can be seen,

when the total edge weight (changed and preserved

edges) takes the value 0.6, the SROCC for 4-SSIM reaches

the highest (discrete) score, suggesting that the 4-SSIM

QA index should weight edge regions more heavily than

other regions, but that we should not eliminate the

evaluation of quality on textured and smooth regions.

Fig. 8. Scatter plots for DMOS versus multi-scale QA scores for all images.
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5. Concluding remarks

In this paper, we presented a new four-component

weighted structural similarity metric that improves upon

the well-known SSIM and multi-scale SSIM indices and

some of their popular derivatives. Using the idea that

different image regions have different perceptual

significances relative to quality, we defined different

weights on SSIM scores according to a low-level

content-based segmentation of images into homogeneous

regions. Our experimental results show that 4-(G-)SSIM

(and 4-MS-(G-)SSIM) provide results that are more

consistent with human subjectivity, when comparing

the quality of blurred and noisy images, and also deliver

better performance than (G-)SSIM (and MS-(G-)SSIM) on

five types of distorted images from the LIVE Image Quality

Assessment Database. Interestingly, 4-(G-)SSIM per-

formed better than either MS-(G-)SSIM or 4-MS-(G-)SSIM,

suggesting that edge relevance might be of greater

significance than multi-scale.
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