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Contention for shared resources on multicore processors remains an unsolved problem in exist-
ing systems despite significant research efforts dedicated to this problem in the past. Previous
solutions focused primarily on hardware techniques and software page coloring to mitigate this
problem. Our goal is to investigate how and to what extent contention for shared resource can be
mitigated via thread scheduling. Scheduling is an attractive tool, because it does not require extra
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prehensive analysis of contention-mitigating techniques that use only scheduling. The most diffi-
cult part of the problem is to find a classification scheme for threads, which would determine how
they affect each other when competing for shared resources. We provide a comprehensive analysis
of such classification schemes using a newly proposed methodology that enables to evaluate these
schemes separately from the scheduling algorithm itself and to compare them to the optimal. As
a result of this analysis we discovered a classification scheme that addresses not only contention
for cache space, but contention for other shared resources, such as the memory controller, memory
bus and prefetching hardware. To show the applicability of our analysis we design a new schedul-
ing algorithm, which we prototype at user level, and demonstrate that it performs within 2% of
the optimal. We also conclude that the highest impact of contention-aware scheduling techniques
is not in improving performance of a workload as a whole but in improving quality of service or
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Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management—
Scheduling

General Terms: Management, Measurement, Performance

Additional Key Words and Phrases: Multicore processors, scheduling, shared resource
contention

ACM Reference Format:

Blagodurov, S., Zhuravlev, S., and Fedorova, A. 2010. Contention-aware scheduling on multicore
systems. ACM Trans. Comput. Syst. 28, 4, Article 8 (December 2010), 45 pages.
DOI: 10.1145/1880018.1880019. http://doi.acm.org/10.1145/1880018.1880019.

The authors thank Sun Microsystems, National Science and Engineering Research Council of
Canada (in part the Strategic Project Grants program), and Google for supporting this research.
Author’s address: S. Blagodurov, S. Zhuravlev, and A. Fedorova, Simon Fraser University, 8888
University Drive, Burnaby, B.C., Canada V5A 1S6; email: {sergey blagodurov, sergey zhuravlev,
alexandra fedorova}@sfu.ca
Permission to make digital or hard copies part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2010 ACM 0734-2071/2010/12-ART8 $10.00 DOI: 10.1145/1880018.1880019.

http://doi.acm.org/10.1145/1880018.1880019

ACM Transactions on Computer Systems, Vol. 28, No. 4, Article 8, Pub. date: December 2010.



8: 2 · S. Blagodurov et al.

1. INTRODUCTION

Multicore processors have become so prevalent in both desktops and servers
that they may be considered the norm for modern computing systems. The
limitations of techniques focused on extraction of instruction-level parallelism
(ILP) and the constraints on power budgets have greatly staggered the devel-
opment of large single cores and made multicore systems a very likely future
of computing, with hundreds to thousands of cores per chip. In operating sys-
tem scheduling algorithms used on multicore systems, the primary strategy for
placing threads on cores is load balancing. The OS scheduler tries to balance
the runnable threads across the available resources to ensure fair distribution
of CPU time and minimize the idling of cores. There is a fundamental flaw
with this strategy which arises from the fact that a core is not an independent
processor but rather a part of a larger on-chip system and hence shares re-
sources with other cores. It has been documented in previous studies [Cho and
Jin 2006; Liedtke et al. 1997; Lin et al. 2008; Qureshi and Patt 2006; Suh et al.
2002; Tam et al. 2009] that the execution time of a thread can vary greatly
depending on which threads run on the other cores of the same chip. This is
especially true if several cores share the same last-level cache (LLC).

Figure 1 highlights how the decisions made by the scheduler can affect the
performance of an application. This figure shows the results of an experiment
where four applications were running simultaneously on a system with four
cores and two shared caches. There are three unique ways to distribute the
four applications across the four cores, with respect to the pairs of co-runners
sharing the cache; this gives us three unique schedules. We ran the threads in
each of these schedules, recorded the average completion time for all applica-
tions in the workload, and labeled the schedule with the lowest average com-
pletion time as the best and the one with the highest average completion time
as the worst. Figure 1 shows the performance degradation that occurs due to
sharing an LLC with another application, relative to running solo (contention-
free). The best schedule delivers a 20% better average completion time than
the worst one. Performance of individual applications improves by as much
as 50%.

Previous work on the topic of contention-aware scheduling for multicore sys-
tems focused primarily on the problem of cache contention since this was as-
sumed to be the main if not the only cause of performance degradation [Dhiman
et al. 2009; Fedorova et al. 2007; Knauerhase et al. 2008; Tam et al. 2007, 2009].
In this context cache contention refers to the effect when an application is suf-
fering extra cache misses because its co-runners (threads running on cores that
share the LLC) bring their own data into the LLC evicting the data of others.
Methods such as utility cache partitioning (UCP) [Qureshi and Patt 2006] and
page coloring [Cho and Jin 2006; Tam et al. 2009; Zhang et al. 2009] were
devised to mitigate cache contention.

Through extensive experimentation on real systems as opposed to simula-
tors we determined that cache contention is not the dominant cause of per-
formance degradation of threads co-scheduled to the same LLC. Along with
cache contention other factors like memory controller contention, memory bus
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Fig. 1. The performance degradation relative to running solo for two different schedules of SPEC
CPU2006 applications on an Intel Xeon X3565 quad-core processor (two cores share an LLC).

contention, and prefetching hardware contention all combine in complex ways
to create the performance degradation that threads experience when sharing
the LLC.

Our goal is to investigate contention-aware scheduling techniques that are
able to mitigate as much as possible the factors that cause performance degra-
dation due to contention for shared resources. Such a scheduler would provide
speedier as well as more stable execution times from run to run. Any con-
tention aware scheduler must consist of two parts: a classification scheme for
identifying which applications should and should not be scheduled together as
well as the scheduling policy that assigns threads to cores given their classifi-
cation. Since the classification scheme is crucial for an effective algorithm, we
focused on the analysis of various classification schemes. We studied the follow-
ing schemes: Stack Distance Competition (SDC) [Chandra et al. 2005], Animal
Classes [Xie and Loh 2008], Solo Miss Rate [Knauerhase et al. 2008], and the
Pain Metric. The best classification scheme was used to design a scheduling
algorithm, which was prototyped at user level and tested on two very different
systems with a variety of workloads.

Our methodology allowed us to identify the last-level cache miss rate, which
is defined to include all requests issued by LLC to main memory including
prefetching, as one of the most accurate predictors of the degree to which ap-
plications will suffer when co-scheduled. We used it to design and implement
a new scheduling algorithm called Distributed Intensity (DI). We show experi-
mentally on two different multicore systems that DI performs better than the
default Linux scheduler, delivers much more stable execution times than the
default scheduler, and performs within a few percentage points of the theoreti-
cal optimal. DI needs only the real miss rates of applications, which can be eas-
ily obtained online. As such we developed an online version of DI, DI Online
(DIO), which dynamically reads miss counters online and schedules applica-
tions in real time. Our schedulers are implemented at user-level, and although
they could be easily implemented inside the kernel, the user-level implementa-
tion was sufficient for evaluation of these algorithms’ key properties.
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The key contribution of our work is the analysis demonstrating the effective-
ness of various classification schemes in aiding the scheduler to mitigate shared
resource contention. Previous studies focusing on contention-aware scheduling
did not investigate this issue comprehensively. They attempted isolated tech-
niques, in some cases on a limited number of workloads, but did not analyze
a variety of techniques and did not quantify how close they are to optimal.
Therefore, understanding what is the best we can do in terms of contention-
aware scheduling remains an open question. Our analysis, in contrast, explores
a variety of possible classification schemes for determining to what extent the
threads will affect each other‘s performance, and we believe to cover most of the
schemes previously proposed in literature as well as introducing our own. In
order to perform thorough analysis we devised a new methodology for evaluat-
ing classification schemes independently of scheduling algorithms. Using this
methodology we compare each classification scheme to the theoretical optimal,
and this provides a clear understanding of what is the best we can do in a sched-
uler. Further, we analyze the extent of performance improvements that can be
achieved for different workloads by methodically categorizing the workloads
based on the potential speedup they can achieve via contention aware schedul-
ing. This enables us to evaluate the applicability of cache-aware scheduling
techniques for a wide variety of workloads. We believe that our work is the
first to comprehensively evaluate the potential of scheduling to mitigate con-
tention for shared resources.

The primary application of our analysis is for building new scheduling algo-
rithms that mitigate the effects of shared resource contention. We demonstrate
this by designing and evaluating a new algorithm Distributed Intensity Online.
Our evaluation leads us to a few interesting and often unexpected findings.
First of all, we were surprised to learn that if one is trying to improve average
workload performance, the default contention unaware scheduler already does
a rather good job if we measure performance of a workload over a large number
of trials. The reason is that for a given workload there typically exists a num-
ber of good and bad scheduling assignments. In some workloads, each of these
assignments can be picked with a roughly equal probability if selecting uni-
formly at random, but in other workloads a good assignment is far more likely
to occur than the bad one. A contention unaware default scheduler runs into
good and bad assignments according to their respective probabilities, so over
time it achieves performance that is not much worse than under a contention-
aware algorithm that always picks the good assignment. However, when one
is interested in improving performance of individual applications, for example
to deliver quality of service guarantees or to accomplish performance isolation,
a contention-aware scheduler can offer significant improvements over default,
because this scheduler would almost never select a bad scheduling assignment
for the prioritized application.

We also found that DIO can be rather easily adjusted to optimize for system
energy consumption. On many systems, power consumption can be reduced if
the workload is concentrated on a handful of chips, so that remaining chips can
be brought into a low-power state. At the same time, clustering the workload
on a few chips forces the threads to share memory-hierarchy resources more
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intensely. This can lead to contention, hurt performance and increase system
uptime, leading to increased energy consumption. So in order to determine
whether threads should be clustered (to save power) or spread across chips (to
avoid excessive contention) the scheduler must be able to predict to what ex-
tent threads will hurt each other’s performance if clustered. We found that
DIO was able to make this decision very effectively, and this lead us to design
DIO-POWER – an algorithm that optimizes both performance and power con-
sumption. As a result, DIO-POWER is able to improve energy-delay product
over plain DIO, by as much as 80% in some cases.

The rest of the article is organized as follows. Section 2 describes the
classification schemes and policies that we evaluated, the methodology for
evaluating the classification schemes separately from the policies and provides
the evaluation results for the classification schemes. Section 3 attempts to
quantify the effects of different factors resulting from contention for shared
on-chip resources on performance on multicore CPUs in order to better explain
the results of Section 2. Section 4 describes the contention aware scheduling
algorithms that were implemented and tested on real systems. Section 5 pro-
vides the experimental results for the contention aware scheduling algorithms.
Section 6 presents and evaluates DIO-POWER. Section 7 discusses the related
work and Section 8 concludes.

