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Abstract— This paper studies the performance of cache-
enabled dense small cell networks consisting of multi-antenna
sub-6 GHz and millimeter-wave (mm-wave) base stations. Differ-
ent from the existing works which only consider a single antenna
at each base station, the optimal content placement is unknown
when the base stations have multiple antennas. We first derive the
successful content delivery probability by accounting for the key
channel features at sub-6 GHz and mm-wave frequencies. The
maximization of the successful content delivery probability is a
challenging problem. To tackle it, we first propose a constrained
cross-entropy algorithm which achieves the near-optimal solution
with moderate complexity. We then develop another simple yet
effective heuristic probabilistic content placement scheme, termed
two-stair algorithm, which strikes a balance between caching the
most popular contents and achieving content diversity. Numerical
results demonstrate the superior performance of the constrained
cross-entropy method and that the two-stair algorithm yields
significantly better performance than only caching the most
popular contents. The comparisons between the sub-6 GHz and
mm-wave systems reveal an interesting tradeoff between caching
capacity and density for the mm-wave system to achieve similar
performance as the sub-6 GHz system.

Index Terms— Sub-6 GHz, millimeter wave, caching place-
ment, user association, dense networks.

I. INTRODUCTION

THE global mobile data traffic continues growing at an

unprecedented pace and will reach 49 exabytes monthly

by 2021, of which 78 percent will be video contents [2].

To meet the high capacity requirement for the future mobile

networks, one promising solution is network densification,

i.e., deploying dense small cell base stations (SBSs) in the
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existing macrocell cellular networks. Although large numbers

of small cells shorten the communication distance, the major

challenge is to transfer the huge amount of mobile data

from the core networks to the small cells and this imposes

stringent demands on backhaul links. To address this problem,

caching popular contents at small cells has been proposed

as one of the most effective solutions, considering the fact

that most mobile data are contents such as video, weather

forecasts, news and maps, that are repeatedly requested and

cacheable [3]. The combination of small cells and caching will

bring content closer to users, decrease backhaul traffic and

reduce transmission delays, thus alleviating many bottleneck

problems in wireless content delivery networks. This paper

focuses on the caching design at both sub-6 GHz (µ-wave) and

mm-wave (mm-wave)1 SBSs in dense small cell networks.

A. Related Works

1) Caching in µ-wave and mm-wave Networks: mm-wave

communication has received much interest for providing high

capacity because there are vast amount of inexpensive spectra

available in the 30 GHz-300 GHz range. However, com-

pared to µ-wave frequencies, mm-wave channel experiences

excessive attenuation due to rainfall, atmospheric or gaseous

absorption, and is susceptible to blockage. To redeem these

drawbacks, mm-wave small cells need to adopt narrow beam-

forming and be densely deployed in an attempt to provide

seemless coverage [4]–[6]. The study of content caching

applications in mm-wave networks is of great importance,

due to the fact that mm-wave will be a key component

of future wireless access and content caching at the edge

of networks is one of 5G service requirements [6]. Cache

assignment with video streaming in mm-wave SBSs on the

highway is discussed in [7] and it is shown to significantly

reduce the connection and retrieval delays. Certainly, com-

bining the advantages of µ-wave and mm-wave technologies

will bring more benefits [8]. Caching in dual-mode SBSs that

integrate both µ-wave and mm-wave frequencies is studied

in [9], where dynamic matching game-theoretic approach is

applied to maximize the handovers to SBSs in the mobility

management scenarios. The proposed methods can minimize

handover failures and reduce energy consumption in highly

mobile heterogeneous networks. Dynamic traffic in cache-

enabled network was studied in [10].

1In this paper, we focus on mm-wave frequencies from 30 GHz to 300 GHz.
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Recent contributions also pay attention to the caching in

MIMO networks such as [11]–[13]. In [11] and [12], cache-

enabled cooperative MIMO framework for wireless video

streaming is investigated. In [13], coded caching for downlink

MIMO channel is discussed.

2) Optimization of Content Placement: Content placement

with finite cache size is the key issue in caching design, since

unplanned caching in nearby SBSs will result in more interfer-

ence. The traditional method of caching most popular content

(MPC) in wired networks is no longer optimal when consider-

ing the wireless transmission. A strategy that combines MPC

and the largest content diversity caching is proposed in [14],

together with cooperative transmission in cluster-centric small

cell networks. This strategy is extended to the distributed relay

networks with relay clustering in [15] to combat the half-

duplex constraint, and it significantly improves the outage

performance. A multi-threshold caching that allows BSs to

store different number of copies of contents according to their

popularity is proposed in [16], and it allows a finer partitioning

of the cache space than binary threshold, but its complexity is

exponential in the number of thresholds.

Probabilistic content placement under random network

topologies has also been investigated. In [17], the optimal

content caching probability that maximizes the hit probability

is derived. The results are extended to heterogeneous cellular

networks in [18] which shows that caching the most popular

contents in the macro BSs is almost optimal while it is in

general not optimal for SBSs.

3) Caching in Heterogeneous Networks: Extensive works

have been carried out to understand the performance gain

of caching for heterogeneous networks (HetNets) and sto-

chastic geometry is the commonly used approach. In [19],

the optimal probabilistic caching to maximize the successful

delivery probability is considered in a multi-tier HetNet. The

cache-enabled heterogeneous signal-antenna cellular networks

are investigated in [20]. The optimal probabilistic content

placement for the interference-limited cases is derived, and the

result shows that the optimal placement probability is linearly

proportional to the square root of the content popularity with

an offset depending on BS caching capabilities. Caching poli-

cies to maximization of success probability and area spectral

efficiency of cache-enabled HetNets are studied in [21], and

the results show that the optimal caching probability is less

skewed to maximize the success probability but is more

skewed to maximize the area spectral efficiency. The work

of [22] proposes a joint BS caching and cooperation for

maximizing the successful transmission probability in a multi-

tier HetNet. A local optimum is obtained in the general case

and global optimal solutions are achieved in some special

cases. Cache-based channel selection diversity and network

interference are studied in [23] in stochastic wireless caching

helper networks, and solutions for noise-limited networks and

interference-limited networks are derived, respectively.

B. Contributions and Organization

The existing caching design for SBSs are restricted to the

single-antenna case and mainly for the µ-wave band. Little is

known about the impact of multiple antennas at the densely

deployed SBSs and the adoption of mm-wave band on the

successful content delivery and the optimal content placement.

Analyzing multi-antenna networks using stochastic geometry

is a known difficulty, as acknowledged in [24]. In contrast to

existing works, in this paper we analyze the performance of

caching in multi-antenna SBSs in µ-wave and mm-wave net-

works, and propose probabilistic content placement schemes

to maximize the performance of content delivery. The main

contributions of this paper are summarised as follows:

• Derivation of successful content delivery probability

(SCDP) of multi-antenna SBSs. We use stochastic geom-

etry to model wireless caching in multi-antenna dense

small cell networks in both µ-wave and mm-wave bands.

