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Abstract—In this paper, the content popularity prediction
problem in fog radio access networks (F-RANs) is investigated.
In order to obtain accurate prediction with low complexity, we
propose a novel context-aware popularity prediction policy based
on federated learning. Firstly, user preference learning is applied
by considering that users prefer to request the contents they
are interested in. Then, users’ context information is utilized to
cluster users efficiently by adaptive context space partitioning.
After that, we formulate a popularity prediction optimization
problem to learn the local model parameters using the stochastic
variance reduced gradient (SVRG) algorithm. Finally, federated
learning based model integration is proposed to construct the
global popularity prediction model based on local models by
combining the distributed approximate Newton (DANE) algo-
rithm with SVRG. Our proposed popularity prediction policy not
only predicts content popularity accurately, but also significantly
reduces computational complexity. Simulation results show that
our proposed policy increases the cache hit rate by up to 21.5 %
compared to the traditional policies.

Index Terms—F-RAN, popularity prediction, user preference
learning, context-aware, federated learning.

I. INTRODUCTION

With the unprecedented rapid proliferation of intelligent

devices, wireless networks are confronted with a myriad of

challenges, and notably data traffic pressure on the fronthaul

wireless links. To cope with this, fog radio access network

(F-RAN) has emerged as a promising solution to alleviate the

traffic burden on fronthaul links by caching popular contents

in fog access points (F-APs). In F-RANs, F-APs with limited

caching and computing resources are densely deployed at

network edges to serve users’ requests [1]. Due to the caching

capacity constraints, F-APs need to predict future content

popularity accurately in order to prefetch the most popular

contents during off-peak traffic periods and improve caching

efficiency.

Traditional caching policies, such as least recently used

(LRU), least frequently used (LFU), are widely used in

wired networks, but their efficiency is limited since content

popularity is not considered [2]. Recently, improving caching

efficiency by predicting content popularity has gained signif-

icant interest. An auto-regressive (AR) model based content

popularity prediction algorithm was proposed in [3] and the

model parameters were learned by least square estimates.

Similarly, an auto regressive and moving average (ARMA)

model was presented and proved to outperform the LFU

caching scheme in [4]. In [5], a deep learning based content

popularity prediction scheme was proposed. In [6], the au-

thors proposed to learn popularity prediction model for each

content class from the historical popularity series through

training a simplified bidirectional long short-term memory

(Bi-LSTM) network. In [7], a multilevel probabilistic model

was proposed and Bayesian learning was utilized to obtain

the model parameters. In [8], a user preference model was

proposed to predict content popularity and track the popularity

change based on the user preference and the features of the

requested content. However, these existing works except for

[7] and [8] can not predict the popularity of newly-added

or unseen contents whose statistical data is not available in

advance. In [7], the knowledge of the prior distribution of the

parameters is required. In [8], the authors propose a caching

policy instead of predicting popularity through user preference

learning. Moreover, most of the existing works ignore the

complexity of the content prediction policies.

Motivated by the aforementioned discussions, we propose a

context-aware popularity prediction policy based on federated

learning. The inputs of the prediction model are the averaged

popularity scores for contents of the clustered users, which are

preprocessed by user preference learning and adaptive context

space partitioning. Then, the popularity prediction model is

learned automatically by training the model with historical

popularity and the preprocessed inputs. Furthermore, federated

learning based model integration is proposed to construct

the global model based on local models in a distributed

manner. Specifically, our proposed popularity prediction pol-

icy is efficient in predicting the popularity of newly-added

contents, while reducing the computational complexity and

communication overhead.

The remainder of this paper is organized as follows. In

Section II, the system model is presented. The proposed popu-

larity prediction policy is described in Section III. Simulation

results are shown in Section IV. Final conclusions are drawn

in Section V.



Fig. 1. Illustration of the scenario in F-RAN.