2. CLASSIFICATION SCHEMES

2.1 Methodology

A conventional approach to evaluate new scheduling algorithms is to compare
the speedup they deliver relative to a default scheduler. This approach,
however, has two potential flaws. First, the schedule chosen by the default
scheduler varies greatly based on stochastic events, such as thread spawning
order. Second, this approach does not necessarily provide the needed insight
into the quality of the algorithms. A scheduling algorithm consists of two
components: the information (classification scheme, in our case) used for
scheduling decisions and the policy that makes the decisions based on this
information. The most challenging part of a cache-aware scheduling algorithm
is to select the right classification scheme, because the classification scheme
enables the scheduler to predict the performance effects of co-scheduling any
group of threads in a shared cache. Our goal was to evaluate the quality
of classification schemes separately from any scheduling policies, and only
then evaluate the algorithm as a whole. To evaluate classification schemes
independently of scheduling policies, we have to use the classification schemes
in conjunction with a perfect policy. In this way, we are confident that any
differences in the performance between the different algorithms are due to
classification schemes, and not to the policy.

2.1.1 A Perfect Scheduling Policy. As a perfect scheduling policy, we use an
algorithm proposed by Jiang et al. [2008]. This algorithm is guaranteed to find
an optimal scheduling assignment, that is, the mapping of threads to cores, on
a machine with several clusters of cores sharing a cache as long as the co-run
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Table I. Co-Run Degradations of Four Obtained on a Real System

mcf milc gamess namd

mcf 48.01% 65.63% 2.0% 2.11%
milc 24.75% 45.39% 1.23% 1.11%
gamess 2.67% 4.48% -1.01% -1.21%
namd 1.48% 3.45% -1.19% -0.93%

Small negative degradations for some benchmarks occur as a
result of sharing of certain libraries. The value on the inter-
section of row i and column j indicates the performance degra-
dation that application i experiences when co-scheduled with
application.

degradations for applications are known. A co-run degradation is an increase
in the execution time of an application when it shares a cache with a co-runner,
relative to running solo.

Jiang’s methodology uses the co-run degradations to construct a graph the-
oretic representation of the problem, where threads are represented as nodes
connected by edges, and the weights of the edges are given by the sum of the
mutual co-run degradations between the two threads. The optimal scheduling
assignment can be found by solving a min-weight perfect matching problem.
For instance, given the co-run degradations in Table I, Figure 2 demonstrates
how Jiang’s method would be used to find the best and the worst scheduling
assignment. In Table I, the value on the intersection of row i and column j

indicates the performance degradation that application i experiences when co-
scheduled with application j. In Figure 2, edge weights show the sum of mu-
tual co-run degradations of the corresponding nodes. For example, the weight
of 90.4% on the edge between MCF and MILC is the sum of 65.63% (the degra-
dation of MCF when co-scheduled with MILC) and 24.75% (the degradation of
MILC co-scheduled with MCF).

Although Jiang‘s methodology and the corresponding algorithms would be
too expensive to use online (the complexity of the algorithm is polynomial in
the number of threads on systems with two cores per shared cache and the
problem is NP-complete on systems where the degree of sharing is larger), it is
acceptable for offline evaluation of the quality of classification schemes.

Using Jiang‘s algorithm as the perfect policy implies that the classification
schemes we are evaluating must be suitable for estimating co-run degrada-
tions. All of our chosen classification schemes answered this requirement: they
can be used to estimate co-run degradations in absolute or in relative terms.

2.1.2 An Optimal Classification Scheme. To determine the quality of vari-
ous classification schemes, we not only need to compare them with each other,
but also to evaluate how they measure up to the optimal classification scheme.
All of our evaluated classification schemes attempt to approximate relative per-
formance degradation that arbitrary tuples of threads experience when sharing
a cache relative to running solo. An optimal classification scheme would there-
fore have the knowledge of actual such degradation, as measured on a real
system. To obtain these measured degradations, we selected ten representa-
tive benchmarks from the SPEC CPU2006 benchmark suite (the methodology
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Fig. 2. An overview of using Jiang’s method for determining the optimal and the worst thread
schedule. Edges connecting nodes are labeled with mutual co-run degradations, that is, the sum
of individual degradations for a given pair. The average degradation for a schedule is computed by
summing up all mutual degradations and dividing by the total number of applications (four in our
case).

for selection is described later in this section), ran them solo on our experi-
mental system (described in detail in Section 5), ran all possible pairs of these
applications and recorded their performance degradation relative to solo per-
formance. In order to make the analysis tractable it was performed based on
pairwise degradations, assuming that only two threads may share a cache, but
the resultant scheduling algorithms are evaluated on systems with four cores
per shared cache as well.

2.1.3 Evaluating Classification Schemes. To evaluate a classification
scheme on a particular set of applications, we follow these steps.

(1) Find the optimal schedule using Jiang’s method and the optimal classifica-
tion scheme, that is, relying on measured degradations. Record its average
performance degradation (see Figure 2).

(2) Find the estimated best schedule using Jiang’s method and the evaluated
classification scheme, that is, relying on estimated degradations. Record its
average performance degradation.

(3) Compute the difference between the degradation of the optimal schedule
and of the estimated best schedule. The smaller the difference, the better
the evaluated classification scheme.

To perform a rigorous evaluation, we construct a large number of workloads
consisting of four, eight and ten applications. We evaluate all classification
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schemes using this method, and for each classification scheme report the aver-
age degradation above the optimal scheme across all workloads.

2.1.4 Benchmarks and Workloads. We selected ten benchmarks from the
SPEC2006 benchmark suite to represent a wide range of cache access be-
haviors. The cache miss rates and access rates for every application in the
SPEC2006 benchmark suite were obtained from a third-party characterization
report [Hoste and Eeckhout 2007] and a clustering technique was employed to
select the ten representative applications.

From these ten applications, we constructed workloads for a four-core, six-
core, eight-core, and ten-core processor with two cores per LLC. With the ten
benchmarks, we selected, there are 210 unique four-application workloads, 210
unique six-application workloads, 45 unique eight-application workloads, and
1 unique ten-application workload to be constructed on each system. There are
three unique ways to schedule a four-application workload on a machine with
four cores and two shared caches. The number of unique schedules grows to
15, 105, and 945 for the six, eight, and ten-core systems, respectively. Using
Jiang’s methodology, as opposed to running all these 9450 schedules, saves a
considerable amount of time and actually makes it feasible to evaluate such a
large number of workloads.

2.2 The Classification Schemes

For any classification scheme to work, it must first obtain some raw data about
the applications it will classify. This raw data may be obtained online via per-
formance counters, embedded into an application’s binary as a signature, or
furnished by the compiler. Where this data comes from has a lot to do with
what kind of data is required by the classification scheme. The SDC algorithm
proposed by Chandra et al. [2005] is one of the best known methods for deter-
mining how threads will interact with each other when sharing the same cache.
The SDC algorithm requires the memory reuse patterns of applications, known
as stack distance profiles, as input. Likewise, all but one of our classification
schemes require stack distance profiles. The one exception is the Miss Rate
classification scheme which requires only miss rates as input. The simplicity of
the Miss Rate Scheme allowed us to adapt it to gather the miss rates dynami-
cally online making it a far more attractive option than the other classification
schemes. However, in order to understand why such a simple classification
scheme is so effective as well as to evaluate it against more complex and better
established classification schemes we need to explore a wide variety of classifi-
cation schemes and we need to use stack distance profiles to do so.

A stack distance profile is a compact summary of the application’s cache-
line reuse patterns. It is obtained by monitoring (or simulating) cache accesses
on a system with an LRU cache. A stack distance profile is a histogram with
a “bucket” or a position corresponding to each LRU stack position (the total
number of positions is equal to the number of cache ways) plus an additional
position for recording cache misses. Each position in the stack-distance profile
counts the number of hits to the lines in the corresponding LRU stack position.
For example, whenever an application reuses a cache line that is at the top of
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the LRU stack, the number of hits in the first position of the stack-distance
profile is incremented. If an application experiences a cache miss, the number
of items in the miss position is incremented. The shape of the stack-distance
profile captures the nature of the application’s cache behavior: an application
with a large number of hits in top LRU positions has a good locality of reference.
An application with a low number of hits in top positions and/or a large number
of misses has a poor locality of reference. For our study we obtained the stack-
distance profiles using the Pin binary instrumentation tool [Luk et al. 2005];
an initial profiling run of an application under Pin was required for that. If
stack-distance profiles were to be used online in a live scheduler, they could be
approximated online using hardware performance counters [Tam et al. 2009].

We now discuss four classification schemes which are based on the informa-
tion provided in the stack distance profiles.

2.2.1 SDC. The SDC1 classification scheme was the first that we evalu-
ated, since this is a well known method for predicting the effects of cache con-
tention among threads [Chandra et al. 2005]. The idea behind the SDC method
is to model how two applications compete for the LRU stack positions in the
shared cache and estimate the extra misses incurred by each application as a
result of this competition. The sum of the extra misses from the co-runners is
the proxy for the performance degradation of this co-schedule.

The main idea of the SDC algorithm is in constructing a new stack distance
profile that merges individual stack distance profiles of threads that run to-
gether. On initialization, each individual profile is assigned a current pointer
that is initialized to point to the first stack distance position. Then, the algo-
rithm iterates over each position in the profile, determining which of the co-
runners will be the winner for this stack-distance position. The co-runner with
the highest number of hits in the current position is selected as the winner.
The winner’s counter is copied into the merged profile, and its current pointer
is advanced. After the Ath iteration (A is the associativity of the LLC), the
effective cache space for each thread is computed proportionally to the number
of its stack distance counters that are included in the merged profile. Then,
the cache miss rate with the new effective cache space is estimated for each
co-runner, and the degradation of these miss rates relative to solo miss rates is
used as a proxy for the co-run degradation. Note that miss rate degradations
do not approximate absolute performance degradations, but they provide an
approximation of relative performance in different schedules.

2.2.2 Animal Classes. This classification scheme is based on the animal-
istic classification of applications introduced by Xie and Loh [2008]. It al-
lows classifying applications in terms of their influence on each other when
co-scheduled in the same shared cache. Each application can belong to one of
the four different classes: turtle (low use of the shared cache), sheep (low miss

1Chandra suggested three algorithms for calculating the extra miss rates. However, only two of
them (FOA and SDC) are computationally fast enough to be used in the robust scheduling algo-
rithm. We chose SDC as it is slightly more efficient than FOA.
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rate, insensitive to the number of cache ways allocated to it), rabbit (low miss
rate, sensitive to the number of allocated cache ways) and devil (high miss rate,
tends to thrash the cache thus hurting co-scheduled applications).

We attempted to use this classification scheme to predict contention among
applications of different classes, but found an important shortcoming of the
original animalistic model. The authors of the animalistic classification pro-
posed that devils (applications with a high miss rate but a low rate of reuse
of cached data) must be insensitive to contention for shared resources. On
the contrary, we found this not to be the case. According to our experiments,
devils were some of the most sensitive applications, that is, their performance
degraded the most when they shared the on-chip resources with other applica-
tions. Since devils have a high miss rate they issue a large number of memory
and prefetch requests. Therefore, they compete for shared resources other than
cache: memory controller, memory bus, and prefetching hardware. As will be
shown in Section 3, contention for these resources dominates performance, and
that is why devils turn out to be sensitive.

