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Abstract. In this paper, we present an application of the hierarchical HMM for
structure discovery in educational videos. The HHMM has recently been extended
to accommodate the concept of shared structure, ie: a state might multiply inherit
from more than one parents. Utilising the expressiveness of this model, we con-
centrate on a specific class of video – educational videos – in which the hierarchy
of semantic units is simpler and clearly defined in terms of topics and its sub-
units. We model the hierarchy of topical structures by an HHMM and demonstrate
the usefulness of the model in detecting topic transitions.

1 Introduction

The discovery of structure in video data is an important problem. Solution to this prob-
lem will form the core of multimedia indexing and browsing systems. The discovery of
structure is important as it enables the partitioning of the information into meaningful
sub-units and to build a hierarchy of such units in increasing levels of detail. Such hier-
archies are naturally used in other media, for example, the table of contents in a book.
In the case of video, construction of such a hierarchy is equally meaningful and will
allow users to browse the media using a table-of-contents style. The difficult question
includes not only the construction of the hierarchy, but also the understanding of the
sub-units used in the hierarchy.

In this paper, we concentrate on a specific class of video, the educational video, in
which the hierarchy of units is simpler and clearly defined in terms of topics and sub-
topics. We propose the use of the HHMM to segment this class of video. We first modify
the parameter estimation to allow multiple inheritance in hierarchic structures. This is
because a video has shared sub-structures and the model needs to accommodate this
fundamental aspect of topic organisation. For example, all topics generally start with
some introduction shots. The novelty of this work is in the content structure discovery
of educational videos where the shared ‘concepts’ are utilised and incorporated into
the model. This is important because without the ability to model shared structures,
the shared units will have to be repeated, increasing the state space and thus make the
process computationally inefficient. This is particularly relevant when dealing with very
long observation sequences such as a full video.
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2 Related Background

Discovering structure of videos has been a rapidly growing area, in particular as a sub-
field of multimedia content management. In these systems, the central task is effectively
building units of indexation, possibly at different levels of abstractions, to simplify the
process of retrieving and browsing, and also to enrich the viewing experience from the
end-users. There have been many systems proposed for specific video genres. Partition
and classification of broadcast videos into meaningful sections have attracted significant
attention [1–8]. In [7], Liu et al. segment news reports from other categories based on
both audio and visual information. Low-level features are combined with the concept
of shot syntax in [2] to identify and label different narrative structures such as anchor
shots, voice-over segments and interview sections found in news programs. Unsuper-
vised groupings of news stories according topical content with only audio information
was studied in [8]. Research into the domain of lecture videos has also been found in [9].
In their work, visual events are detected from the visual stream and then incorporated
with audio information in a probabilistic framework to detect topic transitions. The do-
main of entertainment film has also been targeted lately [10–13]. In [10], for example,
Adams et al. formulate an algorithmic solution for the computation of movie tempo, a
high-level construct, and later utilise this function to segment a movie into story units.
Wang et al. [12] attempt to detect scenes in film using the similarity in visual informa-
tion and further improve the results with guidance from cinematic grammar.

The HHMM is a powerful stochastic model, first introduced in [14], in which the
HHMM is viewed as a form of probabilistic context free grammar (PCFG), and the
inference algorithm and parameter learning procedures are constructed based on the
inside-outside algorithm. In [15], the HHMM is converted to a DBN, and applies general
DBN inference to the model to achieve complexity linear in time T , but exponential in
the depth D of the model. The same analysis applied is [16], ie: the HHMM is ‘flatened’
into regular HMM with a very large state space for inference purpose. Their work [17,
16] aims to detect structures of soccer videos in an unsupervised manner. The model
selection is first carried out using the MCMC to determine the structure parameters
for the model, followed by a feature selection procedure. Finally, the HHMM is used
to detect two semantic concepts, namely play and break in soccer videos. As there
is little hierarchy at this level, the power of the hierarchic probabilistic model is not
used. The HHMM is also applied in other domains other than multimedia such as in
hand-written recognition [14], robot navigation [18], behaviour recognition [19] and
information retrieval [20].