The SCDPs for both types of cache-enabled SBSs are

derived. The results characterize the dependence of the

SCDPs on parameters such as channel effects, caching

placement probability, SBS density, transmission power

and number of antennas.

• Development of a near-optimal cross-entropy optimiza-

tion (CEO) method for a general distribution of content

requests. The derived SCDPs do not admit a closed

form, and are highly complex to optimize. To tackle this

difficulty, we first propose a constrained CEO (CCEO)

based algorithm that optimizes the SCDPs. The original

unconstrained CEO algorithm is a stochastic optimization

method based on adaptive importance sampling that can

achieve the near-optimal solution with moderate com-

plexity and guaranteed convergence [25]. We adapt this

method to deal with the caching capacity constraints and

the probabilities constraints in our problem.

• Design of a simple heuristic content placement algorithm.

To further reduce the complexity, we propose a heuristic

two-stage algorithm to maximize the SCDP via proba-

bilistic content placement when the content request prob-

ability follows the Zipf distribution [26]. The algorithm is

designed by combining MPC and caching diversity (CD)

schemes while taking into account the content popularity.

The solution demonstrates near-optimal performance in

single-antenna systems, and various advantages in multi-

antenna scenarios.

• Numerical results show that in contrast to the traditional

way of deploying much higher density SBSs or installing

many more antennas, increasing caching capacity at

mm-wave SBSs provides a low-cost solution to achieve

comparable SCDP performance as µ-wave systems.

The rest of this paper is organized as follows. The system

model is presented in Section II. The analysis of SCDPs for

µ-wave and mm-wave systems are provided in Section III.

Two probabilistic content placement schemes are described

in Section IV. Simulation and numerical results as well as

discussions are given in Section V, followed by concluding

remarks in Section VI.

II. SYSTEM MODEL

We consider a cache-enabled dense small cell networks

consisting of the µ-wave and mm-wave SBSs tiers. In such



ZHU et al.: CONTENT PLACEMENT IN CACHE-ENABLED SUB-6 GHz AND MM-WAVE MULTI-ANTENNA DENSE SMALL CELL NETWORKS 2845

Fig. 1. Probabilistic content placement strategy.

networks, each user equipment (UE) in a tier is associated

with the nearest SBS that has cached the desired content,

and the optimal designs of content placement under such

association assumption can address the concern that operators

are required to place the content caches close to UEs [27].

We assume that there is a finite content library denoted as

F := {f1, . . . , fj, . . . , fJ}, where fj is the j-th most popular

content and the number of contents is J , we assume each

content has normalized size of 1 and each BS can only store up

to M contents [16], [20], [23]. The analysis and optimization

can be applied to the case of unequal content sizes. It is

assumed that M ≪ J . The request probability for the j-th

content is aj , and
∑J

j=1 aj = 1. Without loss of generality,

we assume the contents are sorted according to a descending

order of aj .

A. Probabilistic Content Placement

We consider a probabilistic caching model where the content

is independently stored with the same probability in all SBSs

of the same tier (either µ-wave or mm-wave) [17]. Let bj

denote the probability that the j-th content is cached at a SBS.

Fig. 1 shows an example of probabilistic caching with J = 7
and M = 4, where the contents {f2, f3, f5, f7} are cached at

a SBS by drawing uniformly a random number which is 0.9 in

this example. In the probabilistic caching strategy, the caching

probability b = {b1, ...bj , ...bJ} needs to satisfy the following

conditions:
J∑

j=1

bj ≤ M,

0 ≤ bj ≤ 1, ∀j. (1)

Note that although the probabilistic caching strategy is used,

implementation of it will allow each SBS to always cache

the maximum amount of total contents up to its caching

capacity M .

B. Downlink Transmission

In the considered downlink networks, each µ-wave SBS

is equipped with Nµ antennas, and each mm-wave SBS has

directional mm-wave antennas. All UEs are single-antenna

nodes, in the both µ-wave and mm-wave, only one single-

antenna user is allowed to communicate with the SBS at

one time slot.2 The positions of µ-wave SBSs are modeled

2In dense small cell networks, we assume that the density of users is much
higher than the density of µ-wave or mm-wave SBSs and this can be handled
by using multiple access techniques [28].

by a homogeneous Poisson point process (HPPP) Φµ with

the density λµ, and the positions of mm-wave SBSs are

modeled by an independent HPPP Φmm with the density

λmm. Define Φµ
j and Φmm

j as the point process corresponding

to all SBSs that cache the content j in the µ-wave tier

and the mm-wave tier with the density bjλµ and bjλmm,

respectively.

1) µ-wave Tier: In the µ-wave tier, the maximum-ratio

transmission beamforming is adopted at each SBS. All chan-

nels undergo independent identically distributed (i.i.d.) quasi-

static Rayleigh block fading. Without loss of generality, when

a typical µ-wave UE located at the origin o requests the

content j from the associated µ-wave BS Xo that has cached

this content, its received signal-to-interference-plus-noise ratio

(SINR) is given by

SINRµ
j =

Pµhµ
j L

(
|Xµ

j |
)

Iµ
j + I

µ

j + σ2
µ

, (2)

where Pµ is the transmit power, hµ
j ∼ Γ (Nµ, 1) is the the

equivalent small-scale fading channel power gain between

the typical µ-wave UE and its serving µ-wave SBS, where

Γ(k1, k2) denotes Gamma distribution, with a shape parameter

k1 and a scale parameter k2. The path loss is L(|Xµ
j |) =

βµ(|Xµ
j |)

−αµ with the distance |Xµ
j |, where βµ is the fre-

quency dependent constant parameter and αµ is the path loss

exponent. The σ2
µ is the noise power at a µ-wave UE. The

inter-cell interference Iµ
j and I

µ

j are given by

⎧
⎪⎨
⎪⎩

Iµ
j =

∑
i∈Φµ

j \Xo

Pµhi,oL (|Xi,o|),

I
µ

j =
∑

k∈Φ
µ

j

Pµhk,oL (|Xk,o|).
(3)

In (3), Φµ
j \Xo is the point process with density bjλµ cor-

responding to the interfering SBSs that cache the content j,

and Φ
µ

j = Φµ − Φµ
j with density (1 − bj)λµ is the point

process corresponding to the interfering SBSs that do not store

the content j. The hi,o, hk,o ∼ exp (1) are the interfering

channel power gains that follow the exponential distribution,

and |Xi,o|, |Xk,o| denote the distances between the interfering

SBSs and the typical UE.