To use the animalistic classification scheme for finding the optimal schedule
as well as to account for our findings about “sensitive” devils we use a symbiosis

table to approximate relative performance degradations for applications that
fall within different animal classes. The symbiosis table provides estimates of
how well various classes co-exist with each other on the same shared cache. For
example, the highest estimated degradation (with the experimentally chosen
value of 8) will be for two sensitive devils co-scheduled in the same shared
cache, because the high miss rate of one of them will hurt the performance of
the other one. Two turtles, on the other hand, will not suffer at all. Hence,
their mutual degradation is estimated as 0. All other class combinations have
their estimates in the interval between 0 and 8.

The information for classification of applications, as described by Xie and
Loh [2008], is obtained from stack-distance profiles.

2.2.3 Miss Rate. Our findings about sensitive devils caused us to consider
the miss rate as the heuristic for contention. Although another group of re-
searchers previously proposed a contention-aware scheduling algorithm based
on miss rates [Knauerhase et al. 2008], the hypothesis that the miss rate should
explain contention contradicted the models based on stack-distance profiles,
which emphasized cache reuse patterns, and thus it needed a thorough valida-
tion. We define the miss rate to include all cache line requests issued by the
LLC to DRAM. On our Intel Xeon system with L2 as the LLC, this quantity can
be measured using the L2 LINES IN hardware counter.

We hypothesized that identifying applications with high miss rates is ben-
eficial for the scheduler, because these applications exacerbate the perfor-
mance degradation due to memory controller contention, memory bus con-
tention, and prefetching hardware contention. To attempt an approximation
of the best schedule using the miss rate heuristic, the scheduler will identify
high miss rate applications and separate them into different caches, such that
no one cache will have a much higher total miss rate than any other cache.
Since no cache will experience a significantly higher miss rate than any other
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cache the performance degradation factors will be stressed evenly throughout
the system.

In addition to evaluating a metric based on miss rates, we also experimented
with other metrics, which can be obtained online using hardware counters, such
as cache access rate and IPC. Miss rate, however, turned out to perform the best
among them.

2.2.4 Pain. The Pain Classification Scheme is based on two new concepts
that we introduce in this work, cache sensitivity and cache intensity. Sensi-
tivity is a measure of how much an application will suffer when cache space
is taken away from it due to contention. Intensity is a measure of how much
an application will hurt others by taking away their space in a shared cache.
By combining the sensitivity and intensity of two applications, we estimate
the “pain” of the given co-schedule. Combining a sensitive application with an
intensive co-runner should result in a high level of pain, and combining an in-
sensitive application with any type of co-runner should result in a low level of
pain. We obtain sensitivity and intensity from stack distance profiles and we
then combine them to measure the resulting pain.

To calculate sensitivity S, we examine the number of cache hits that will
most likely turn into misses when the cache is shared. To that end, we as-
sign to the positions in the stack-distance profile loss probabilities describing
the likelihood that the hits will be lost from each position. Intuitively hits to
the Most Recently Used (MRU) position are less likely to become misses than
hits to the LRU position when the cache is shared. Entries that are accessed
less frequently are more likely to be evicted as the other thread brings its data
into the cache; thus we scale the number of hits in each position by the corre-
sponding probability and add them up to obtain the likely extra misses. The
resulting measure is the sensitivity value which is shown in equation (Eq. 1).
Here h(i) is the number of hits to the ith position in the stack, where i = 1 is the
MRU and i = n is the LRU for an n-way set associative cache. We use a linear
loss probability distribution. As such the probability of a hit in the ith position
becoming a miss is i

n+1 .

S =

(

1

1 + n

) n
∑

i=1

i ∗ h(i). (1)

Intensity Z is a measure of how aggressively an application uses the cache.
As such, it approximates how much space the application will take away from
its co-runner(s). Our approach to measuring intensity is to use the number of
last-level cache accesses per one million instructions.

We combine sensitivity S and intensity Z into the Pain metric, which is
then used to approximate the co-run degradations required by our evaluation
methodology. Suppose we have applications A and B sharing the same cache.
Then, the Pain of A due to B approximates the relative performance degra-
dation that A is expected to experience due to B and is calculated as the in-
tensity of B multiplied by the sensitivity of A (Eq. (2)). The degradation of
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Fig. 3. Degradation relative to optimal experienced by each classification scheme on systems
with different numbers of cores.

co-scheduling A and B together is the sum of the Pain of A due to B and the
Pain of B due to A (Eq. (3)).

Pain(A B) = S(A) ∗ Z (B) (2)

Pain(A , B) = Pain(A B) + Pain(BA ). (3)

2.2.5 Classification Schemes Evaluation. For the purposes of this work, we
collected stack distances profiles offline using Intel’s binary instrumentation
tool Pin [Hoste and Eeckhout 2007], an add-on module to Pin MICA [Shele-
pov and Fedorova 2008], and our own module extending the functionality of
MICA. The stack distance profiles were converted into the four classification
schemes described above: SDC, Pain, Miss rates, and Animal. We estimate the
extra degradation above the optimal schedule that each classification scheme
produces for the four-core, six-core, eight-core and ten-core systems. Addition-
ally, we present the degradations for the worst and random schedules. A ran-
dom schedule picks each of the possible assignment for a workload with equal
probability.

Figure 3 shows the results of the evaluation. Lower numbers are better.
The Pain, Miss Rate and Animal schemes performed relatively well, but SDC
surprisingly did only slightly better than random. Pain performed the best,
delivering only 1% worse performance than the optimal classification scheme
for all the systems. Interestingly we see that all classification schemes except
Pain and Animal do worse as the number of cores in the system grows. In sys-
tems with more cores, the number of possible schedules grows, and so imperfect
classification schemes are less able to make a lucky choice.

The Animal scheme did worse than Pain. Animal classes are a rather rough
estimation of relative co-run degradations (a lot of programs will fall to the
same class), and so the Animal scheme simply cannot achieve the same preci-
sion as Pain which takes into account absolute values. The Miss Rate scheme
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performs almost as well as Pain and Animal scheme and yet is by far the easiest
to compute either online or offline.

SDC performed worse than Pain and Animal for the following reasons. The
first reason is that SDC does not take into account miss rates in its stack dis-
tance competition model. So it only works well in those scenarios where the
co-running threads have roughly equal miss rates (this observation is made
by the authors themselves [Chandra et al. 2005]). When the miss rates of co-
running threads are very different, the thread with the higher miss rate will
“win” more cache real estate – this fact is not accounted for by the SDC model.
Authors of SDC [Chandra et al. 2005] offer a more advanced (but at the same
time computationally more expensive) model for predicting extra miss rates
which takes into account different miss rates of co-running applications. We
did not consider this model in the current work, because we deemed it too com-
putationally expensive to use in an online scheduler.

The second reason has to do with the fact that SDC models the perfor-
mance effects of cache contention, but as the next section shows, this is not the
dominant cause for performance degradation and so other factors must be
considered as well. We were initially surprised to find that SDC, a model exten-
sively validated in the past, failed to outperform even such a coarse classifica-
tion heuristic as the miss rate. In addition to SDC, many other studies of cache
contention used stack-distance or reuse-distance profiles for managing con-
tention [Chandra et al. 2005; Qureshi and Patt 2006; Suh et al. 2002; Tam et al.
2009]. The theory behind stack-distance based models seems to suggest that
the miss rate should be a poor heuristic for predicting contention, since appli-
cations with a high cache miss rate may actually have a very poor reuse of their
cached data, and so they would be indifferent to contention. Our analysis, how-
ever, showed the opposite: miss rate turned out to be an excellent heuristic for
contention.

We discovered that the reason for these seemingly unintuitive results had
to do with the causes of performance degradation on multicore systems. SDC,
and other solutions relying on stack distance profiles such as cache partition-
ing [Qureshi and Patt 2006; Suh et al. 2002; Xie and Loh 2008], assumed that
the dominant cause of performance degradation is contention for the space in
the shared cache, that is, when co-scheduled threads evict each other data from
the shared cache. We found, however, that cache contention is by far not the
dominant cause of performance degradation. Other factors, such as contention
for memory controllers, memory bus, and resources involved in prefetching,
dominate performance degradation for most applications. A high miss rate
exacerbates the contention for all of these resources, since a high-miss-rate
application will issue a large number of requests to a memory controller and
the memory bus, and will also be typically characterized by a large number of
prefetch requests.

In the next section, we attempt to quantify the causes for performance
degradation resulting from multiple factors, showing that contention for cache
space is not dominant; these results provide the explanation why a simple
heuristic such as the miss rate turns out to be such a good predictor for
contention.
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Fig. 4. A schematic view of a system assumed in this section. Each of 4 chips has 2 cores sharing
a LLC cache. Chips are grouped into 2 sockets (physical packages). All cores are equidistant to the
main memory.

3. FACTORS CAUSING PERFORMANCE DEGRADATION ON
MULTICORE SYSTEMS

Recent work on the topic of performance degradation in multicore systems fo-
cused on contention for cache space and the resulting data evictions when ap-
plications share the LLC. However, it is well known that cache contention is far
from being the only factor that contributes to performance degradation when
threads share an LLC. Sharing of other resources, such as the memory bus,
memory controllers and prefetching hardware also plays an important role.
Through extensive analysis of data collected on real hardware we have deter-
mined that contention for space in the shared cache explains only a part of the
performance degradation when applications share an LLC. In this section we
attempt to quantify how much performance degradation can be attributed to
contention for each shared resource assuming a system depicted on Figure 4
(eight Intel Xeon X5365 cores running at 3GHz, and 8GB of RAM).

Estimating the contribution that each factor has on the overall performance
degradation is difficult, since all the degradation factors work in conjunction
with each other in complicated and practically inseparable ways. Nevertheless,
we desired a rough estimate of the degree to which each factor affects overall
performance degradation to identify if any factor in particular should be the
focus of our attention since mitigating it will yield the greatest improvements.
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We now describe the process we used to estimate the contributions of each
factor to the overall degradation. Our experimental system is a two-sockets
server with two Intel X5365 “Clovertown” quad-core processors. The two sock-
ets share the memory controller hub, which includes the DRAM controller.
On each socket there are four cores sharing a front-side bus (FSB). There
are two L2 caches on each socket, one per pair of cores. Each pair of cores
also shares prefetching hardware, as described below. So when two threads
run on different sockets, they compete for the DRAM controller. When they
run on the same socket, but on different caches, they compete for the FSB,
in addition to the DRAM controller. Finally, when they run on cores shar-
ing the same cache, they also compete for the L2 cache and the prefetching
hardware, in addition to the FSB and the DRAM controller. To estimate how
contention for each of these resources contributes to the total degradation, we
measured the execution times of several benchmarks under the following eight
conditions.