II. SYSTEM MODEL

As shown in Fig. 1, we consider the F-RAN in a specific

region consisting of M F-APs and N users. Let Q =
{q1, q2, . . . , qm, . . . , qM} denote the set of F-APs. Let U =
{u1, u2, . . . , un, . . . , uN} denote the set of users in the region.

Every F-AP has its own coverage area, limited storage capacity

and computing ability. Mobile users are associated with an F-

AP and can be served by it when located in its coverage area.

Let C = {c1, c2, . . . , ci, . . . , cI} denote the content library,

where I denotes the cumulative number of contents for the

time being. If un sends a request for ci that is stored in

its associated F-AP qm, un can directly fetch ci from its

local cache. Otherwise, qm needs to fetch the content from

neighboring F-APs or the cloud server. Assume that all the

contents have the same size, and the coverage areas of different

F-APs do not ovelap with each other.

The popularity of contents in F-APs is determined by the

requests sended by the associated users. If individual caching

strategy in a single F-AP is considered, the local popularity

prediction model of the F-AP is required; if cooperative

caching strategy among several F-APs is considered, the global

popularity prediction model in the larger coverage area of these

F-APs is required. Let p̂i and pi denote the predicted and real

popularity of ci, respectively. There exists deviation between

p̂i and pi. Therefore, the mean-square error (MSE) is utilized

to measure the accuracy of the prediction as follows:

MSE =
1

I

I∑
i=1

|p̂i − pi|2 (1)

After prediction, the F-APs cache the most popular contents

according to the predicted popularity. If a request from users

is served by the cache of F-APs instead of fetching the content

from the cloud server through fronthaul links, a cache hit event

occurs. Cache hit rate is defined as the ratio of the cache hits

to the overall number of requests. It is utilized to evaluate the

caching performance.

The objective of this paper is to find a content popularity

prediction policy to predict future popularity accurately and

maximize the cache hit rate.

III. PROPOSED POPULARITY PREDICTION POLICY

In order to maximize the cache hit rate, we propose a novel

content popularity prediction policy, which includes offline

Fig. 2. Illustration of the proposed popularity prediction

policy.

user preference learning, adaptive context space partitioning,

popularity prediction model construction and federated learn-

ing based model integration. The proposed policy can predict

content popularity accurately and cache popular contents based

on the prediction.

A. Policy Description

The procedure of the proposed popularity prediction policy

is shown as the following four steps.

(1) Offline user preference learning: The popularity of

contents will change constantly due to the instability of the

user preference. Therefore, user preference learning is the

first step of the proposed policy. User preference learning is

conducted independently by training the local data in the user

equipment (UE) in an offline manner. If the user preference

is similar with the content feature, the probability for the

user requesting the content will be high, leading to a higher

popularity score for the content [9].

(2) Adaptive context space partitioning: After offline user

preference learning, users send the preference and context

information to their associated F-APs. Context information of

users includes gender, age, personality, occupation, location,

equipment, etc. Considering the privacy issue, the context

information transmitted to the F-APs needs to be carefully

selected or encoded. Then, the F-APs can take the corelation

between user preference and context information into account,

since users having similar context are more likely to have

similar preference. As a consequence, adaptive context space

partitioning is applied as the second step in the proposed policy

to cluster users efficiently [10].

(3) Popularity prediction model construction: In the third

step, a popularity prediction model is constructed based on the

averaged popularity scores of users in the context subspaces

after partitioning. The model parameters can be learned by

training the historical data.

(4) Federated learning based model integration: Finally,

the federated learning based model integration method is a

complement for the proposed policy. If the local popularity



prediction models in F-APs have been obtained, a global

model consisting of these F-APs can be generated by integrat-

ing the local models in a distributed manner [11]. By using

this approach, computational complexity can be reduced and

the bandwidth for transmitting local data can be saved.

The proposed popularity prediction policy is illustrated in

Fig. 2. The details of the four steps of the policy will be

presented below.