2) mm-wave Tier: In the mm-wave tier, we assume that the

directional beamforming is adopted at each mm-wave SBS

and small-scale fading is neglected, since small-scale fading

has little change in received power as verified by the practical

mm-wave channel measurements in [29]. Note that the tradi-

tional small-scale fading distributions are invalid for mm-wave

modeling due to mm-wave sparse scattering environment [30].

Unlike the conventional µ-wave counterpart, mm-wave trans-

missions are highly sensitive to the blockage. According to the

average line-of-sight (LOS) model in [31], [32], we consider

that the mm-wave link is LOS if the communication distance

is less than DL, and otherwise it is none-line-of-sight (NLOS).

Moreover, the existing literature has confirmed that mm-wave

transmissions tend to be noise-limited and interference is

weak [31], [33]. Therefore, when a typical mm-wave UE

requests the content j from the associated mm-wave SBS that
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has cached this content, its received SINR is given by

SINRmm
j =

PmmGmmL
(
|Y mm

j |
)

σ2
mm

, (4)

where Pmm is the transmit power of the mm-wave SBS, Gmm

is the main-lobe gain of using direction beamforming and

equal to number of antenna elements [34]. The path loss is

expressed as L
(
|Y mm

j |
)

= βmm

(
|Y mm

j |
)−α

with the distance

|Y mm
j | and frequency-dependent parameter βmm. The path loss

exponent α = αL when it is a LOS link and α = αN when

it is an NLOS link. The σ2
mm is the combined power of noise

and weak interference.3

III. SUCCESSFUL CONTENT DELIVERY PROBABILITY

In this paper, SCDP is used as the performance indicator,

which represents the probability that a content requested by

a typical UE is both cached in the network and can be

successfully transmitted to the UE. We assume that each

content has β bits, and the delivery time needs to be less

than T . By using the Law of total probability, the SCDP

in the µ-wave tier is calculated as

Pµ
SCD =

J∑

j=1

ajPr
(
Wµlog2

(
1 + SINR

µ
j

)
�

β

T

)

=

J∑

j=1

ajPr
(
SINR

µ
j > ϕµ

)
, (5)

where Wµ is the µ-wave bandwidth allocated to a typical

user (frequency-division multiple access (FDMA) is employed

when multiple users are served by a SBS in this paper), and

ϕµ = 2
η

WµT − 1. Likewise, in the mm-wave tier, the SCDP is

calculated as

Pmm
SCD =

J∑

j=1

ajPr
(
Wmmlog2

(
1 + SINRmm

j

)
�

β

T

)

=

J∑

j=1

ajPr
(
SINRmm

j > ϕmm

)
, (6)

where Wmm is the mm-wave bandwidth allocated to a typical

user, and ϕmm = 2
η

WmmT − 1. The rest of this section is

devoted to deriving the SCDPs in (5) and (6).

A. µ-wave Tier

Based on (2) and (5), the SCDP in the µ-wave tier can be

derived and summarized below.

Theorem 1: In the cache-enabled µ-wave tier, the SCDP is

given by

Pµ
SCD =

J∑

j=1

ajP
µ
j,SCD (bj) , (7)

3mm-wave in dense networks works in the noise-limited regime, since
the high path loss impairs the interference, which could improve the signal
directivity [33]. In contrast to the sub-6 GHz counterpart which is usually
interference-limited, mm-wave networks tend to be noise-limited when the
BS density is not extremely dense, due to the narrow beam and blocking
effects [35]. For completeness, we also incorporate weak interference here.

where Pµ
j,SCD (bj) denotes the probability that the j-th request

content is successfully delivered to the µ-wave UE by its

serving SBS, and is expressed as

Pµ
j,SCD (bj) =

∫ ∞

0

Pµ
cov(x, bj)f|Xµ

j |(x)dx, (8)

where P µ
cov(x, bj) is given by (10), (11) and (12) at the

top of next page, which represents the conditional coverage

probability that the received SINR is larger than ϕµ given a

typical communication distance x. f|Xµ
j |(x) is the probability

density function (PDF) of the distance |Xµ
j | between a typical

µ-wave UE and its nearest serving SBS that stores content j,

and is given by [36]

f|Xµ
j |(x) = 2πbjλµxe−πbjλµx2

. (9)

Proof 1: Please see Appendix A.

Note that Pµ
j,SCD (bj) becomes the probability of successful

transmission from the serving SBS to the typical user when

bj=1 in traditional µ-wave networks without caching. We see

that the SCDP expression for multi-antenna systems is much

complicated, compared to the closed-form expression for

single-antenna systems in [20].

B. mm-wave Tier

Based on (4) and (6), the SCDP in the mm-wave tier can

be derived and summarized below.

Theorem 2: In the cache-enabled mm-wave tier, the SCDP

is given by

Pmm
SCD =

J∑

j=1

ajP
mm,L
j,SCD(bj) +

J∑

j=1

ajP
mm,N
j,SCD(bj), (13)

where Pmm,L
j,SCD(bj) and Pmm,N

j,SCD(bj) denote that probabilities

that the content j is successfully delivered when the mm-wave

UE is connected to its serving mm-wave SBS via LOS link

and NLOS link, and are given by

Pmm,L
j,SCD(bj) = 1 − e−(min (DL,dL))

2πbjλmm , (14)

and

Pmm,N
j,SCD(bj) = e−D2

L πbjλmm − e−(max (DL,dN))2πbjλmm , (15)

respectively, where dL =
(

PmmGmmβmm

ϕmmσ2
mm

) 1
αL

and dN =
(

PmmGmmβmm

ϕmmσ2
mm

) 1
αN

.

Proof 2: Please see Appendix B.

IV. OPTIMIZATION OF PROBABILISTIC

CONTENT PLACEMENT

In this section, we aim to maximize the SCDP by optimizing

the probabilistic content placement {bj}. The main difficulty

is that the SCDP expressions (7) and (13) do not have a

closed form for the multi-antenna case and whether they are

concave with regard to {bj} is unknown, which is much more

challenging than the single-antenna SBS case studied in [20].