Solo PF ON: Running SOLO and prefetching is ENABLED
Solo PF OFF: Running SOLO and prefetching is DISABLED
SameCache PF ON: Sharing the LLC with an interfering

benchmark and prefetching is ENABLED
SameCache PF OFF: Sharing the LLC with an interfering

benchmark and prefetching is DISABLED
DiffCache PF ON: An interfering benchmark runs on a

different LLC but on the same socket and prefetching is ENABLED
DiffCache PF OFF: An interfering benchmark runs on a

different LLC but on the same socket and prefetching is DISABLED
DiffSocket PF ON: An interfering benchmark runs on a

different socket and prefetching is ENABLED
DiffSocket PF OFF: An interfering benchmark runs on a

different socket and prefetching is DISABLED

As an interfering benchmark for this experiment we used MILC. MILC was
chosen for several reasons. First, it has a very high solo miss rate which al-
lows us to estimate one of the worst-case contention scenarios. Second, MILC
suffers a negligible increase in its own miss rate due to cache contention (we
determined this via experiments and also by tracing MILC’s memory reuse pat-
terns, which showed that MILC hardly ever reuses its cached data) and hence
will not introduce extra misses of its own when co-run with other applications.
We refer to MILC as the interfering benchmark and we refer to the test appli-
cation simply as the application. In the experiment where MILC is the test
application, SPHINX is used as the interfering benchmark.

Estimating Performance Degradation due to DRAM Controller Contention.
We look at the difference between the solo run and the run when the interfering
benchmark is on a different socket. When the interfering benchmark is on
a different socket any performance degradation it causes can only be due to
DRAM controller contention since no other resources are shared. Equation (4)
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shows how we estimate the performance degradation due to DRAM controller
contention.

DRAM contention =

Dif f Socket PF OFF − Solo PF OFF

Solo PF OFF

(4)

There are several complications with this approach, which make it a rough
estimate as opposed to an accurate measure of DRAM controller contention.
First, when the LLC is shared by two applications, extra evictions from cache
cause the total number of misses to go up. These extra misses contribute to the
DRAM controller contention. In our experimental technique, the two applica-
tions are in different LLCs and hence there are no extra misses. As a result,
we are underestimating the DRAM controller contention. Second, we chose to
disable prefetching for this experiment. If we enabled prefetching and put two
applications into different LLC, then they would each have access to a complete
set of prefetching hardware. This would have greatly increased the total num-
ber of requests issued to the memory system from the prefetching hardware as
compared to the number of requests that can be issued from only one LLC. By
disabling the prefetching, we are once again underestimating the DRAM con-
troller contention. As such, the values that we measure should be considered a
lower bound on DRAM controller contention.

Estimating Performance Degradation due to FSB Contention. Next, we esti-
mate the degree of performance degradation due to contention for the FSB. To
that end, we run the application and the interfering benchmark on the same
socket, but on different LLCs. This is done with prefetching disabled, so as not
to increase the bus traffic. Equation (5) shows how we estimate the degradation
due to FSB contention.

FSB Contention =

Dif fCache PF OFF − Dif f Socket PF OFF

Solo PF OFF

(5)

Estimating Performance Degradation due to Cache Contention. To estimate
the performance degradation due to cache contention we take the execution
time when an application is run with an interfering co-runner in the same LLC
and subtract from it the execution time of the application running with the in-
terfering benchmark in a different LLC of the same socket. This is done with
prefetching disabled so as not to increase bus traffic or contend for prefetching
hardware. The difference in the execution times between the two runs can be
attributed to the extra misses that resulted due to cache contention. Equa-
tion (6) demonstrates how we estimate performance degradation due to cache
contention.

Cache Contention =

SameCache PF OFF − Dif fCache PF OFF

Solo PF OFF

(6)

Estimating Performance Degradation due to Contention for Resources

Involved in Prefetching. Contention for resources involved in prefetching
has received less attention in literature than contention for other resources.
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We were compelled to investigate this type of contention when we observed
that some applications experienced a decreased prefetching rate (up to 30%)
when sharing an LLC with a memory-intensive co-runner. Broadly speaking,
prefetching resources include all the hardware that might contribute to the
speed and quality of prefetching. For example, our experimental processor has
two types of hardware that prefetches into the L2 cache. The first is the Data
Prefetching Logic (DPL) which is activated when an application has two con-
secutive misses in the LLC and a stride pattern is detected. In this case, the
rest of the addresses up to the page boundary are prefetched. The second is the
adjacent cache line prefetcher, or the streaming prefetcher. The L2 prefetching
hardware is dynamically shared by the two cores using the LLC. The memory
controller and the FSB are also involved in prefetching, since they determine
how aggressively these requests can be issued to memory. It is difficult to tease
apart the latencies attributable to contention for each resource, so our estima-
tion of contention for prefetching resources includes contention for prefetching
hardware as well as additional contention for these two other resources. This
is an upper bound on the contention for the prefetching hardware itself.

We can measure the performance degradation due to prefetching-related re-
sources as the difference between the total degradation and the degradation
caused by cache contention, FSB, and DRAM controller contention. Equa-
tion (7) calculates the total degradation of an application when the LLC is
shared by looking at the difference when the interfering benchmark shares the
LLC and when the application runs alone. Equation (8) shows the calculation
of the prefetching degradation.

Total Degradation =

SameCache PF ON − Solo PF ON

Solo PF ON

(7)

Pref etching Contention =

Eq.(7) − Eq.(6) − Eq.(5) − Eq.(4)
(8)

Finally, we calculate the degradation contribution of each factor as the ratio of
its degradation compared to the total degradation. Figure 5 shows the percent
contribution of each factor (DRAM controller contention, FSB contention, L2
cache contention, and prefetching resource contention) to the total degradation
for six SPEC2006 benchmarks.

The six applications shown in Figure 5 are the applications that experience
a performance degradation of at least 45% chosen from the ten representative
benchmarks. We see from Figure 5 that for all applications except SPHINX
contention for resources other than shared cache is the dominant factor in per-
formance degradation, accounting for more than 50% of the total degradation.

In order to understand whether similar conclusions can be made with re-
spect to other systems, we also performed similar analysis of degradation-
contributing factors on a system that is very different from the Intel system
examined so far. We used an AMD Opteron 2350 (Barcelona) system. The
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Fig. 5. Percent contribution that each of the factors have on the total degradation on a UMA
multicore system.

AMD machine has four cores per processor, each core with private L1 instruc-
tion and data caches and a private unified L2 cache. There is an 2MB L3 cache
shared by all four cores on the chip.

Since there are important differences between the Intel and AMD systems,
the degradation-contributing factors are also somewhat different. For instance,
while the Intel system is UMA (UMA stands for Uniform Memory Access), the
AMD system is NUMA (Non-Uniform Memory Access). This means that each
processor on an AMD system has its own DRAM controller and a local mem-
ory node. While any core can access both local and remote nodes (attached to
other processors), local accesses take less time. Remote accesses take longer
and require using the DRAM controller of the remote processor. Because of
these differences, there are two additional degradation-contributing factors on
this AMD system that were not present on the Intel system: (1) interconnect
contention (IC), which would occur if a thread is accessing remote memory and
competes for inter-processor interconnects with other threads, and (2) remote
latency overhead (RL), which occurs if a thread is accessing remote memory
and experiences longer wire delays.2 Furthermore, prefetching works differ-
ently on the AMD system, so we were unable to isolate its effects in the same
way that we were able to do on the Intel system. In summary, we identified
four performance-degrading factors on the NUMA AMD system that a thread
can experience relative to the scenario when it runs on the system alone and
accesses the memory in a local node: (1) L3 cache contention, (2) DRAM con-
troller contention, (3) interconnect contention and (4) remote latency. Experi-
ments similar to those that we designed on the Intel system were used to esti-
mate the effect of these factors on performance. One difference is that we used
different benchmarks in order to capture the representative trends in degra-
dation breakdown. We provide the detailed explanation of our methodology for
estimating the breakdown of degradation factors on the AMD system in the
Appendix.

2Note that under our definition, RL does not include IC.
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Fig. 6. Contribution of each factor to the worst-case performance degradation on a NUMA
multicore system.

Figure 6 shows the contribution of each factor to the performance degrada-
tion of the benchmarks as they are co-scheduled with three instances of MILC.
Although this system is different from the Intel system examined earlier, the
data allows us to reach similar conclusions: shared cache contention (L3) is not

the dominant cause for performance degradation. The dominant causes are the
DRAM controller and interconnect contention.

As in case with the UMA system, this is only an approximation, since con-
tention causing factors on a real system overlap in complex and integrated
ways. For example, increasing cache contention increases other types of con-
tention: if two threads share a cache and have a memory access patterns that
result in a lot of extra cache misses, that would stress all the memory hierarchy
levels placed on the path between the shared cache and main memory of the
machine. The results provided are an approximation that is intended to direct
attention to the true bottlenecks in the system.

3.1 Discussion of Performance-Degrading Factors Breakdown

While cache contention does have an effect on performance degradation, any
scheduling strategy that caters to reducing cache contention exclusively cannot
and will not have a major impact on performance. The fact that contention for
resources other than cache is dominant, explains why the miss rate turns out
to be such a good heuristic for predicting contention. The miss rate, which
we define to include all DRAM-to-LLC transfers, highly correlates with the
amount of DRAM controller, FSB, and prefetch requests as well as the degree
of interconnect usage and the sensitivity to remote access latency, and thus is
indicative of both the sensitivity of an application as well as its intensity.

4. SCHEDULING ALGORITHMS

A scheduling algorithm is the combination of a classification scheme and a
scheduling policy. We considered and evaluated several scheduling algorithms
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that combined different classification schemes and policies, and in this section,
we present those that showed the best performance and were also the simplest
to implement. In particular, we evaluate two algorithms based on the Miss
Rate classification schemes, because the miss rate is very easy to obtain on-
line via hardware performance counters. The scheduling policy we used was
the Centralized Sort. It examines the list of applications, sorted by their miss
rates, and distributes them across cores, such that the total miss rate of all
threads sharing a cache is equalized across all caches. For the evaluation re-
sults of other heuristics and policies, we refer the reader to our technical report
[Blagodurov et al. 2009].

While the Pain classification scheme gave the best performance, we chose
not to use it in an online algorithm, instead opting to implement one using
the miss rate heuristic. This was done to make the scheduler simpler, thus
making more likely that it will be adopted in general-purpose operating sys-
tems. Using Pain would require more changes to the operating system than
using the miss rate for the following reason. Pain requires stack distance pro-
files. Obtaining a stack distance profile online requires periodic sampling of
data addresses associated with last-level cache accesses using advanced capa-
bilities of hardware performance monitoring counters, as in RapidMRC [Tam
et al. 2009]. Although RapidMRC can generate accurate stack-distance pro-
files online with low overhead, there is certain complexity associated with its
implementation. If a scheduler uses the miss rate heuristic, all it has to do is
periodically measure the miss rates of the running threads, which is simpler
than collecting stack-distance profiles. Given that the miss rate heuristic had
a much lower implementation complexity but almost the same performance as
Pain, we thought it would be the preferred choice in future OS schedulers.