3 Model Definition and EM for the HHMM

The discrete HHMM and its extension to accommodate shared structured has been ad-
dressed in our previous work [21]. Here we refocus our attention to elucidate the idea of
the shared structures and briefly discuss the EM algorithm for parameter estimation. We
then discuss the case when the emission probability is modeled as mixture of Gaussian
in the context of the hierarchical HMM.
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A HHMM is formally defined by a topological structure ζ and a set of parameter θ
attached to the topology. The general form of DBN representation is shown in Fig. 1(a).
The depth D and the number of states available at each level Qd, for d = 1, .., D,
are specified by ζ. Level 1 is the root level and is always fixed to have only a single
state. Furthermore, the topological structure reveals the ‘parent-children’ relationship
of states between two consecutive levels1. A state p at level d is assigned to a set of
children, ch(p), at level d + 1. A state i at level d + 1 therefore might multiply inherit
from more than one parents at level d. For example, the HHMM defined in Fig. 2 has a
depth D = 3 with 1, 3, 4 are the number of states respectively at level d = 1, 2, 3. The
set of children for state 3 at level 2 is {2, 3, 4} (at lower level 3). The set of parents for
state 2 at level 3 is {1, 2, 3}, which, in this case, is ‘shared’ by all states at level 2.

Given such a topological structure ζ, the parameter θ of the HHMM is specified in
the following way. For each level d ∈ {1..D − 1}, p ∈ Qd, i, j ∈ ch(p), where ch(p)
denote the children set of p:

• πd,p
i � Pr(qd+1

t = i | ·qd
t = p) : is the initial probability of the child i given

the parent is p at level d.
• Ad,p

i,j � Pr(qd+1
t+1 = j | ed

t = 0, q·d+1
t = i, qd

t = p) : is the transition probability
from child i to child j given that both are children of p.

• Ad,p
i,end � Pr(ed

t = 1 | qd
t = p, q·d+1

t = i): is the probability that state p
terminates at level d given its current child is i.

where the dot in front of qd
t represents the event q·dt−1= 1 (ie: qd

t is started at t), and
the dot after qd

t represents the event q·dt = 1 (ie: qd
t is ended at t). The constraints of

stochastic processes requires that
∑

i π
d,p
i = 1,

∑
j Ad,p

i,j = 1, and Ad,p
i,end ≤ 1. Finally,

at the lowest level D, an observation probability matrix B is specified in the discrete
observation case, or a set of {µim, Σim} are given when the observation values are
continous and modeled as a mixture of Gaussians.

Given an observed data set O and some initial parameters, the EM algorithm it-
eratively re-estimates a new parameter θ̂, hill climbing in the parameter space which
is guaranteed to converge to a local maxima. As shown in [21], doing EM param-
eter re-estimation reduces to first calculating the expected sufficient statistics (ESS)
τ̄ = EV\O τ , and then set the re-estimated parameter θ̂ to the normalized value of τ̄ .

The ESS for parameter
{

Ad,p
i,j

}
, for example, is calculated as:

τ̄ (A)d,p
i,j = E

V\O
τ(A)d,p

i,j =
T−1∑

t=1

ξd,p
t (i, j)

/

Pr(O) (1)

where the auxiliary variable ξd,p
t (i, j) is defined as the probability Pr(qd+1

t+1 = j, qd+1
t =

i, qd
t+1 = p, ed:d+1

t = 01,O). Readers are referred to [21] for further details on compu-
tation of the auxiliary variables and other expected sufficient statistics. In the rest of this
section we will discuss the case when the emission probability is modeled as a mixture
of Gaussians.

1 Note that the original HHMM[14] assumes that a state has a only a single parent and therefore
the topology reduces strictly to a tree.
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In general, modeling the observation probability as a mixture of Gaussians for the
hierarchical HMM is similar to the regular HMM. The DBN structure at level D is modi-
fied as in Fig 1(b), where a mixture variable zt is added. For simplicity, thereafter in this
section we will drop the index D. Let M be the number of mixtures and N be the num-
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Fig. 1. (a) DBN representation for the discrete HHMM; (b) Mixture component zt at level D.

ber of states at level D. The observation matrix B in the discrete case is replaced by the
mixing weight matrix {εim} and a set of means and covariance matrices {µmi, Σmi}
for i = 1, . . . , N and m = 1, . . . , M . Given observed data O, expressing the expected
complete log-likelihood and discarding terms irrelevant to zt and yt we have:

〈�(θ;O)〉 =
∑

1≤i≤N
1≤m≤M

[
T∑

t=1

〈
Izt,qt

m,i

〉
logN (yt, µmi, Σmi) +

T∑

t=1

〈
Izt,qt

m,i

〉
log εmi

]

where Izt,qt

m,i is the identity function and � 1 if {zt = m} ∪ {qt = i} ; � 0 otherwise;
and its expected value is calculated as:

〈
Izt,qt

m,i

〉
= Pr(zt= m, qt= i | O) = Pr(zt= m | qt= i, yt) Pr(qt= i | O)

=
Pr(yt | zt= m, qt= i) Pr(zt= m | qt= i)

Pr(yt | qt= i)
× Pr(qt= i,O)

Pr(O)

=
εmiN (yt, µmi, Σmi)

∑M
m=1 εmiN (yt, µmi, Σmi)

× γD
t (i)

Pr(O)

where2 the auxiliary variable γD
t (i) is defined as the probability Pr(qD

t = i,O) and can
be computed directly from horizontal transition probability ξd,p

t (i, j) and vertical tran-
sition probability χd,p

t (i) (see [21]). Finally, maximising the expected complete log-
likelihood 〈�(θ;O)〉 with respect εim and µmi, Σmi respectively. Introducing the La-
grange multipliers for εim; and setting derivatives to zero for the case of µmi, Σmi. The
set of re-estimated parameters is given as:

2 We put back hierarchic index D for clarity here.
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ε̂mi =

∑T
t=1

〈
Izt,qt

m,i

〉

∑M
m=1

∑T
t=1

〈
Izt,qt

m,i

〉 , µ̂mi =

∑T
t=1

〈
Izt,qt

m,i

〉
yt

∑T
t=1

〈
Izt,qt

m,i

〉

Σ̂mi =

∑T
t=1

〈
Izt,qt

m,i

〉
(yt − µmi)(yt − µmi)T

∑T
t=1

〈
Izt,qt

m,i

〉

When multiple observation sequences are given, the set of above equations can be ad-
justed by simply adding a summation over the number of sequences. This corresponds
to ‘counting’ over all sequences.

4 Elucidating Structures in Educational Videos

An intrinsic functionality of educational videos3 is to ‘teach’ [22], and therefore struc-
turalizing the content and building meaningful indices are important to improve the
learning experience. Materials delivered in an educational video might vary widely to
suit different purposes; however, when restricted to instructional and safety videos, the
content organization is relatively simple. In this paper, we are interested in this particu-
lar type of video and observe that linear presentation is generally chosen to present the
content. Subjects are arranged into a sequence of topics started with a few introduction
shots. Literature in this field [22] offers further insight into how a topic is constructed.
Generally, there are three presentational styles: (1) direct instruction, (2) on-screen in-
struction, and (3) illustrative instruction (see Fig. 2). In direct instruction, the video-
maker choose to present a topic by means of text captions and voice over. In on-screen
instruction, s/he decides to directly appear on the camera to talk directly to the viewers.
Lastly in illustrative instruction, illustrative examples are the major mode of presenta-
tion to convey the subject with possible appearance of the anchors. These presentational
styles shares certain similar semantic concepts at the lower levels such as introduction
shot, or direct appearance of anchor(s) (Fig. 2).

On−screen IllustrativeDirect

1 2 3

1 2 3

1

4

level 1

level 2

level 3

text intro exampleanchor

Fig. 2. Structure of topic generating process with assumed hidden ‘styles’; and its mapping to a
topology for the HHMM. Shared structures are identified with extra dotted circle.

3 The class of educational videos discussed in this work is of professional productions, excluding
hand-held recorded videos such that lecture videos recorded in the classroom.
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5 Experimental Results

Our aim is to apply the HHMM model, taking advantage of the shared units, to segment
an educational video into high-levels of abstraction – ie: detection of topic transitions
in this case. We construct a 3-level HHMM as follows. The root level represents the
entire video, followed by three states at the next level, each of which corresponds to
one topic presentational style. Our assumption here is that the topic content organisa-
tion strictly follows the styles outlined in Sec. 4. The production level includes four
states, corresponding to four semantic concepts at the shot level: (1) the introduction,
(2) instruction delivered by mean of captioned texts, (3) instruction delivered directly
by the presenter and (4) illustrative example (Fig.2). Given a set of training N videos,
we extract features from each video and use them as input observation sequences to
the EM parameter learning algorithm to estimate a new model parameter. This new
parameter set will be used in the second phase to segment a video based on results
from the generalised Viterbi decoding algorithm. The data set includes eight instruc-
tional and safety videos, whose topics span a variety of subjects such as how to exercise
safety at home, in office, or at workplace. Shot indices are assumed to be available,
which is first detected by a commercial software and errors are manually corrected.
In the training phase, each video yields an observation sequence with each shot-based
feature vector o is a column vector of seven elements o = [o1, o2, o3, o4, o5, o6, o7]t.
From the visual stream, we extract three features including the face-content-ratio, text-
content-ratio and average motion based on camera pan and tilt (o1, o2, o3). The other
four features namely music-ratio, speech-ratio, silence-ratio and non-literal sound ratio
(o4, o5, o6, o7) are from the audio track. Feature music-ratio, for example, is calculated
as the ratio of number of clips classified as music to the total number of audio clips
in the shot. Readers are referred to [23] for further details on the computation of these
features.