Therefore, the optimal content placement problem for the

multi-antenna case is distinct. To tackle this new problem, here
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Pµ
cov(x, bj) =

Nµ−1∑

n=0

(xαµ )
n

n!(−1)
n

∑

{tq}n
q=1∈Θ

n!
n∏

q=1
tq!(q!)

tq

exp

(
−

ϕµσ2
µxαµ

Pµβµ
−2πbjλµ

ϕµx2

αµ − 2

× 2F1

[
1,

−2 + αµ

αµ
, 2 −

2

αµ
,−ϕµ

]
−

2π2

αµ
(1 − bj)λµ(ϕµxαµ)

2
αµ csc

(
2π

αµ

)) n∏

q=1

(
T (q)(xαµ)

)tq

, (10)

where Θ � {{tq}n
q=1|

n∑
q=1

q · tq = n, tq is an integer, ∀n}, csc (·) is the Cosecant trigonometry function, and

T
(1)

j (xαµ) = −
ϕµσ2

µ

Pµβ
− 2πbjλµx2−αµϕµ

αµ − 2 + 2 (1 + ϕµ) 2F1

[
1,

αµ−2
αµ

, 2 − 2
αµ

,−ϕµ

]

(1 + ϕµ) (αµ − 1)αµ

− 4π2(1 − bj)λµ

(
ϕαµ

µ x
)2−αµ

csc

(
2π

αµ

)
, (11)

T
(q)

j (xαµ) = 2πbjλµq!(−1)
q
x−(2+αµ)(1+q)ϕ−q(1+q)

µ

2F1

[
1 + q,

2+αµ

αµ
, 2 + 2

αµ
,− 1

ϕµ

]

2 + αµ
+ 2π(1 − bj)λµq!(−1)

q

× (xαµ)
−q+ 2

αµ ϕ
2

αµ
µ

Γ
(
q − 2

αµ

)
Γ
(

2+αµ

αµ

)

αµΓ (1 + q)
, q > 1. (12)

we propose two algorithms, the first one is developed based on

the CEO method that can achieve near-optimal performance,

and the other two-stair scheme is based on the combination

of MPC and CD content placement schemes with reduced

complexity.

A. The Near-Optimal CCEO Algorithm

The optimal caching placement probability in the multi-

antenna case is hard to achieve, so we introduce CEO to

resolve the difficulty of maximizing the SCDP by optimizing

the probabilistic content placement. CEO is an adaptive

variance algorithm for estimating probabilities of rare events.

The rationale of the CEO algorithm is to first associate with

each optimization problem a rare event estimation problem,

and then to tackle this estimation problem efficiently by

an adaptive algorithm. The outcome of this algorithm is

the construction of a random sequence of solutions which

converges probabilistically to the optimal or near-optimal

solution [25], [37]. The CEO method involves two iterative

steps. The first one is to generate samples of random

data according to a specified random (normally Gaussian)

distribution. And the second step updates the parameters

of the random distribution, based on the sample data to

produce better samples in the next iteration. The CEO

algorithm has been successfully applied to a wide range

of difficult optimization tasks such as traveling salesman

problem and antenna selection problem in multi-antenna

communications [38]. It has shown superior performance

in solving complex optimization problems compared to

commonly used simulated annealing (SA) and genetic

algorithm (GA) [39] that are based on random search.

The original principle of the CEO algorithm was proposed

for unconstrained optimization. To deal with the constraints

on the probabilities {bj} and the content capacity constraint,

we propose a CCEO algorithm as shown in Algorithm 1. In the

proposed CCEO algorithm, we force the randomly generated

samples to be within the feasible set {bj |0 ≤ bj ≤ 1, ∀j} in

the Project step. To satisfy the constraint of
∑J

j bj � M , we

introduce a penalty function H
(∑J

j bj − M
)

to the original

objective function in the Modification step, where H is a

large positive number that represents the parameter for the

penalty function. The dynamic Smoothing step will prevent

the result from converging to a sub-optimal solution. It can

be seen that at each iteration, the main computation is to

evaluate the objective functions for Ns times and no gradient

needs to be calculated, so the complexity is moderate and

can be further controlled to achieve a complexity-convergence

tradeoff.

In Fig. 2, we provide an example of the iterative results of

content placement probabilities with iteration indices t = 1,

t = 5, t = 20, and t = 70. In this example, the algorithm

converges when t = 70. Each sub-figure presents the resulting

mean value of µt at the end of iteration t, and it will help to

generate random samples in next iteration. We can observe that

when t = 20, the caching placement probability is quite close

to the converged solution, which could significantly reduce

the complexity. Overall the CEO algorithm converges fast and

is an efficient method to find the near-optimal SCDP result,

and the complexity of the CEO algorithm is O
(
n3
)

[40].

It is also noted that the top ranked contents are cached with

probability bj = 1, while to make effective use of the rest

caching space, caching diversity is more important. Based on

this observation, we design a low-complexity heuristic scheme

in the next subsections.

B. Two-Stair Scheme for the µ-wave Tier

To further reduce the complexity of the optimization, we

devise a simple two-stair (TS) scheme, when the content
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Algorithm 1 Constrained Cross-Entropy Optimization

(CCEO) Algorithm

Initialization: Randomly initialize the parameters of

Gaussian distribution N (µj,t=0, σ
2
j,t=0) where t = 0 is

the iteration index. Set sample number Ns, the number of

selected samples Nelite ≪ Ns the stopping threshold 	 and

a large positive number H as the parameter for the penalty

function.

repeat

Sampling: Generate Ns random samples b =
{b1, b2, ..bj , ...bNs

} from the N (µt, σ
2
t ) distribution.

Projection: Project the samples onto the feasible set

{bj|0 ≤ bj ≤ 1, ∀j}, i.e., b = min(max(b, 0), 1).
Modification: We modify the objective function to the

following:

P̂SCD(b) = PSCD(b) − H max(
∑J

j=1
bj − M, 0), (16)

where PSCD(b) is the original objective function in (7) and

(13) for µ-wave and mm-wave, respectively.

Selection: Evaluate P̂SCD(b) for Ns samples b. Let I be

the indices of the Nelite selected best performing samples

with P̂SCD(b).
Updating: for all j ∈ F , calculate the sampling mean and

variance:

µ̃ij =
∑

i∈I

bij/Nelite (17)

σ̃2
ij =

∑

i∈I

(bij − µ̃ij)
2
/Nelite. (18)

Smoothing: The Gaussian distribution parameters are

updated as follows,

µt = ιµ̃t + (1 − ι)µt−1, (19)

σ2
t = βtσ̃

2
t + (1 − βt)σ

2
t−1. (20)

In particular, α is a fixed smoothing parameter (0.5 � α �
0.9) while βt is a dynamic smoothing parameter given by

βt = β − β

(
1 −

1

t

)q

, (21)

where β is a fixed smoothing parameter (0.8 � β � 0.99),

and q is an integer with a typical value between 5 and 10.

Increment: t = t + 1.

until A convergence criterion is satisfied, e.g., max
j∈F

(σ2
t ) < 	

Output: The optimal caching probability is b∗ = µt.

popularity is modeled as the Zipf distribution [14], [17], [26]

based on empirical studies, which is given by

aj = j−γ/
∑J

m=1
m−γ , (22)

where γ is the Zipf exponent that represents the popularity

skewness.