In the rest of this section, we describe two algorithms based on the Miss
Rate classification scheme: Distributed Intensity (DI) and Distributed Inten-

sity Online (DIO). DIO does not rely on stack-distance profiles, but on the
miss rates measured online. DI estimates the miss rate based on the stack-
distance profiles; it was evaluated in order to determine if any accuracy is lost
when the miss rates are measured online as opposed to estimated from the
profiles.

4.1 Distributed Intensity (DI)

In the Distributed Intensity (DI) algorithm all threads are assigned a value
which is their solo miss rate (misses per one million instructions) as deter-
mined from the stack distance profile. The goal is then to spread the threads
across the system such that the miss rates are distributed as evenly as possi-
ble. The idea is that the performance degradation factors identified in Section 3
are all exacerbated by a high miss rate and so we avoid the situation where the
concentration of threads with high cumulative miss rate results in increased
contention for shared memory resources with the consequent performance bot-
tleneck on the system.

The algorithm uses the notion of memory hierarchy entities when trying to
spread the workload’s intensiveness across the system. Memory hierarchy
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Table II. Entities on each Level of Memory Hierarchy

level of memory type of entity on entities per machine / entities per container

hierarchy this level Intel Xeon AMD Barcelona

3 core 8/2 8/4

2 chip 4/2 2/1

1 physical package 2/2

0 machine 1/-

entities are distinct hardware modules (e.g., cores, chips, packages) each of
which is located on its own level of memory hierarchy. The entities on the up-
per level are grouped into the larger entities of the lower level which are called
containers. For example, several cores are organized into a chip (chip serves
as a container for cores), whereas several chips form a physical package (the
package is a container for chips).

The presence of the requested data is first checked against the very fast and
small caches that are located close to the core itself. These caches are typically
devoted exclusively to its closest core (and are called private because of that),
hence they can be considered the same entity with the core. If the data is
missing in the private caches, it is then checked in the larger on-chip cache
shared between all cores on the chip. The latency of servicing the request from
the shared on-chip cache is higher than from the private caches. However, the
shared cache is still significantly faster than the main memory. If the data is
absent in the shared cache, the request goes down the memory hierarchy into
the Front Side Bus that is shared between several chips on the same physical
package (Figure 4). There could be many physical packages on the system.
Each of the packages in this case will have its own FSB shared between all
the chips belonging to this package. The requests from each of the on-package
buses then compete for the access of the DRAM controller. On the UMA system
there is only one such controller per machine. However, the NUMA systems
have several DRAM controllers, one per every memory node on the system.

For example, on our testing machines equipped with Intel Xeon and AMD
Opteron processors (described in Sections 3 and 5.1) the entities on each level
of the memory hierarchy are defined as shown in Table II. During the ini-
tialization stage (at boot), the system determines the number of memory hier-
archy levels and the number of distinct entities on each level (as is specified
in proc pseudo filesystem at /sys/devices/system/cpu). DI (described in blocks of
pseudo code 1 and 2) then tries to even out the miss rate on all levels of memory
hierarchy.

To further justify the validity of this method, we performed a study on all
possible 4-thread workloads that can be constructed from the 10 representa-
tive SPEC2006 benchmarks. We computed the percent difference between av-
erage co-run degradations for each workload achieved with the optimal solution
relative to the worst solution (we refer to this value as the speedup). The high-
est average speedup relative to the worst schedule was 25%, and the lowest
was less than 1%. We broke up the workloads based on the speedup range
into which they fit: (25%-15%), (15%-10%), (10%-5%), and (5%-0%), and stud-
ied which types of applications are present in each range. For simplicity we
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Algorithm 1 Invocation at the beginning of every scheduling interval

1: // initialization of the boolean global array Order[l], every member specifies the or-

der of browsing entities on the corresponding level of the memory hierarchy. Each en-

tity has its ID that was given to it by OS. Order[l]=0 means that entities are browsed

from the smallest ID to the biggest, Order[l]=1 – vice-versa.

2: for l = 0; l < number o f memory hierarchy levels >; l + + do

3: Order[l]:=0;
4: end for

5: sort the threads according to the miss rate in descending order
6: let T be the array of sorted threads
7: // spread the threads across the machine

8: while T �= ∅ do

9: take the first (the most aggressive) t ∈ T

10: // invoke DI() to assign the thread

11: DI(t,< machine >, 0)
12: end while

Algorithm 2 DI (thread to schedule t, container e //parent, memory hierarchy
level of the container l)
1: Let Eall be the array of entities on hierarchy level l + 1
2: Let Echildren be the array of entities on hierarchy level l+1 whose container is e parent

3: browse the entities in Echildren in order Order[l+1] and determine the first entity with
the minimum number of allocated threads: e min ∈ Echildren

4: if e min is a < core > then

5: // we have reached the bottom of the memory hierarchy

6: assign thread t to core e min

7: else

8: increment the number of threads allocated to e min

9: // recursively invoke DI() to assign the thread on the lower hierarchy level

10: DI(t,e min,l + 1)
11: end if

12: if number of threads allocated to each entity e ∈ Eall is the same then

13: // reverse the order of browsing on this level

14: Order[l + 1] := NOT Order[l + 1]
15: end if

define two categories of applications: intensive (above average miss rate), and
nonintensive (below average miss rate).

We note that according to the ideas of DI, workloads consisting of two inten-
sive and two non-intensive applications should achieve the highest speedups.
This is because in the worst case these workloads can be scheduled in such a
way as to put both intensive applications in the same cache, creating a cache
with a large miss rate, and a performance bottleneck. Alternatively, in the best
case these workloads can be scheduled to spread the two intensive applications
across caches thus minimizing the miss rate from each cache and avoiding bot-
tlenecks. The difference in performance between these two cases (the one with
a bottleneck and the one without) should account for the significant speedup of
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Fig. 7. The makeup of workloads.

the workload. We further note that workloads consisting of more than two or
fewer than two intensive applications can also benefit from distribution of miss
rates but the speedup will be smaller, since the various scheduling solutions do
not offer such a stark contrast between creating a major bottleneck and almost
entirely eliminating it.

Figure 7 shows the makeup of workloads (intensive vs. nonintensive) appli-
cations and the range of speedups they offer. The (unlabeled) x-axis identifies
all the workloads falling into the given speedup range. We see that the distrib-
ution of applications validates the claims of DI. The other claim that we make
to justify why DI should work is that miss rates of applications are relatively
stable. What we mean by stability is that when an application shares the LLC
with a co-runner its miss rate will not increase so dramatically as to make the
solution found by DI invalid.

DI assigns threads to caches to even out the miss rate across all the caches.
This assignment is done based on the solo miss rates of applications. The real
miss rate of applications will change when they share a cache with a co-runner,
but we claim that these changes will be relatively small such that the miss
rates are still rather even across caches. Consider Figure 8, which shows the
solo miss rates of the 10 SPEC2006 benchmarks as well as the largest miss
rate observed for each application as it was co-scheduled to share a cache with
all other applications in the set.
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Fig. 8. The solo and maximum miss rate recorded for each of the 10 SPEC2006 benchmarks.

We see that if the applications were sorted based on their miss rates their or-
der would be nearly identical if we used solo miss rates, maximum miss rates,
or anything in between. Only the applications MILC and SOPLEX may ex-
change positions with each other or GCC and SPHINX may exchange positions
depending on the miss rate used. The DI algorithm makes scheduling decisions
based on the sorted order of applications. If the order of the sorted applications
remains nearly unchanged as the miss rates changes, then the solutions found
by DI would also be very similar. Hence, the solution found by DI with solo
miss rates should also be very good if the miss rates change slightly. Through
an extensive search of all the SPEC2006 benchmark suite and the PARSEC
benchmark suite, we have not found any applications whose miss rate change
due to LLC contention would violate the claim made above.

The DI scheduler is implemented as a user level scheduler running on top
of Linux. It enforces all scheduling decisions via system calls which allow it to
bind threads to cores. The scheduler also has access to files containing the solo
miss rates. For all the applications, it uses solo miss rate estimated using stack
distance profiles as the input to the classification scheme.

4.2 Distributed Intensity Online (DIO)

DIO is based on the same classification scheme and scheduling policies as DI
except that it obtains the miss rates of applications dynamically online via per-
formance counters. This makes DIO more attractive since the stack distance
profiles, which require extra work to obtain online, are not required. The miss
rate of applications can be obtained dynamically online on almost any machine
with minimal effort. Furthermore, the dynamic nature of the obtained miss
rates makes DIO more resilient to applications that have a change in the miss
rate due to LLC contention. DIO continuously monitors the miss rates of ap-
plications and thus accounts for phase changes. To minimize migrations due
to phase changes of applications, we collect miss rate data not more frequently
than once every billion cycles and we use a running average for scheduling de-
cisions. Every billion cycles DIO measures the new miss rate and re-evaluates
the thread assignments based on the updated miss rate running average values
for the workload.
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The DIO scheduler, like DI, manages the assignment of threads to cores
using affinity interfaces provided in Linux. As such, it mirrors the actions that
would be performed by a kernel scheduler. The key difference is that the kernel
scheduler would directly manipulate the runqueues in order to place a thread
on a particular core, but a user-level prototype of the scheduler uses affinity-
related system calls for that purpose. For example, to swap thread A on core i

with thread B on core j we set affinity of A to j and affinity B to i. The kernel
performs the actual swapping.

5. EVALUATION ON REAL SYSTEMS

5.1 Evaluation Platform

We performed the experiments on two systems:
Dell-Poweredge-2950 (Intel Xeon X5365) has eight cores placed on four chips.

Each chip has a 4MB 16-way L2 cache shared by its two cores. Each core also
has private L1 instruction and data caches. In our first series of experiments
we used only two chips out of four. This enabled us to verify our analytical
results for the 4 thread workloads directly. After that, all eight cores with
eight-thread workloads were used.

Dell-Poweredge-R805 (AMD Opteron 2350 Barcelona) has eight cores placed
on two chips. Each chip has a 2MB 32-way L3 cache shared by its four cores.
Each core also has a private unified L2 cache and private L1 instruction and
data caches. All eight cores with eight thread workloads were used. Although
this is a NUMA system, we did not study NUMA effects in detail and did not set
up our experiments to explicitly stress NUMA effects. Therefore, addressing
contention on NUMA systems must be investigated in future work.

The experimental workloads for Section 5.2 were comprised of the 14 sci-
entific benchmarks from SPEC CPU 2006 suite chosen using the clustering
technique as described in Section 2 (see Table III). For the eight-core ex-
periments we created eight-thread workloads by doubling the corresponding
four-thread workloads. For example, for the four-thread workload (SOPLEX,
SPHINX, GAMESS, NAMD), the corresponding eight-thread workload is
(SOPLEX, SPHINX, GAMESS, NAMD, SOPLEX, SPHINX, GAMESS, NAMD).
The user-level scheduler starts the applications and binds them to cores as di-
rected by the scheduling algorithm.