B. Offline User Preference Learning

Let χi = [χi1, χi2, . . . , χij , . . . , χiJ ]
T

denote the content

feature vector of ci, where J denotes the number of content

categories. Users have different preference for these J content

categories. Let wn = [wn1, wn2, . . . , wnj , . . . , wnJ ]
T

denote

the user preference vector of un. User preference can be

learned independently without interaction with each other.

Therefore, the user preference learning is flexible, which can

be conducted at any idle time.

There are a large amount of records of user requests in UE to

be used as training samples. Let An = {(χi, yn,i) , i ∈ [1, I]}
denote the set of training samples for un, where yn,i denotes

the binary request label. If un has requestd for ci, yn,i = 1;

otherwise yn,i = 0. Due to the offline property, the privacy

of users can be protected since numerous user data is kept in

private equipment instead of transmitting to the central server.

Sigmoid function is used to approximate the correspondence

between the feature vector and request label of contents. For

simplicity, let hwn
(χi) = 1/(1 + e−wT

n ·χi). The probability

function of un is formulated to represent the probability for

yn,i as follows:

pwn
(yn,i|χi) = hwn

(χi)
yn,i (1− hwn

(χi))
1−yn,i . (2)

Given enough samples, the likelihood function of un can be

expressed as follows:

L (wn) =
∏

(χi,yn,i)∈An

pwn (yn,i|χi) . (3)

Therefore, the cross entropy loss function is formulated as the
negative log-likelihood function as follows:

F (wn) =
1

|An|
∑

(χi,yn,i)∈An

[
ln

(
1 + ew

T
n ·χi

)
− yn,i ·wT

n · χi

]
.

(4)

Consequently, wn can be obtained by minimizing F (wn).
The “Follow The (Proximally) Regularized Leader” (FTRL-

Proximal) algorithm is adopted to learn the user preference [8].

In addition, user preference needs to be updated dynamically

when F (wn) exceeds a certain threshold.

C. Adaptive Context Space Partitioning

User preference may differ based on their context infor-

mation [12]. For example, the movie types favored by boys

and girls, young and old, are usually different. Therefore, we

propose to partition the context space uniformly into parts of

similar contexts for further popularity prediction. In addition,

popularity scores for contents can be learned independently

Fig. 3. Illustration of adaptive context space partitioning (D
= 2).

in each context subspace. After partitioning, the users in the

same context subspace having similar preference can be treated

as a group. By using this approach, the number of items to

be kept track is significantly reduced. As a consequence, the

computational burden is maintained to a manageable extent.

Let ζn = [ζn,1, ζn,2, . . . ζn,D]
T ∈ [0, 1]D denote the context

vector of un, where D denotes the dimension of context space.

The process of adaptive context space partitioning is illustrated

in Fig. 3 and Algorithm 1. The original context space Θ0 is

constructed and normalized as [0, 1]D, and its level l0 = 0. All

the users considered are included in Θ0. Consider Θi to be

partitioned. Let Num(Θi) denote the number of users in Θi.

Let li denote the level of Θi. If Num(Θi) exceeds a certain

threshold, Θi is splitted into 2D subspaces. As one of these

child subspaces, Θj has an increased level of lj = li + 1.

The threshold determines the rate at which the context space

is partitioned. Therefore, it needs to be carefully designed.

We design the threshold to have the form r1 · 2r2li , where

r1 > 0 and r2 > 0 are hyper-parameters in Algorithm 1

[13]. Due to this splitting process, a subspace of level li has

length 2−li along each axis. For clarity of description, we re-

name the final obtained subspaces as Θ1,Θ2, . . . ,Θs, . . .ΘS ,

where S denotes the cumulative number of context subspaces.

Consequently, users are clustered according to the partitoning

results. In addition, the context space should be reconstructed

and partitioned when the users in the specific region migrate

massively.