In the TS scheme, a fraction of caching space εM (0 ≤
ε ≤ 1) at a SBS is allocated to store the most popular

contents which is called the MPC region. The remaining

cache space is allocated to randomly store the contents with

Fig. 2. Evolution of the content placement probabilities in the CCEO
algorithm with parameters γ = 1.5, J = 50, M = 10.

Fig. 3. Two-Stair probabilistic content placement strategies.

certain probabilities and is called the CD region. As illustrated

in Fig. 3, in the ‘Two-Stair’ caching scheme, the contents in

the CD region are cached with a common probability $. The

rest of the contents are not cached and must be fetched through

the backhaul links. These content placement schemes will be

studied in detail in the rest of this section.

In this scheme, the content placement probabilities {bj}
need to satisfy the following conditions:

⎧
⎪⎪⎨
⎪⎪⎩

b1 = . . . = b⌊εM⌋ = 1,

b⌊εM⌋+1 = . . . = b
⌊εM⌋+⌊M−⌊εM⌋

̟ ⌋ = $,

b
⌊εM⌋+⌊M−⌊εM⌋

̟ ⌋+1
= . . . = bJ = 0,

(23)

which are characterized by two variables ε and $, where $
denotes the common probability value that content j in the

CD region is stored at a SBS.

As such, the µ-wave SCDP (7) can be expressed as

Pµ
SCD =

⌊εM⌋∑

j=1

ajP
µ
j,SCD (1) +

⌊εM⌋+⌊M−⌊εM⌋
̟ ⌋∑

j=⌊εM⌋+1

ajP
µ
j,SCD ($) .

(24)

It is seen in (24) that contents {1, · · · , ⌊εM⌋} have the

same SCDP Pµ
j,SCD (1), and contents {⌊εM⌋ + 1, · · · ,

⌊εM⌋ +
⌊

M−⌊εM⌋
̟

⌋}
have the same SCDP Pµ

j,SCD ($).

Our aim is to maximize the overall SCDP, and the problem is
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formulated as

max
ε,̟

Pµ
SCD in (24)

s.t. C1: 0 ≤ ε ≤ 1,

s.t. C2: 0 ≤ $ ≤ 1,

s.t. C3: 1 (ε = 1)$ = 0, (25)

where 1 (A) is the indicator function that returns one if the

condition A is satisfied. The convexity of the problem (25) is

unknown, and finding its global optimal solution is challeng-

ing. To obtain an efficient caching placement solution, we first

use the following approximations [41]

⌊εM⌋∑

j=1

aj ≈
(εM)

1−γ − 1

J1−γ − 1
, (26)

⌊εM⌋+⌊M−⌊εM⌋
̟ ⌋∑

j=⌊εM⌋+1

aj ≈

(
εM + M(1−ε)

̟

)1−γ

−1

J1−γ−1
−

(εM)
1−γ−1

J1−γ − 1

=
M1−γ

J1−γ − 1

[(
ε +

(1 − ε)

$

)1−γ

− ε1−γ

]
,

(27)

respectively, based on the fact that for Zipf popularity with

0 < γ, γ 
= 1 and M ≪ J , we have∑M
j=1 j−γ/

∑J
m=1 m−γ ≈

(
M1−γ − 1

)
/
(
J1−γ − 1

)
[41].

Therefore, the objective function of (24) can be approximated

as

P̃µ
SCD ≈ Pµ

j,SCD (1)
M1−γ

J1−γ − 1
ε1−γ −

Pµ
j,SCD (1)

J1−γ − 1

+Pµ
j,SCD ($)

M1−γ

J1−γ − 1

[(
ε +

(1 − ε)

$

)1−γ

− ε1−γ

]
.

(28)

Note that for the special case of MPC caching, i.e.,

ε = 1, $ = 0, the above reduces to P̃µ
SCD ≈

Pµ
j,SCD (1) M1−γ−1

J1−γ−1 .

Then the problem (25) can be approximated as

max
ε,̟

P̃µ
SCD

s.t. C1 – C3. (29)

Because ε and $ are coupled in the objective function of (29),

we use a decomposition approach to solve this problem. Since

M1−γ is always positive, given $, the optimal ε is obtained

by solving the following equivalent sub-problem:

max
0≤ε≤1

1

J1−γ − 1

[
(`µ

o − 1) ε1−γ +

(
ε +

(1 − ε)

$

)1−γ

− `µ
o

]

(30)

where `µ
o =

Pµ
j,SCD

(1)

Pµ

j,SCD
(̟)

� 1 is independent of ε. Thus, we have

the following theorem:

Theorem 3: The optimal solution of the problem (30) is

given by

ε∗ = min(max(εo, 0), 1), (31)

where εo =

(((
ℓµ

o−1
̟−1−1

)−1/γ

− 1

)
$ + 1

)−1

.

Proof 3: Please see Appendix C. For εo to be in the range

of [0, 1], $ should satisfy 0 � $ � 1
ℓµ

o
.

Consequently, the problem (29) reduces to the following

optimization problem about $ only:

max
ε=εo(̟),0�̟� 1

ℓ
µ
o

P̃µ
SCD. (32)

Since the problem (32) is non-convex, we propose to use New-

ton’s method to solve it, which is shown in the Appendix D.

Note that the Newton’s method converges faster than the

Karush-Kuhn-Tucker (KKT) method and the gradient-based

method [42]. Suppose the obtained solution is $̂, then the

optimal $̂∗ is min(max($̂, 0), 1), and the optimal ε∗ can be

obtained from (31).

C. Two-Stair Scheme for the mm-wave Tier

Similar to the µ-wave case, the SCDP of the mm-wave tier

can be approximated by

Pmm
SCD ≈

(
Pmm,L

j,SCD(1) + Pmm,N
j,SCD(1)

) (εM)
1−γ − 1

J1−γ − 1

+
(
Pmm,L

j,SCD($) + Pmm,N
j,SCD($)

)

×
M1−γ

J1−γ − 1

[(
ε +

(1 − ε)

$

)1−γ

− ε1−γ

]
. (33)

Then the optimal two-stair content caching can be found

obtained by solving the following problem:

max
ε,̟

Pmm
SCD in (33)

s.t. C1 – C3. (34)

The problem (34) can be efficiently solved by following the

decomposition approach. Given $, the optimal ε is obtained

by solving the following equivalent sub-problem:

max
0≤ε≤1

(`mm
o − 1) ε1−γ +

(
ε + (1−ε)

̟

)1−γ

− `mm
o

J1−γ − 1
, (35)

where `mm
o =

(Pmm,L
j,SCD

(1)+Pmm,N
j,SCD

(1))
(Pmm,L

j,SCD
(̟)+Pmm,N

j,SCD
(̟))

. The rest procedures

follow the same approach in the section IV-A, except that

the derivation of the search direction to solve the optimal $∗,

which is provided Appendix E.