We chose to use LAMP, a solution stack of open source software consisting
of Linux, Apache, MySQL and PHP, as our testing environment in Section 5.3.
LAMP is widely used in many areas where efficient storage and retrieving of
data is required, for example, website management and data mining.

Since we are focused on CPU-bound workloads, which are not likely to run
with more threads than cores [An Mey et al. 2007; van der Pas 2005], we only
evaluate the scenarios where the number of threads does not exceed the num-
ber of cores. If the opposite were the case, the scheduler would simply re-
evaluate the mapping of threads to cores every time the set of running threads
changes. The decision of which thread is selected to run would be made in the
same way as it is done by the default scheduler. While in this case there are
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Table III. The Workloads Used for Experiments (Devils Are Highlighted in Bold)

Workloads

2 memory-bound, 2 CPU-bound

1 SOPLEX SPHINX GAMESS NAMD

2 SOPLEX MCF GAMESS GOBMK

3 MCF LIBQUANTUM POVRAY GAMESS

4 MCF OMNETPP H264 NAMD

5 MILC LIBQUANTUM POVRAY PERL

1 memory-bound, 3 CPU-bound

6 SPHINX GCC NAMD GAMESS

3 memory-bound, 1 CPU-bound

7 LBM MILC SPHINX GOBMK

8 LBM MILC MCF NAMD

also opportunities to separate competing threads in time as opposed to in space,
we do not investigate these strategies in this work.

Both systems were running Linux Gentoo 2.6.27 release 8. We compare per-
formance under DI and DIO to the default contention-unaware scheduler in
Linux, referring to the latter as DEFAULT. The prefetching hardware is fully
enabled during these experiments. To account for the varied execution times of
benchmark we restart an application as soon as it terminates (to ensure that
the same workload is running at all times). An experiment terminates when
the longest application had executed three times.

5.2 Results for Scientific Workloads

Intel Xeon 4 Cores. We begin with the results for the four-thread workloads on
the four-core configuration of the Intel Xeon machine. For every workload, we
first run the three possible unique schedules and measure the aggregate work-
load completion time of each. We then determine the schedule with the optimal
(minimal) completion time, the worst possible schedule (maximum completion
time) and the expected completion time of the random scheduling algorithm (it
selects all schedules with equal probability). We then compared the aggregate
execution times of DI and DIO with the completion times of OPTIMAL, WORST
and RANDOM. We do not present results for the default Linux scheduler be-
cause when the scheduler is given a processor affinity mask to use only four
cores out of eight, the migrations of threads across cores become more frequent
than when no mask is used, leading to results with an atypically high variance.
(We do report results under default Linux when we present our experiments
using all eight cores.) Figure 9 shows the performance degradation above the
optimal for every workload with DI, DIO, RANDOM and WORST. The results
show that DI and DIO perform better than RANDOM and are within 2% of
OPTIMAL.

Intel Xeon 8 Cores. Since this setup does not require a processor affinity
mask, we evaluated the results of DI and DIO against DEFAULT as in this case
DEFAULT does not perform excessive migrations. Figure 10 shows the percent
aggregate workload speedup (the average of speedups of all the programs in
the workload) over DEFAULT.

ACM Transactions on Computer Systems, Vol. 28, No. 4, Article 8, Pub. date: December 2010.



Contention-Aware Scheduling on Multicore Systems · 8: 27

Fig. 9. Aggregate performance degradation of each workload with DI, DIO, RANDOM and
WORST relative to OPTIMAL (low bars are good) for the Intel machine and 4 threads.

Fig. 10. Aggregate performance improvement of each workload with DI and DIO relative to
DEFAULT (high bars are good) on the Intel system.

We note that although generally DI and DIO improve aggregate perfor-
mance over DEFAULT, in a few cases they performed slightly worse. However,
the biggest advantage of DI and DIO is that they offer much more stable re-
sults from run to run and avoid the worst-case thread assignment. This effect
is especially significant if we look at performance of individual applications.
Figure 12(a) shows relative performance improvement for individual applica-
tions of the worst-case assignments of DI and DIO over the worst case assign-
ments under DEFAULT. Higher numbers are better. Worst-case performance
improvement is obtained by comparing the worst-case performance (across all
the runs) under DI and DIO with the worst-case performance under DEFAULT.
The results show that DEFAULT consistently stumbles on much worse solu-
tions than DI or DIO and as such there are cases when the performance of in-
dividual applications is unpredictably bad under DEFAULT. What this means
is that if an application was repeatedly executed on a multicore system under
the default scheduler, it could occasionally slowdown by as much as 100%(!)
relative to running solo. With DIO, on the other hand, the slowdown would be
much smaller and more predictable.
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Fig. 11. Aggregate performance improvement of each workload with DI and DIO relative to
DEFAULT (high bars are good) on the AMD system.

Figure 12(b) shows the deviation of the execution time of consecutive runs
of the same application in the same workload with DI, DIO and DEFAULT.
We note that DEFAULT has a much higher deviation from run to run than
DI and DIO. DIO has a slightly higher deviation than DI as it is sensitive to
phase changes of applications and as a result tends to migrate applications
more frequently.

AMD Opteron 8 Cores. Finally, we report the results for the same eight-
thread workloads on the AMD system. The results for the percent aggregate
workload speedup over DEFAULT (Figure 11), relative performance improve-
ment of the worst case assignments over DEFAULT (Figure 12(c)) and the
deviation of the execution times (Figure 12(d)) generally repeat the patterns
observed on the Intel Xeon machine with eight threads.

We draw several conclusions from our results. First of all, the classification
scheme based on miss rates effectively enables to reduce contention for shared
resources with scheduling. Furthermore, an algorithm based on this classifica-
tion scheme can be effectively implemented online as demonstrated by our DIO
prototype. Using contention-aware scheduling can help improve overall system
efficiency by reducing completion time for the entire workload as well as reduce
worst-case performance for individual applications. In the former case, DIO
improves performance by up to 13% relative to DEFAULT and in the isolated
cases where it does worse than DEFAULT, the impact on performance is at most
4%, far smaller than the corresponding benefit. On average, if we examine per-
formance across all the workloads we have tried DEFAULT does rather well in
terms of workload-wide performance – in the worst case it does only 13% worse
than DIO. But if we consider the variance of completion times and the effect on
individual applications, the picture changes significantly. DEFAULT achieves
a much higher variance and it is likely to stumble into much worse worst-case
performance for individual applications. This means that when the goal is to
deliver QoS, achieve performance isolation or simply prioritize individual ap-
plications, contention-aware scheduling can achieve much larger performance
impacts, speeding up individual applications by as much as a factor of two.
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Fig. 12. Relative performance improvement and deviation.

To understand why DEFAULT performs relatively well on average, let us
discuss several examples. Consider a four core machine where each pair of
cores shares a cache. If the workload to be executed on this machine involves
two intensive applications and two nonintensive applications and if the threads
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are mapped randomly to cores (which is a good approximation for DEFAULT)
then there is only a 1/3 probability of stumbling onto the worst solution where
the intensive applications share the same cache. If there are three intensive
applications in the workload and only one nonintensive application, then all
mappings are relatively equivalent on average since two of the intensive ap-
plications will experience performance degradation and one will not (the one
paired with a nonintensive one). Similarly, workloads with no intensive ap-
plications, one intensive applications, and all intensive applications show no
real difference between solutions. As such, DEFAULT is able to perform well
on average. Therefore, we believe that future research must focus on the per-
formance of individual threads, which can vary greatly under the DEFAULT
scheduler, as opposed to trying to improve average performance. This point is
further highlighted in our experiments with the LAMP workloads.

5.3 Results for the LAMP Workloads

In the previous section, we showed the effectiveness of Distributed Inten-
sity Online for several scientific workloads consisting of the benchmarks from
SPEC CPU 2006 suite. In this section, we demonstrate performance improve-
ments that DIO can provide to real multithreaded applications from the LAMP
stack.

The main data processing in LAMP is done by Apache HTTP server and
MySQL database engine. Both are client-server systems: several clients (web-
site visitors in case of Apache) are concurrently connecting to the server ma-
chine to request a webpage or process the data in the database. The server
management daemons apache2 and mysqld are then responsible for arrang-
ing access to the website scripts and database files and performing the actual
work of data storing/retrieval. In our experimental setup we initiated four
concurrent web requests to the Apache 2.2.14 web server equipped with PHP
version 5.2.12 and four remote client connections to the database server run-
ning MySQL 5.0.84 under OS Linux 2.6.29.6. Both apache2 and mysqld are
multithreaded applications that spawn one new distinct thread for each new
client connection. This client thread within a daemon is then responsible for
executing the client‘s request. In our experiments, all eight cores of Intel and
AMD machines with eight client threads of apache2 and mysqld were used.

In order to implement a realistic workload, we decided to use the data gath-
ered by the web statistics system for five real commercial websites as our test-
ing database. This data includes the information about website‘s audience ac-
tivity (what pages on what website were accessed, in what order, etc.) as well as
the information about visitors themselves (client OS, user agent information,
browser settings, session id retrieved from the cookies, etc.). The total number
of records in the database is more than 3 million.

The memory intensity of the client threads varies greatly depending on what
webpage or database operation is being requested by the client. We chose to re-
quest webpages that can be found in a typical web statistics system and data-
base operations that are executed in everyday maintenance and analysis of a
website‘s activity. Table IV describes the webpages and database operations
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Table IV. Client Operations Requested

Type of operation (where it is used) Client request ID Client request description

Retrieval of visitor activity (essential
for the analysis of the target audience,
part of the web-statistics system). All

the web server threads executing

retrieval requests are memory

intensive (i.e., devils).

Apache #0 Obtain the session chart: the
top 100 popular sessions on
the website.

Apache #1 Obtain the browser chart:
what browsers are used most
frequently by the visitors of
this website.

Apache #2 Get the visitor loyalty: the
rating of the most committed
visitors and how many pages
every visitor have accessed
before.

Apache #3 Get the country popularity:
how many pages were ac-
cessed from each country.

Maintenance of the website database:
inserts (archiving, updating and merg-
ing data from several databases), in-
dexing. All the database server threads

executing maintenance requests are

CPU intensive (i.e., turtles). Also, since

the threads are working with the tables

that are stored on the local hard drive,

the continuous phases of CPU intensity

had sudden drop downs of CPU activity

due to accesses to the hard drive

Mysql #0 - #5 Inserting rows into the data-
base tables with the subse-
quent creation of the full-text
table index.

that were performed in our experiments. A single Apache request corresponds
to the retrieval from the server a large dataset corresponding to visitor ac-
tivity. The time of servicing this lengthy request is about three minutes. A
single MySQL request corresponds to performing a batch of operations typical
in maintenance of website databases – on our platform this request took about
five minutes. Once the request is fulfilled, it is sent again until all requests
finish at least three times.

We next report the results for the four workloads consisting of the requests
from Table IV on AMD and Intel systems. Aggregate workload speedup over
DEFAULT is shown in Figures 13 and 14. Figures 15(a) and 15(c) show perfor-
mance improvement over DEFAULT of the worst-case execution of each request
type over a large number of trials. Figures 15(b) and 15(d) show the deviation
of the execution times.