At the production level of the trained model, the estimated matrices µ̂ and Σ̂ can
be examined to get an idea about the semantics . Fig. 3(a), for instance, shows the
estimated mean value for different features with respect to state 2, which is intended to
model the ‘style’ of shots that used to introduce a new topic. As can be seen, this state
is ‘sensitive’, ie: will yield a high probability, to shots with displayed captioned texts
and no audio. When compared with the ground-truth, we observe that this is indeed a
major kind of shots that demarcate topics.

To evaluate the detection performance, we manually watch and segment each video
into topics. In some cases, this information is available directly from the video manuals.
This results in a total of 75 indices. We use two well-known metrics, namely, recall and
precision to measure the performance of the detection. To perform segmentation, we
first run the Viterbi algorithm to get the time indices for which a state at topic level (ie:
level 2) make the transition. Let τ be such an index, we then examine the state x3

τ , which
is the corresponding state at the production level being called. If this state coincides
with the introduction shot (ie: = 2), then τ is recorded as a topic transition. The entire
segmentation results are reported in Fig. 3. Calculation yields a recall of 77.3% and
a precision of 70.7%. Given that the segmentation has been done in an completely
unsupervised manner, ie: there is no hints in the training data as to what is a topic
boundary, the result demonstrate the validity of the HHMM-based detection scheme.
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text−
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otion
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ratio

0.0854

0.6030
0.5948
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0.5045

0.3523

0.034

(a) µ̂21

Video GT TP Errors
FN FP

1. 10 8 2 4

2. 9 6 3 3

3. 8 7 1 0

4. 5 3 2 4

5. 7 6 1 10

6. 19 15 4 2

7. 10 7 3 0

8. 7 6 1 1

Total 75 58 17 24
(b) detection results

Fig. 3. (a) estimated µ vector for state 2 (introduction shot), (b) detection results for 8 videos –
GT : number of ground-truth indices, TP : number of correct detection, FN : number of miss, FP:
number of over segmented indices.

This result is comparative with the probabilistic detection framework developed in [24]
with a slight degradation in performance.

6 Discussion

Fig. 3 reveals that over segmentation is the major source of error causing a degradation
in precision; and the high number of ‘miss’ (false negatives) causing a low recall rate.
The resulting false negatives is not surprising since a topic is introduced in numerous
ways, but the estimated model has learned only a subset of these methods of introduc-
tion. To overcome this, we obviously need a more complex model structure, which will
be considered in our future work. The fact that the detector usually over segments a
video (eg: video 5) is worth further discussion. A close analysis discloses that while
these (over-segmenting) indices do not match the ground-truth, they frequently map to
the lower level of sub-structures within a topic such as segments emphasising a safety
message (for example, this happens many times in video 5). Fig. 4 draws an insight
into the structure of an educational video and illustrate this problem. The vertical solid
lines have been the target of our detection, while dashed-lines correspond to the over-
segmented indices from the detector. This fact suggests that the model might be utilised
to exploit further structure in topics, which will also be considered in our future work.

INTRO

sub−topic 1 sub−topic n

TOPIC mTOPIC 1

ENTIRE VIDEO

intro sub−unit k

Fig. 4. Structure of a Video.
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7 Conclusion

We have presented a framework for topic structure discovery using the HHMM in this
paper. An important aspect of video data when considering its content organisation is
the shared structures embedded in the data. This suggests a natural mapping to the
hierarchical HMM, which we have utilised to model the topic structures in educational
videos. We have briefly addressed the issue of parameter learning in the HHMM, in
particular when the emission probability is modeled as a mixture of Gaussians. Finally,
the experimental results have demonstrated the usefulness of the detection scheme.
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