V. RESULTS AND DISCUSSIONS

In this section, the performance of the proposed caching

schemes are evaluated by presenting numerical results. Per-

formance comparison between cache-enabled µ-wave and

mm-wave systems is also highlighted. The system parameters

are shown in Table I, unless otherwise specified. 1 GHz and

60 GHz are chosen for the µ-wave and mm-wave frequency

bands, respectively.

Fig. 4 verifies the SCDPs for content j derived in Theorem 1

and Theorem 2 against the content placement probability.

The analytical results are obtained from (8), (14) and (15).

The SCDP for an arbitrary content j is observed to be a

monotonically increasing and concave function of the caching
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TABLE I

PARAMETER VALUES

Fig. 4. Successful content delivery probability for content j versus the
content placement probability.

placement probability for both µ-wave and mm-wave systems.

Notice that all our derived analytical results match very well

with those ones via Monte Carlo simulations averaged over

2,000 random user drops and marked by ’·’.
In Fig. 5, we examine the comparison of successful trans-

mission probabilities of µ-wave from (8) and mm-wave

from (14) and (15) as bit rate of each content varies, which

corresponds to the case with caching placement probability

bj = 1. It is seen that when content size is small, the

µ-wave system shows better performance than mm-wave, but

as the content size increases, the mm-wave system outperforms

the µ-wave system for its ability to provide high capacity.

The successful mm-wave transmission probability shows a

‘ladder drop’ effect, and this is because the mm-wave system

combines LOS part and NLOS part. The LOS effect is

limited to the region within the distance DL) while NLOS

has a much wider coverage, so when the required content

size is small, the performance is dominated by the NLOS

part. However, the NLOS part cannot provide high capac-

ity due to the much larger path loss exponent αN, so its

performance drops steeply as the bit rate of each content

increases.

Fig. 5. Successful transmission probability, λµ,mm = 400/km2, bj = 1.

Fig. 6. Successful content delivery probability for µ-wave single antennas.

Next, in Figs. 6-7, we compare the performance of the

two proposed content placement schemes with the close-form

optimal solution [20] and the intuitive MPC scheme [21] in

the µ-wave single-antenna case. Note that in the general multi-

antenna setting, the close-form optimal content placement is

still unknown. The SCDP with different caching capacity M
is shown in Fig. 6. It is observed that the CCEO algorithm

achieves exactly the same performance as the known optimal

solution in [20], and the proposed TS scheme provides close-

to-optimal and significantly better performance than the MPC

solution, especially when γ is large and the caching capacity

M is small. The MPC solution is the worst caching scheme

because it ignores the content diversity which is particularly

important when the content popularity is more uniform. Fig. 7

shows the SCDP with different content sizes β. It is found that

the SCDP of the TS scheme is closer to the optimum when

the β/T is large. However, as the bit rate of each content β/T
increases, both TS and MPC schemes become very close to

the optimal solution.
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Fig. 7. Successful content delivery probability for µ-wave single antennas,
γ = 0.6.

Fig. 8. The impact of M on the successful content delivery probability,
γ = 1.5.

Fig. 8 shows the SCDP comparison of various systems

with different caching capacities M . It shows that both of

the proposed content placement schemes perform consistently

better than MPC, especially for the 60GHz mm-wave, the

SCDP of the TS scheme is close to that of the CCEO

algorithm. The results also indicate that µ-wave always has

a superior performance than the 60GHz mm-wave with the

same SBS density of 600/km2.

Fig. 9 shows the SCDP comparison of various sys-

tems versus the caching capacities M with different con-

tent sizes. We generate a random set of of content size

S = {s1, ..., sj , ...sJ}, where sj denotes the content size

of fj . For simplicity, sj is chosen to be 1 or 2 with equal

probability of 0.5 in our simulation. The caching proba-

bility satisfies
∑J

j=1 bj × sj ≤ M . It is shown that in

the unequal-size content case, CEO still greatly outperforms

MPC, following a similar trend as the equal-size content

case.

Fig. 9. The impact of M on the successful content delivery probability with
unequal content size, γ = 1.5.

Fig. 10. The impact of J on the successful content delivery probability,
γ = 1.5, M = 20.

Fig. 10 studies the impact of content library size on SCDPs

of different systems. It is seen that as the library size J
increases, the SCDP drops rapidly. The gap between the

proposed content placement schemes and the MPC scheme

remain stabilized when the library size increases.

Fig. 11 compares the SCDPs for the two proposed content

placement schemes against Zipf exponent γ. It can be seen

that the SCDP increases with γ because caching is more

effective when the content reuse is high. In the high-γ regime

of both µ-wave and mm-wave systems, the content request

probabilities for the first few most popular content are large,

and SCDPs of both proposed placement schemes almost

coincide. It is noteworthy that the proposed TS placement

scheme achieves performance close to the CCEO algorithm,

especially in the µ-wave system and at low and high γ regimes.

Finally, we investigate the cache-density tradeoff and its

implication on the comparison of µ-wave and mm-wave
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Fig. 11. The impact of Zipf exponent γ on the successful content delivery
probability.

Fig. 12. Cache-density tradeoff, γ = 1.5.

systems. The CEO placement scheme is used. Fig. 12 demon-

strates the SCDPs with different caching capacity M , SBS

densities λµ and λmm. It is also observed that the µ-wave

channel is usually better than the mm-wave channel when

λ = 600/km2, so with the same SBS density, µ-wave achieves

higher SCDP. To achieve performance comparable to that

of the µ-wave system with SBS density of 600/km2, the

mm-wave system needs to deploy SBSs with a much higher

density of 1000/km2, but the extra density of △λmm = 400
/km2 is too costly to afford. Fortunately, by increasing the

caching capacity from 10 to 20, the mm-wave system can

achieve the same SCDP of 91% as the µ-wave system while

keeping the same density of 600/km2. This result shows great

promise of cache-enabled small cell systems because it is

possible to trade off the relatively cheap storage for reduced

expensive infrastructure.

VI. CONCLUSION

In this paper, we have investigated the performance

of caching in µ-wave and mm-wave multi-antenna dense

networks to improve the efficiency of content delivery. Using

stochastic geometry, we have analyzed the successful content

delivery probabilities and demonstrated the impact of various

system parameters. We designed two novel caching schemes

to maximize the successful content delivery probability with

moderate to low complexities. The proposed CCEO algorithm

can achieve near-optimal performance while the proposed TS

scheme demonstrates performance close to CCEO with further

reduced complexity. An important implication of this work is

that to reduce the performance gap between the µ-wave and

mm-wave systems, increasing caching capacity is a low-cost

and effective solution compared to the traditional measures

such as using more antennas or increasing SBS density. As a

promising future direction, to study cooperative caching in a

multi-band µ-wave and mm-wave system could further reap

the benefits of both systems.