To help understand the results, we explain the nature of the workload. The
workload executed by Apache is extremely memory-intensive. It issues off-
chip request at the rate of 74 misses per 1000 instructions – this is more than
three times higher (!) than the most memory-intensive application that we en-
countered in the SPEC CPU2006 suite. The implication of such unprecedented
memory intensity is that on our Intel system, where there is only one memory
controller, the memory controller becomes the bottleneck, and our scheduling
algorithm, which on the Intel system alleviates contention only for front-side
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Fig. 13. Performance improvement per thread of each LAMP workload with DIO relative to
DEFAULT (high bars are good) on the AMD system.

Fig. 14. Performance improvement per thread of each LAMP workload with DIO relative to
DEFAULT (high bars are good) on the Intel system.

bus controllers, caches, and prefetching units (Figure 4), cannot deliver mea-
surable performance improvements. Figure 14 illustrates this effect, showing
that DIO does not improve performance on that system.

Turning our attention to Figure 13, on the other hand, we observe that
on the AMD system with multiple memory controllers, DIO does improve
performance. Apache threads, in particular, significantly benefit from DIO.
(MySQL threads are not memory-intensive, so they do not and are not expected
to benefit.)

At the same time, as we further increase the number of Apache threads
in the workload, we observe the same situation as on Intel systems: it is
not possible to improve performance for all Apache threads simultaneously
due to contention. This situation occurs when the number of Apache threads
is greater than the number of memory domains. Apache executes a very
memory-intensive workload and the only way to completely isolate an Apache
thread from contention is to schedule it without any other Apache threads in
the memory domain. This is not possible when the number of Apache threads
is greater than the number of memory domains. However, what we can do
is configure DIO to achieve performance isolation for chosen threads, as we
demonstrate next.
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Fig. 15. Relative performance improvement of DIO over Default for LAMP workloads.
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In this prioritized mode, DIO will ensure that a chosen memory-intensive
thread will run in a memory domain without any other memory-intensive
threads. For our LAMP workload, this will result in one Apache thread run-
ning in a domain only with “peaceful” (low missrate) MySQL threads. On the
Intel system, a thread can be isolated either on a separate shared cache or on
a separate physical package (recall Figure 4). On the AMD system, a thread
isolated in a memory domain will be isolated both in the physical package and
in the shared cache.

Workloads #1-3 in Figures 13, 15(a), and 15(b) are the workloads where one
Apache thread is prioritized, executed on an AMD system. Workloads #2c-3p
in Figures 14, 15(c) and 15(d) are similar “prioritized” workloads on the Intel
system. The prioritized thread is marked with a “(p)” in scenarios where it
is isolated in a physical package, and with a “(c)” when it is isolated on the
separate cache but not on a separate package (on the Intel system).

We observe that the marked threads – especially those isolated on a sepa-
rate physical package – achieve a very significant performance improvement
over the DEFAULT scheduler on average. The improvements in the worst-
case execution times are even more dramatic. DIO delivers these performance
improvements, because it is able to identify threads that will suffer from con-
tention if co-scheduled. If one such “sensitive” thread is also assigned a high
priority by the user, DIO will be able to isolate it from contention. Note, this
is not the same as statically assigning high-priority threads to run on a sepa-
rate domain – this will unnecessarily waste resources. DIO’s ability to identify
contention-sensitive threads enables it to deliver isolation only when this is
likely to improve performance.

DIO also reduces the deviation in execution times of Apache threads: execu-
tion times become much more stable with DIO. Deviation for MySQL threads
remains unchanged, because MySQL threads are partially I/O-bound. I/O cre-
ates a large variability in execution times, which is not (and cannot be) miti-
gated by a contention-aware scheduler.

Our overall conclusions drawn from the results with the LAMP workloads
are as follows.

—Contention-aware scheduling is especially effective on systems that have
multiple contention bottlenecks, such as multiple memory controllers. In
that case, a scheduler can spread the load across these several contention
points and improve overall performance. On systems where performance is
dominated by a single bottleneck (e.g., a single memory controller on the In-
tel system), effectiveness of contention-aware scheduling diminishes.

—In cases where the workload contains multiple memory-intensive threads, it
becomes more difficult to improve performance for every thread in the work-
load. This is an inherent limitation of contention-aware scheduling. When
contention is high only that much can be done to reduce it by means of shuf-
fling threads across contention points. In that case, the biggest practical
benefit of contention-aware scheduling is in providing performance isolation
for selected threads. For instance, in a multithreaded workload, these could
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be threads responsible for handling latency-sensitive queries (e.g., search
threads as opposed to indexing threads in a Google workload).

6. MINIMIZING POWER CONSUMPTION ON MULTICORE SYSTEMS WITH
RESOURCE CONTENTION

The Distributed Intensity Online algorithm has an inherent ability to predict
when a group of threads co-scheduled on the same memory domain will sig-
nificantly degrade each other’s performance. We found that this ability can
be successfully exploited to build a power-aware scheduler (DIO-POWER) that
would not only mitigate resource contention, but also reduce system energy
consumption.

The key observation behind DIO-POWER is that clustering threads on as
few memory domains as possible reduces power consumption. That is because,
on modern systems, memory domains correspond to power domains (i.e., chips)
and so leaving an entire chip idle reduces the power that the system consumes.
At the same time, clustering threads together may hurt performance. As a
result, the workload’s execution time may increase, leading to increased system
uptime and increased consumption of energy (power multiplied by time) despite
reduced consumption of power. While a conventional scheduler does not know
how to make the right decision (to cluster or not to cluster), DIO-POWER does,
because it relies on DI’s ability to predict whether a group of threads will hurt
each other’s performance when clustered.

We now present the data (Table V) that shows reduction in power consump-
tion due to clustering memory-intensive and CPU-intensive threads on the
Intel machine for three workloads consisting of SPEC CPU 2006 benchmarks.
The power consumed in every scenario is given relative to the power consumed
by a completely idle machine when no benchmarks are running. Power is mea-
sured using power analyzer Extech 380803.

The results for the first workload show the power savings from clustering.
Four instances of NAMD were first scheduled together on the same physical
package (socket) so that another package can be turned off. The increase in
power consumption relative to the idle state in this case was then compared
with the increase when four NAMDs are spread across the system: one instance
per each shared cache. Note that this is exactly how the DIO algorithm will
assign threads to cores (it will spread them). As can be seen from the table, the
relative power consumption in this case increased by 18W (24%).

Similar results were obtained for the workloads consisting of instances of
two different applications: one memory-intensive and one CPU-intensive. Here
the corresponding increase in power consumption was as high as 81W (90%) for
Power Workload #2 and 50W (48%) for Power Workload #3.

Two more interesting observations can be made from the results in
Table V.

—Putting devils on the same physical package results in lower power consump-
tion of the system;
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Algorithm 3 Invocation at the beginning of every scheduling interval

1: // initialization of the boolean global array Order[l], every member specifies the or-

der of browsing entities on the corresponding level of the memory hierarchy. Each en-

tity has its ID that was given to it by OS. Order[l]=0 means that entities are browsed

from the smallest ID to the biggest, Order[l]=1 – vice-versa.

2: for l = 0; l < number o f memory hierarchy levels >; l + + do

3: Order[l]:=0;
4: end for

5: sort the threads according to the miss rate in descending order
6: classify the threads into devils and turtles (we loosely define devils as those

with at least 2000 shared cache misses per million instructions)

7: determine the number of devils D

8: mark the first D shared caches along with their containers for scheduling

(the rest will remain idle and so can be turned into lower power state)

9: let T be the array of sorted threads
10: // spread the threads across the machine while preventing placing devils to-

gether in the same shared cache

11: while T �= ∅ do

12: take the first (the most aggressive) t ∈ T

13: // invoke DIO-POWER() to assign the thread

14: DIO-POWER(t,< machine >, 0)
15: end while

—When threads are clustered on the same package, shared cache contention
between devils does not contribute to the power consumption increase.

Remember, however, that power savings do not necessarily translate into en-
ergy savings: when devils are clustered on the same chip they will extend each
other’s execution time and, as a result, increase overall energy consumption.
Therefore, a power-aware algorithm must be able to determine exactly when
clustering is beneficial and when it is not.

We present DIO-POWER, a contention-aware scheduling algorithm that
minimizes power consumption while preventing contention. Its structure de-
scribed in blocks of pseudo-code 3 and 4 is similar to that of DIO with the
changes highlighted in bold.

DIO-POWER reduces power consumption on the system by clustering the
workload on as few power domains as possible while preventing the clustering
of those threads that will seriously hurt each other’s performance if clustered.
Mildly intensive applications may be clustered together for the sake of energy
savings and may thus suffer a mild performance loss. To capture the effect of
DIO-POWER on both energy and performance, we used Energy Delay Prod-
uct [Gonzalez and Horowitz 1996; Thomas et al. 1994]:

EDP =
Energy Consumed

Instructions per Second
=

Average Power ∗ Time ∗ Time

Instructions Retired
(9)

EDP shows by how much energy savings (relative to the idle energy con-
sumption of the machine) outweigh performance slowdown due to clustering.

In the next experiment, we show how DIO-POWER is able to achieve optimal
EDP for the dynamic workload mix relative to conventional Linux schedulers.
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Algorithm 4 DIO-POWER(thread to schedule t, container e parent, memory hi-
erarchy level of the container l)

1: Let Eall be the array of entities on hierarchy level l + 1
2: Let Echildren be the array of entities on hierarchy level l+1 whose container is e parent

and that were marked for scheduling

3: browse the entities in Echildren in order Order[l+1] and determine the first entity with
the minimum number of allocated threads: e min ∈ Echildren

4: if e min is a < core > then

5: // we have reached the bottom of the memory hierarchy

6: if assigning thread t to core e min would not result in 2 devils in the same

shared cache then

7: // we have reached the bottom of the memory hierarchy

8: assign thread t to core e min

9: end if

10: else

11: increment the number of threads allocated to e min

12: // recursively invoke DIO-POWER() to assign the thread on the lower hierarchy

level

13: DIO-POWER(t,e min,l + 1)
14: end if

15: if number of threads allocated to each entity e ∈ Eall is the same then

16: // reverse the order of browsing on this level

17: Order[l + 1] := NOT Order[l + 1]
18: end if

The Linux scheduler can be configured in two modes. The DEFAULT mode,
used throughout this article, balances load across memory domains (chips)
when the number of threads is smaller than the number of cores. DEFAULT-
MC is the default scheduler with the sched mc power savings flag turned
on – in this mode the scheduler attempts to cluster the threads on as few chips
as possible, but without introducing any unwarranted runqueue delays.

Although each version of the Linux scheduler is able to deliver optimal
EDP for a specific group of workloads – DEFAULT for predominantly devil
workloads where it makes sense to spread applications across domains, and
DEFAULT-MC for predominantly turtle workloads where it makes sense to
cluster applications, they cannot make the right decision across all workloads.
So the user cannot configure the scheduler optimally unless the workload is
known in advance. In the next experiment we will show that DIO-POWER is
able to match the EDP of the best Linux scheduler for any workload, while each
Linux scheduler only does well for a workload that happens to suit its policy.