Since user preference has been obtained, sigmoid function

hwn
(χi) can be used as mapping function f (wn,χi) to

map the correlation of user preference and content feature to

popularity scores. The average popularity score xs,i of Θs for

ci is obtained by averaging the popularity scores of all the



Algorithm 1 Adaptive Context Space Partitioning

Input: ζn = [ζn,1, ζn,2, . . . ζn,D]
T

, D, r1, r2, ψ =number of

the total subspaces

Output: Θ1,Θ2, . . . ,Θs, . . .ΘS

1: initialize i = 0, l0 = 0, ψ = 1
2: while i < ψ do
3: if Num(Θi) ≥ r1 · 2r2li then
4: split Θi into 2D subspaces Θj

5: ψ = ψ + 2D

6: lj = li + 1
7: end if
8: i = i+ 1
9: end while

users in Θs:

xs,i =
1

Num(Θs)

∑
ζn∈Θs

f (wn,χi) . (5)

Let xi = [x1,i, x2,i, . . . , xS,i]
T

denote the popularity scores

for ci of all the context subspaces after partitioning. The

popularity scores are used as the inputs of the popularity

prediction model in the following subsection.

D. Popularity Prediction Model Construction

Without loss of generality, we consider the local pop-

ularity prediction model in a typical F-AP. Let a =
[a1, a2, . . . , as, . . . , aS ]

T
denote the model parameters. By

using xi as the input of the prediction model, p̂i can be

expressed as follows:

p̂i = aTxi = a1x1,i + a2x2,i + · · ·+ aSxS,i. (6)

Least square method is applied to learn a. Let B =
{(pi,xi), i ∈ [1, I]} denote the training samples in the con-

sidered F-AP. The model parameters a can be obtained by

minimizing MSE as follows:

min 1
L

∑
(pi,xi)∈B

∣∣pi − aTxi

∣∣2
s.t. 0 < as < 1, ∀s ∈ [1, S]

, (7)

where L denotes the number of training samples in the F-AP.

The model is trained with historical popularity and historical

popularity scores in context subspaces.

The elements of a in the prediction model represent the ac-

tive levels of the users in the corresponding context subspaces

[14]. For example, the active levels for teenagers and mid-

aged are totally different, because young people use mobile

phones more frequently. It implies that their contributions

to the network traffic differ a lot. Stochastic variance re-

duced gradient (SVRG) algorithm is adopted to solve the

optimization problem in (7) [15]. It is a variant of stochastic

gradent descent (SGD) with explicit variance reduction, which

can achieve faster convergence. Let vi (a) =
∣∣pi − aTxi

∣∣2,

v (a) = 1
L

∑
(pi,xi)∈B vi (a). The detailed procedure of SVRG

is shown in Algorithm 2. Specifically, the algorithm operates

in two nested loops. In the outer loop, it computes the gradient

Algorithm 2 Stochastic Variance Reduced Gradient (SVRG)

Input: xi = [x1,i, x2,i, . . . , xS,i]
T
, ∀i ∈ [1, I]

Output: a = [a1, a2, . . . , as, . . . , aS ]
T

1: initialize ϕ =number of stochastic steps per epoch,

h =stepsize, a0

2: for j = 0, 1, 2, · · · do
3: compute and store � Full pass through data

4: �v (aj
)
= 1

L

∑
(pi,xi)∈B �vi

(
aj

)
5: set a1 = aj

6: for t = 1 to ϕ do
7: pick (pi,xi) ∈ B uniformly at random

8: calculate gt according to (8)

9: at+1 = at − hgt � Stochastic update

10: end for
11: aj+1 = aϕ+1

12: end for

value of the entire function (Line 4 in Algorithm 2). In the

inner loop, the gradient in iteration t is calculated as follows:

gt = �vi (at)− (�vi
(
aj

)−�v (aj
)
), (8)

where (�vi
(
aj

)−�v (aj
)
) is regarded as the bias of the gra-

dient estimate �vi (at). Namely, the algorithm modifies the

gradient �vi (at) based on at in iteration t. By adjusting the

number of stochastic steps, the tradeoff between convergence

rate and computational complexity can be flexibly balanced.