APPENDIX A

PROOF OF THEOREM 1

Based on (5), Pµ
SCD is calculated as

Pµ
SCD =

J∑

j=1

ajPr

(
Pµhµ

j L
(
|Xµ

j |
)

Iµ
j + I

µ

j + σ2
µ

> ϕµ

)

=

J∑

j=1

aj

∫ ∞

0

Pr

(
Pµhµ

j L (x)

Iµ
j + I

µ

j + σ2
µ

> ϕµ

)

︸ ︷︷ ︸
P µ

cov(x,bj)

f|Xµ
j |(x)dx,

(A.1)

where P µ
cov(x, bj) is the conditional coverage probability, and

f|Xµ
j |(x) is the PDF of the distance |Xµ

j |. Then, we derive

Pµ
cov(x, bj) as

Pµ
cov(x, bj)

= Pr

(
Pµhµ

j βµx−αµ

Iµ
j + I

µ

j + σ2
µ

> ϕµ

)

=

∫ ∞

0

Pr(hµ
j >

ϕµ

(
τ + σ2

µ

)
xαµ

Pµβµ
)d Pr(Itotal ≤ τ)

=

∫ ∞

0

e
−

(τ+σ2
µ)ϕµx

αµ

Pµβµ

Nµ−1∑

n=0

(
(τ+σ2

µ)ϕµxαµ

Pµβµ

)n

n!
d Pr (Itotal ≤ τ )

(A.2)

where Itotal = Iµ
j + I

µ

j . Note that

dn

(
exp

(
−

(τ+σ2
µ)ϕµν

Pµβµ

))

dνn
ν=xαµ

=

(
−

(
τ + σ2

µ

)
ϕµ

Pµβµ

)n

exp

(
−

(
τ+σ2

µ

)
ϕµν

Pµβµ

)
. (A.3)
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By using (A.3), (A.2) can be rewritten as

Pµ
cov(x, bj)

=

Nµ−1∑

n=0

xnαµ

n!(−1)
n

×
dn

[
exp(−

νϕµσ2
µ

Pµβµ
)LIµ

j
(

ϕµν
Pµβµ

)LI
µ

j
(

ϕµν
Pµβµ

)
]

dνn
ν=xαµ

, (A.4)

where LIµ
j

(·) is the Laplace transform of the PDF Iµ
j , and

LI
µ

j
(·) is the Laplace transform of the PDF I

µ

j . Then LIµ
j

(s)

is given by

LIµ
j

(s)

= EΦµ
j

[
exp

(
−s

∑
i∈Φµ

j \o
Pµhi,oL (|Xi,o|)

)]

= EΦµ
j

⎡
⎣

∏

i∈Φµ
j \{o}

Ehi,o
{exp (−sPµhi,oL (|Xi,o|))}

⎤
⎦

= exp

[
−

∫ ∞

x

(
1− Ehi,o

{
exp

(
−sPµhi,oβµr−αµ

)})
2πbjλµrdr

]

= exp

[
−2πbjλµ

∫ ∞

x

(
1 −

1

1 + sPµβr−αµ

)
rdr

]
. (A.5)

Likewise, LI
µ

j
(s) is given by

LI
µ

j
(s) = EI

µ

j

[
exp

(
−s

∑
k∈Φ

µ

j

Pµhk,oL (|Xk,o|)

)]

= EI
µ

j

⎡
⎢⎣
∏

k∈I
µ

j

Ehk,o
{exp (−sPµhk,oL (|Xk,o|))}

⎤
⎥⎦

= exp

[
−

∫ ∞

0

(
1 − Ehk,o

{
exp

(
−sPµhk,oβµr−αµ

)})

× 2π (1 − bj)λµrdr

]

= exp

[
−2π (1 − bj)λµ

∫ ∞

0

×

(
1 −

1

1 + sPµβµr−αµ

)
rdr

]
. (A.6)

Substituting (A.5) and (A.6) into (A.4), after some manip-

ulations, we can obtain the desired result (10).

APPENDIX B

PROOF OF THEOREM 2

Based on (4) and (6), the SCDP for a LOS mm-wave link

can be derived as

Pmm,L
SCD =

∫ DL

0

Pr

(
PmmGmmβmmy−αL

σ2
mm

> ϕmm

)
f|Y mm

j |(y)dy

= �(DL < dL)

∫ DL

0

f|Y mm
j |(y)dy

+�(DL > dL)

∫ dL

0

f|Y mm
j |(y)dy

= 1 − e−(min (DL,dL))
2πbjλmm , (B.1)

where dL =
(

PmmGmmβmm

ϕmmσ2
mm

) 1
αL

, f|Y mm
j |(y) is the PDF of

the distance |Y mm
j | between a typical user and its serving

mm-wave SBS , which is given by [36]

f|Y mm
j |(y) = 2πbjλmmye−πbjλmmy2

, y ≥ 0. (B.2)

Similarly, the SCDP for a NLOS mm-wave link can be

derived as

Pmm,N
SCD =

∫ ∞

DL

Pr

(
PmmGmmβmmy−αN

σ2
mm

> ϕmm

)
f|Y mm

j |(y)dy

= �(DL < dN)

∫ dN

DL

f|Y mm
j |(y)dy

= e−D2
Lπbjλmm − e−(max (DL,dN))2πbjλmm , (B.3)

where dN =
(

PmmGmmβmm

ϕmmσ2
mm

) 1
αN

. Thus, we obtain the SCDP

expressions for a LOS/NLOS mm-wave link.

APPENDIX C

PROOF OF THEOREM 3

Let f1 (ε) denote the objective function of the problem (30).

We can obtain the first-order and the second-order derivatives

of f1 (ε) with respect to (w.r.t.) ε as

∂f1 (ε)

∂ε
=

1

J1−γ − 1

[
(`µ

o − 1) (1 − γ) ε−γ

+ (1 − γ)

(
1 −

1

$

)(
ε +

(1 − ε)

$

)−γ
]
, (C.1)

and

∂2f1 (ε)

∂ε2

=
1

J1−γ − 1
(1 − γ) (−γ)

×

[
(`µ

o − 1) ε−γ−1 +

(
1 −

1

$

)2(
ε +

(1 − ε)

$

)−γ−1
]
,

(C.2)

respectively. Note that `µ
o ≥ 1 and 1−γ

J1−γ−1 > 0, so we get
∂2f1(ε)

∂ε2 ≤ 0, which means that f1 (ε) is a concave function

w.r.t. ε. By setting
∂f1(ε)

∂ε to zero, we obtain the stationary

point as

εo =

(((
`µ
o − 1

$−1 − 1

)−1/γ

− 1

)
$ + 1

)−1

. (C.3)

Note that 0 ≤ $ ≤ 1, and
ℓµ

o−1
̟−1−1 ≥ 0, we have εo ≥ 0.