Figure 16 shows how DIO-POWER works for LAMP threads described in the
previous section on the Intel system. The workloads consist of four threads (to
make the power savings due to clustering possible) with the varying number of
Apache threads per workload.

We can see that while the DEFAULT scheduler does well in terms of EDP
for the first two workloads with two and four Apache “devil” threads, where
spreading these threads across chip makes sense, it does not do well for the
third workload where only one Apache thread is present and so it makes sense
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Fig. 16. The comparison in terms of performance, power consumption and EDP for 3 LAMP
workloads with DEFAULT and DEFAULT-MC relative to DIO-POWER (high bars are good) on the
Intel system. DIO-POWER is able to provide the best solution in terms of EDP trade-off every
time.

Fig. 17. Improvement in terms of EDP for each workload with DIO-POWER relative to DIO
(high bars are good) on the Intel system.

to cluster threads. Similarly, DEFAULT-MC does well for the third workload,
but not for the first two. DIO-POWER, on the other hand, achieves good
EDP across all three workloads, matching the performance of the best Linux
scheduling mode in each case, but without requiring manual configuration and
advance knowledge of the workload.

Finally, Figure 17 shows the improvement in terms of EDP for each scientific
workload from SPEC CPU 2006 with DIO-POWER relative to DIO on the Intel
system. On average, DIO-POWER is able to show a significant improvements
in EDP (up to 78%). In the case of workload #8 DIO-POWER was slightly worse
than DIO. The reason is that clustering slowdown was able to outweigh power
savings in this case.
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We are not presenting any results for AMD Opteron systems due to almost
absolute insensitivity of AMD’s machines to the power savings resulting from
leaving chips idle. The power consumption stayed relatively the same regard-
less of the number of idle chips in the system. The reason for that is probably a
lack of a power savings mode for the entire processor package as opposed to any
particular core (on Intel machines there are the processor/package C-states, or
PC-states, where the entire processor enters lower power mode when all cores
on it are idle).

We conclude that the ability of DIO to identify threads that will hurt each
other’s performance can be used to implement an effective power-savings policy.
Existing “power-aware” schedulers in Linux can only be configured statically
to cluster threads or spread them apart. DIO-POWER, on the other hand, can
decide whether to spread or to cluster dynamically, depending on the properties
of the workload. The same heuristic that helps DIO determine whether two
threads will hurt each other’s performance can help it decide whether energy
savings as a result of tighter resource sharing will outweigh the energy loss as
a result of contention.

7. RELATED WORK

In the work on Utility Cache Partitioning [Qureshi and Patt 2006], a custom
hardware solution estimates each application’s number of hits and misses for
all possible number of ways allocated to the application in the cache (the tech-
nique is based on stack-distance profiles). The cache is then partitioned so as
to minimize the number of cache misses for the co-running applications. UCP
minimizes cache contention given a particular set of co-runners. Our solution,
on the other hand, decides which co-runners to co-schedule so as to minimize
contention. As such, our solution can be complementary to UCP and other
solutions relying on cache partitioning [Suh et al. 2002].

Tam et al. [2009] similarly to several other researchers [Cho and Jin 2006;
Liedtke et al. 1997; Lin et al. 2008; Zhang et al. 2009] address cache contention
via software-based cache partitioning. The cache is partitioned among applica-
tions using page coloring. Each application is reserved a portion of the cache,
and the physical memory is allocated such that the application’s cache lines
map only into that reserved portion. The size of the allocated cache portion is
determined based on the marginal utility of allocating additional cache lines
for that application. Marginal utility is estimated via an application’s reuse
distance profile, which is very similar to a stack-distance profile and is approx-
imated online using hardware counters [Tam et al. 2009]. Software cache parti-
tioning, like hardware cache partitioning, is used to isolate workloads that hurt
each other. While this solution delivers promising results, it has two important
limitations: first of all, it requires nontrivial changes to the virtual memory sys-
tem, a very complicated component of the OS. Second, it may require copying
of physical memory if the application’s cache portion must be reduced or reallo-
cated. Given these limitations, it is desirable to explore options like scheduling,
which are not subject to these drawbacks.
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Moscibroda and Mutlu [2007] demonstrated the problem with shared re-
source contention in memory controllers. They showed that shared memory
controller contention on real dual-core and quad-core systems can be a signifi-
cant problem, causing largely unfair slowdowns, reduced system performance
and long periods of service denial to some applications. They later addressed
the problem by designing fair memory controllers that reduce and manage in-
terference in the main memory subsystem [Mutlu and Moscibroda 2007, 2008;
Kim et al. 2010]. Several researchers addressed shared resource contention
due to prefetchers as well as in on-chip networks [Das et al. 2009; Ebrahimi
et al. 2009; Grot et al. 2009; Lee et al. 2008]. The solutions proposed offer
enhancements to certain parts of the memory hierarchy rather than target the
shared resource contention problem in the whole system via scheduling. Hence,
we see this work as complementary to ours.

Herdrich et al. [2009] proposed rate-based QoS techniques, which involved
throttling the speed of the core in order to limit the effects of memory-intensive
applications on its co-runners. Rate-based QoS can be used in conjunction with
scheduling to provide isolation from contention for high-priority applications.

Several prior studies investigated the design of cache-aware scheduling al-
gorithms. Symbiotic Jobscheduling [Snavely and Tullsen 2000] is a method for
co-scheduling threads on simultaneous multithreading processors (SMT) in a
way that minimizes resource contention. This method could be adapted to co-
schedule threads on single-threaded cores sharing caches. This method works
by trying (or sampling) a large number of thread assignments and picking the
ones with the best observed rate of instructions per cycle.

The drawback of this solution is that it requires a sampling phase during
which the workload is not scheduled optimally. When the number of threads
and cores is large, the number of samples that must be taken will be large as
well.

Fedorova et al. [2007] designed a cache-aware scheduler that compensates
threads that were hurt by cache contention by giving them extra CPU time.
This algorithm accomplishes the effect of fair cache sharing, but it was not
designed to improve overall performance.

The idea of distributing benchmarks with a high rate of off-chip requests
across different shared caches was also proposed in earlier studies [Dhiman
et al. 2009; Knauerhase et al. 2008]. The authors propose to reduce cache
interference by spreading the intensive applications apart and co-scheduling
them with nonintensive applications. Cache misses per cycle were used as the
metric for intensity. Our idea of DI is similar, however we provide a more
rigorous analysis of this idea and the reasons for its effectiveness, and also
demonstrate that DI operates within a narrow margin of the optimal. The
other papers did not provide the same analysis, so it was difficult to judge the
quality of the algorithm. Further, previous work did not resolve the controversy
between two approaches to model contention: Chandra et al. [2005] and Suh
et al. [2002] demonstrated that reuse-distance models provide some of the most
accurate measures of contention, but this contradicted the hypothesis that the
rate of off-chip requests can be a good heuristic for predicting contention. Our
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work reconciled these two approaches, explaining that Chandra’s model is suit-
able for systems where cache contention is the dominant cause of performance
degradation, but on real systems, where other contention factors are equally
important, LLC miss rates turn out to be a very good heuristic for contention.

8. CONCLUSIONS

In this work, we identified factors other than cache space contention that cause
performance degradation in multicore systems when threads share the memory
hierarchy. We estimated that other factors like memory controller contention,
memory bus contention and prefetching hardware contention contribute more
to overall performance degradation than cache space contention. We predicted
that in order to alleviate these factors it was necessary to minimize the total
number of memory requests issued from each cache. To that end we developed
scheduling algorithms DI and DIO that schedule threads such that the miss
rate is evenly distributed among the caches.

The Miss Rate heuristic, which underlies the DI and DIO algorithms was
evaluated against the best known strategies for alleviating performance degra-
dation due to cache sharing, such as SDC, and it was found to perform near
the theoretical optimum. DIO is a user level implementation of the algorithm
relying on the Miss Rate heuristic that gathers all the needed information on-
line from performance counters. DIO is simple, can work both at the user and
kernel level, and it requires no modifications to hardware or the non-scheduler
parts of the operating system. DIO has been shown to perform within 2% of
the oracle optimal solution on two different machines. It performs better than
the default Linux scheduler both in terms of average performance (for the vast
majority of workloads) as well as in terms of execution time stability from run
to run for individual applications.

Upon evaluating performance of DIO we concluded that the highest impact
from contention-aware scheduling is in its ability to provide performance isola-
tion for “important” applications and to optimize system energy consumption.
DIO improved stability of execution times and lowered worst-case execution
time by up to a factor of two for scientific workloads and by up to 40% for
a commercial Apache/MySQL workload. Furthermore, DIO’s ability to pre-
dict when threads will degrade each other’s performance inspired the design of
DIO-POWER, an algorithm that catered to system energy-delay product and
improved the EDP relative to DIO by as much as 80%.

APPENDIX

A. METHODOLOGY FOR MEASURING THE BREAKDOWN OF DEGRADATION

FACTORS ON THE NUMA SYSTEM

As described in Section 3, we identified four sources of performance degrada-
tion on our experimental AMD Opteron system: L3 cache, DRAM controller,
inter-processor interconnects and remote latency. These factors are further
abbreviated as L3, DR, IC and RL respectively. To quantify the effects of per-
formance degradation caused by these factors we use the methodology, which
is depicted in Figure 18. We run a target application, denoted as T with a set
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Fig. 18. Placement of threads and memory on all experimental configurations.

of three competing applications (MILC, in this case), denoted as C. The mem-
ory of the target application is denoted MT, and the memory of the competing
applications is denoted MC. We vary (1) how the target application is placed
with respect to its memory, (2) how it is placed with respect to the competing
applications, and (3) how the memory of the target is placed with respect to the
memory of the competing applications. We used sched setaffinity system call to
bind threads to cores and numactl package to specify the memory placement
for every application. The methodology is essentially similar to the one used
for the Intel system, except here we tested with three competing applications
instead of one, since our NUMA AMD system has four cores per shared cache,
while the Intel system has only two.

Figure 18 summarizes the relative placement of memory and applications
that we used in our experiments. Next to each scenario we show factors af-
fecting the performance of the target application: L3, DR, IC, or RL. For ex-
ample, in Scenario 0, an application runs contention-free, because the com-
peting applications and their memory are in a different domain. Additionally,
the application’s memory is local in this case. This is the optimal scenario
performance-wise. We term it the base case and compare to it the performance
in other cases. In Scenario 2, the target application competes with contending
applications for the interconnect (IC), because all applications use the same in-
terconnect for fetching their memory from a remote bank, and also experiences
remote access latency (RL). Scenario 7 is the worst in terms of performance
degradation, because all four factors are present. The scenarios where there
is cache contention are shown on the right and the scenarios where there is
no cache contention are shown on the left. By comparing the performance in
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different scenarios we were able to estimate the degradation factors shown in
Figure 6.
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