E. Federated Learning Based Model Integration

The global popularity prediction model aggregated by K
F-APs is considered. Let {q1, q2, · · · , qm, · · · , qK} denote the

set of considered F-APs. In order to learn the global model,

the cloud server needs to solve the optimization problem as

follows:

min 1
L∗

∑
(pi,xi)∈B∗

∣∣pi − aTxi

∣∣2
s.t. 0 < as < 1, ∀s ∈ [1, S]

, (9)

where L∗ denotes the number of training samples of the K
F-APs in the cloud server, B∗ denotes the corresponding set

of training samples. Due the expanded coverage area and the

increased number of associated users compared with the local

model, it is obvious that L∗ � L. As a consequence, the

computational load will be extremely high. In addition, the

training data in the distributed F-APs needs to be transmitted

to the cloud server, which will cost the bandwidth resources.

To cope with these issues, federated learning based model

integration is proposed to generate the global model based

on local models in a distributed manner.

The model integration based on federated learning is con-

ducted as follows: Firstly, the F-APs accepts the global model

parameters broadcasted by the cloud server. Then, each F-AP

computes an update to the current global model by using its

local data. Finally, all the F-APs communicate these updates

to the cloud server to aggregate a new global model. By using

this approach, bandwidth resources can be saved, because only

the model parameters need to be transmitted to the cloud



server instead of transmitting all the training data. Moreover,

the computational complexity is significantly reduced, since

repeated calculation is avoided.

Let Bm denote the set of training samples in qm. The MSE

in qm can be expressed as Vm (a) = 1
Lm

∑
(pi,xi)∈Bm

vi (a),
where Lm denotes the number of training samples in qm.

Therefore, the optimization problem in (9) can be converted

to the following equivalent form:

min
∑K

m=1
Lm

L∗ Vm (a)
s.t. 0 < as < 1, ∀s ∈ [1, S]

. (10)

It indicates that the global optimization is determined by local

optimizations. The most intuitive solution is to make each F-

AP minimize its local function, and then average the results

of all the F-APs. However, it is impractical unless the local

model parameters are all the same.

The distributed approximate Newton (DANE) [15] algo-

rithm is applied to remedy the above method by modifying

the local problems before each aggregation step. A feasible

solution is to perturb the local function Vm (a) of qm in each

iteration j with the disturbance term: −(bjm)Ta. It means that

in each iteration j, the F-APs parallelly solve the optimization

problem as follows:

a(j)
m = argmin

a∈RS

{
Vm(a)− (bjm)Ta

}
, (11)

where a
(j)
m denotes the vector of model parameters of qm

in iteration j. According to [15], the value of bjm can be

calculated as (�Vm(aj)−�v(aj)).
As described in the previous subsection, (11) can be solved

with SVRG. Consequently, federated learning based model

integration is proposed to incorporate DANE and SVRG

into the popularity prediction model. By using this approach,

the global model can be learned by distributed computation.

Moreover, the convergence rate can be improved by adopting

SVRG. The detailed description is shown in Algorithm 3. Let

gt
m denote the gradient in iteration t in qm. In the actual

update loop, gt
m is calculated by applying (8) to solving (11)

as follows:

gt
m = �vi

(
a(t)
m

)
−�vi

(
aj

)
+�v (aj

)
. (12)

According to the above descriptions, the proposed popu-

larity prediction policy not only predicts popularity of ex-

isting or newly-added contents with a high accuracy, but

also significantly reduces the computational complexity and

communication overhead.