To obtain the optimal ε∗, we need to consider the following

cases:

• Case 1: 0 ≤ εo < 1. In this case, the optimal solution of

the problem (30) is ε∗ = εo.

• Case 2: εo ≥ 1. In this case,
∂f1(ε)

∂ε ≥ 0 for ε ∈ [0, 1], and

thus the optimal solution of the problem (30) is ε∗ = 1.

Based on the above cases, we obtain (31) and complete the

proof.
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APPENDIX D

NEWTON’s METHOD TO OPTIMIZE $ IN (32)

We propose Newton’s Method to solve the non-convex

problem (32) with fast convergence. Based on (28), the first-

order derivative of P̃µ
SCD is given by

∂P̃µ
SCD

∂$

= Pµ
j,SCD (1)

M1−γ

J1−γ − 1
(1 − γ) ε−γ

o

∂εo

∂$

+
∂Pµ

j,SCD ($)

∂$

M1−γ

J1−γ − 1
[

(
εo +

(1 − εo)

$

)1−γ

− ε1−γ
o ]

+Pµ
j,SCD ($)

M1−γ

J1−γ − 1
(1 − γ)

{
−ε−γ

o

∂εo

∂$

+

(
εo +

(1 − εo)

$

)−γ [
∂εo

∂$
(1 − $−1) +

εo − 1

$2

]}
,

(D.1)

where

∂εo

∂$
= −(εo)

2
(( `o − 1

$−1 − 1

)−1/γ

− 1

− (γ$)−1 (`o − 1)
− 1

γ

(
$−1 − 1

) 1
γ
−1)

, (D.2)

and

∂Pµ
j,SCD ($)

∂$
=

∫ ∞

0

Pcov(x)
(
2πλµxe−π̟λµx2

− 2π2$λ2
µx3e−π̟λµx2

)
dx, (D.3)

respectively. In (D.3), to simplify the computation, we let

Pcov(x) ≈ Pµ
cov(x, 0), based on the fact that the interference

Iµ
j + I

µ

j can be approximated as
∑

k∈Φµ
Pµhk,oL (|Xk,o|),

particularly in the dense small cell scenarios [44]. Similarly,

the second-order derivative of P̃µ
SCD(β, T ) is given by

∂2P̃µ
SCD

∂$2

= Pµ
j,SCD (1)

M1−γ

J1−γ − 1
(1− γ) ε−γ

o (−γε−1
o (

∂εo

∂$
)2 +

∂2εo

∂$2
)

+
∂2Pµ

j,SCD ($)

∂$2

M1−γ

J1−γ − 1
[

(
εo +

(1 − εo)

$

)1−γ

− ε1−γ ]

+ 2
∂Pµ

j,SCD ($)

∂$

M1−γ

J1−γ − 1
(1 − γ)

{
−ε−γ

o

∂εo

∂$

+

(
εo +

(1 − εo)

$

)−γ [
∂εo

∂$
(1 − $−1) +

εo − 1

$2

]}

+Pµ
j,SCD ($)

M1−γ

J1−γ − 1
(1− γ)

{
γε−γ−1

o

∂εo

∂$
− ε−γ

o

∂2εo

∂$2

− γ

(
εo +

(1 − εo)

$

)−γ−1[
∂εo

∂$
(1 − $−1) +

εo − 1

$2

]2

+

(
εo +

(1 − εo)

$

)−γ

×

[
∂2εo

∂$2
(1− $−1)+

∂εo

∂$
$−2+

∂εo

∂̟ $2−2$(εo−1)

$4

]}
,

(D.4)

where

∂2εo

∂$2
= 2ε−1

o

(
∂εo

∂$

)2

− ε2
o (`o − 1)

− 1
γ

[
− γ−1$−2

×
(
$−1 − 1

) 1
γ
−1

+ γ−1$−2
(
$−1 − 1

) 1
γ
−1

+ γ−1(γ$)−3

(
1

γ
− 1

)(
$−1 − 1

) 1
γ
−2

]
(D.5)

and

∂2Pµ
j,SCD ($)

∂$2
=

∫ ∞

0

Pcov(x)
(
− 4π2λ2

µx3e−π̟λµx2

+ 2π3$λ3
µx5e−π̟λµx2

)
dx.

(D.6)

According to [42], the search direction in Newton method can

be defined as

∆$ =
∂P̃µ

SCD

∂$

/∣∣∣∣∣
∂2P̃µ

SCD

∂$2

∣∣∣∣∣ . (D.7)

Then, $ is iteratively updated according to

$ (% + 1) = [$ (%) + δ2 (%)∆$]
1

ℓ
µ
o

0 , (D.8)

where % denotes the iteration index, `µ
o =

Pµ

j,SCD
(1)

Pµ

j,SCD
(̟)

is already

defined in (30), δ2 (%) is the step size that can be determined

by backtracking line search [45]. Thus, the optimal $∗ can be

obtained when reaching convergence.

APPENDIX E

DERIVATION OF THE SEARCH DIRECTION IN THE

NEWTON METHOD TO OPTIMIZE $ IN (32)

We use Newton Method to solve the problem (32). Here

we only derive the search direction that involves the first and

second-order derivative, and the rest is similar to Appendix D.

We first derive the first-order derivative. Similar to (D.1),

we change
∂Pµ

j,SCD
(̟)

∂̟ to
∂Pmm

j,SCD(̟)

∂̟ and get the result below:

∂Pmm
j,ST ($)

∂$

= −D2
Lπλmme−D2

L π̟λmm

+ (min (DL, dL))
2
πλmme−(min(DL,dL))

2π̟λmm

+ (max (DL, dN))2πλmme−(max(DL,dN))2π̟λmm . (E.1)

Next we focus on the second-order derivative. Changing
∂2Pµ

j,SCD
(̟)

∂̟2 to
∂2Pmm

j,SCD(̟)

∂̟2 in (D.4) leads to the following

result:

∂2Pmm
j,SCD ($)

∂$2

= D4
Lπ2λ2

mme−D2
L π̟λmm

− (min (DL, dL))
4
π2λ2

mme−(min(DL,dL))
2π̟λmm

− (max (DL, dN))
4
π2λ2

mme−(max(DL,dN))2π̟λmm . (E.2)
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Therefore, the search direction in Newton Method can be

expressed as

∆$mm =
∂P̃mm

SCD

∂$

/∣∣∣∣∣
∂2P̃mm

SCD

∂$2

∣∣∣∣∣ . (E.3)
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