IV. SIMULATION RESULTS

To evaluate the performance of the proposed popularity

prediction policy, we perform simulations based on the data

extracted from the MovieLens Dataset [16]. The MovieLens

100K Dataset contains 100000 ratings of 943 users on 1682

movies. Each user has rated at least 20 movies. Each data

set entry consists of an anonymous user ID, a movie ID,

a rating (1-5) and a timestamp. We assume that the ratings

Algorithm 3 Federated learning based model integration

Input: xi = [x1,i, x2,i, . . . , xS,i]
T
, ϕ =number of stochastic

steps per epoch, h =stepsize,

Output: a = [a1, a2, . . . , as, . . . , aS ]
T

1: initialize ϕ =number of stochastic steps per epoch,

h =stepsize, a0

2: for j = 0, 1, 2, · · · do � Overall iterations

3: compute and store

4: �v (aj
)
= 1

L∗
∑

(pi,xi)∈B∗ �vi
(
aj

)
5: for m = 1, 2, · · · ,K do � Distributed loop

6: (in parallel over nodes)

7: initialize a
(1)
m = aj

8: for t = 1 to ϕ do � Actual update loop

9: sample (pi,xi) ∈ Bm uniformly at random

10: calculate gt
m according to (12)

11: a
(t+1)
m = a

(t)
m − hgt

m

12: end for
13: end for
14: aj+1 = aj + 1

K

∑K
m=1(a

(ϕ+1)
m − aj) � Aggregate

15: end for

correspond to the number of requests from users. In addition,

demographic information about the users is provided in the

dataset, including their gender, age, occupation and Zip-code.

For numerical evaluations, we select gender and age as context

information. Besides, the genres of the contained movies are

provided, which can be used as the content feature.

In Fig. 4, we show the logarithmic root mean-square error

(RMSE) of our proposed popularity prediction policy and the

AR model based policy with different number of considered

contents [3]. It can be observed that the RMSE value of the

proposed policy gradually decreases as the number of contents

increasing. The reason is that the proposed policy can better

learn the relationship between popularity and content features

with more training samples. It can also be observed that the

RMSE of the proposed policy is smaller than the AR model

based policy. The reason is that the inputs of these two policies

are different. The input of the proposed policy captures the

internal characteristics of popularity after a series of data

preprocessing, whereas the input in the AR model based policy

is processed roughly.

In Fig. 5, we show the cache hit rates of our proposed policy

and four benchmark policies, including the AR model based

policy, LRU, LFU, and Random Caching (RC). Assume that

the caching policy for the proposed policy and the AR based

policy is to cache the most popular contents preferentially

according to prediction. It can be observed that the cache

hit rates of all the considered policies increase gradually as

the storage capacity increasing. It can also be observed that

the proposed policy achieves better performance than the four

benchmarks with higher cache hit rate. The LRU and LFU are

liable to suffer performance degradation due to their neglect of

content popularity. Due to the improved prediction accuracy

as shown in Fig. 4, the proposed policy achieves higher cache



Fig. 4. Root mean-square error versus

number of contents.

Fig. 5. Cache hit rates versus total

cache size.

Fig. 6. Root mean-square error versus

number of iterations.

hit rate than the AR based policy by up to 21.5%. Moreover,

the proposed policy can predict the popularity of newly-added

contents by leveraging user preference, which also leads to

better caching performance.

In Fig. 6, we show the logarithmic RMSE of our proposed

policy and the centralized policy as the number of iterations

varies when generating the global model. It can be observed

that our proposed policy achieves faster convergence than the

centralized policy. The reason is that our proposed policy

generates the global model by integraing the existing local

models based on federated learning. The global model can be

initialized by the local models, instead of random generation.

Consequently, a large part of repeated computation is avoided.

While the centralized policy has to recalculate the training

samples after data transmission, which is resource-wasting.

V. CONCLUSION

In this paper, we have proposed a novel popularity pre-

diction policy based on user preference learning, adaptive

context space partitioning and federated learning. Our pro-

posed policy can predict content popularity accurately, even

when the contents have no statistical data in advance. The

reason is that the relation between content popularity and

user preference is considered. Specifically, federated learning

based model integration is efficient in reducing computational

complexity and communication overhead, which makes our

proposed policy more practical. Simulation results have shown

that our proposed policy achieves better predicting and caching

performance than traditional policies.
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