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Abstract. A MAC protocol specifies how nodes in a sensor network ac-
cess a shared communication channel. Desired properties of such MAC
protocol are: it should be distributed and contention-free (avoid colli-
sions); it should self-stabilize to changes in the network (such as arrival
of new nodes), and these changes should be contained, i.e., affect only
the nodes in the vicinity of the change; it should not assume that nodes
have a global time reference, i.e., nodes may not be time-synchronized.
We give the first MAC protocols that satisfy all of these requirements,
i.e., we give distributed, contention-free, self-stabilizing MAC protocols
which do not assume a global time reference. Our protocols self-stabilize
from an arbitrary initial state, and if the network changes the changes
are contained and the protocol adjusts to the local topology of the net-
work. The communication complexity, number and size of messages, for
the protocol to stabilize is small (logarithmic in network size).

1 Introduction

Sensor networks are the focus of significant research efforts on account of their
diverse applications, that include disaster recovery, military surveillance, health
administration and environmental monitoring. A sensor network is comprised of
a large number of limited power sensor nodes which collect and process data from
a target domain and transmit information back to specific sites (e.g., headquar-
ters, disaster control centers). We consider wireless sensor networks which share
the same wireless communication channel. A Medium Access Control (MAC)
protocol specifies how nodes share the channel, and hence plays a central role in
the performance of a sensor network.

Sensor networks contain many nodes, typically dispersed at high, possibly
non-uniform, densities; sensors may turn on and off in order to conserve energy;
and, the communication traffic is space and time correlated. Contention occurs
when two nearby sensor nodes both attempt to access the communication chan-
nel at the same time. Contention causes message collisions, which are very likely
to occur when traffic is frequent and correlated, and they decrease the lifetime of
a sensor network. A MAC protocol is contention-free if it does not allow any col-
lisions. All existing contention-free MAC protocols assume that the sensor nodes



are time-synchronized in some way. This is usually not possible on account of
the large scale of sensor networks.

The preceding discussion emphasizes the following desirable properties for a
MAC protocol in sensor networks: it should be distributed and contention-free;
it should self-stabilize to changes in the network (such as the arrival of new
nodes into the network), and these changes should be contained, i.e., affect only
the nodes in the vicinity of the change; it should not assume that nodes have
access to a global time reference, i.e., nodes may not be time-synchronized. These
properties are essential to the scalability of sensor networks and for keeping the
sensor hardware simple. In this paper, we give the first MAC protocols that
satisfy all of these requirements.

A contention-free MAC protocol should be able to bring the network from an
arbitrary state to a collision-free stable state. Since the protocol is distributed,
during this stabilization phase collisions are unavoidable. We measure the quality
of the stabilization phase in terms of the time it takes to reach the stable state,
and the amount of control messages exchanged. When the nodes reach the stable
state, they use the contention-free MAC protocol to transmit messages without
collisions. In the stable state, we measure the efficiency by a node’s throughput,
the inverse of the time interval between its transmissions.

Model. A sensor network with n nodes can be represented by a graph G = (V, E),
in which two sensor nodes are connected if they can communicate directly, i.e.,
if they are within each other’s transmission range. We assume that all sensor
nodes have the same transmission range, hence all links are bidirectional and
the graph G is undirected.

A message sent by a node is received by all of its adjacent nodes. If two
nodes are adjacent and send messages simultaneously, their messages collide. If
two nodes u and w are not adjacent and have the same common adjacent node
v, then when u and w transmit at the same time their messages collide in v
(hidden terminal problem). We assume that nodes can detect such collisions.

The k-neighborhood of a node v, ∆k(v), is the set of nodes whose shortest path
to v has length at most k. We denote the number of nodes in the k-neighborhood
by δk(v) (where δk(v) = |∆k(v)|), and the maximum k-neighborhood size by δk

(δk = maxv δk(v)). We refer to 1-neighbors as neighbors. We can also define
the k-neighborhood of a set of nodes S: ∆k(S) is the set of nodes that are at
most a distance k away from some node in S. We assume that at the start of
the algorithm, every node has been provided an upper bound on δ1 and δ2 (for
example this information can be provided by the network administrator).

Contributions. We give a distributed, contention-free, self-stabilizing MAC pro-
tocol which does not assume a global time reference. The protocol has two parts.
Starting from an arbitrary initial state, the protocol first enters a loose phase
where nodes set up a preliminary MAC protocol. This phase is followed by a
tight phase in which nodes make the MAC protocol more efficient. Both parts of
the protocol are self-stabilizing. Since we make no assumptions about the initial
state, the protocol will also re-stabilize after any network change.



During the loose phase, every node transmits at most O(log n) control mes-
sages, each of size at most O(log n) bits. The time duration of this phase is
O(log n · min{δ3

1 , δ
2
2}). The protocol has now reached a stable state in which

the throughput of a node is O(1/ min{δ3
1 , δ

2
2}). The network may either remain

in this protocol, or proceed to the next (tight) phase in which we improve the
steady state throughput of the nodes. The tightening phase also requires at
most O(log n) control messages per node of size at most O(log n) bits to reach
the steady state. The time duration of this phase is O(log n · min{δ5

1 , δ
2
1δ

2
2}).

During steady state, the throughput of node v is closely related to 1/φv, where
φv is the maximum 2-neighborhood size among all nodes in v’s 2-neighborhood.
An important property of the tight phase is that the throughput of a node is
related only to the local “density” of the graph in the vicinity of the node, and
hence adapts to the varying topology of the network.

If the network changes, for example a set S of nodes suddenly power up
after being powered down for some time, as already mentioned, the protocol
will self-stabilize to the change. Further, the only nodes that are affected by the
stabilization are nodes in ∆2(S) for the loose phase, and ∆6(S) for the tight
phase.

Approach. Our approach is based on the concept of a frame (see Figure 1), which
is the basis of TDMA MAC protocols. We adapt the frame approach so that it
does not depend on any global time reference. Each node divides time into equal
sized frames. Each frame is further divided into equal sized time slots; a time
slot corresponds to the time duration of sending one message. Frames in the
same node have the same size (number of slots). However, different nodes can
have different frame sizes. The frames do not need to be aligned at the various
nodes, and neither do the time slots.

u

w

v

Fig. 1. Frames of three nodes. Frames at different nodes may not be aligned. Solid
shaded time slots indicate the selected time slot of each node; longer vertical lines
identify the frame boundaries.

The basic idea is that each node selects a slot in its own frame which it then
uses to transmit messages. The selected slots of any 2-neighbor nodes must not
overlap (they should be conflict-free), since otherwise collisions can occur. In
order to guarantee that slots remain conflict-free in any frame repetitions, the
frame sizes in the same neighborhood are chosen to be multiples of each other.



In our algorithms the frame sizes are powers of 2. Thus, nodes need to select
slots only once, and the slots remain conflict-free thereafter.

The MAC protocols (algorithms) we provide find conflict-free time slots. For
the loose phase, we have developed algorithm LooseMAC in which all nodes have
the same fixed frame size, which is proportional to min{δ3

1 , δ
2
2}. For the tight

phase we have developed algorithm TightMAC in which each node v has frame
size proportional to φv, which depends only on the local area density of node
v. Thus, in TightMAC different nodes in the network have different frame sizes
that reflects the variation of the node density in different areas of the network.

Related Work. MAC protocols are either contention-based or contention-free.
Contention-based MAC protocols are also known as random access protocols, re-
quiring no coordination among the nodes accessing the channel. Colliding nodes
back off for a random duration and try to access the channel again. Such proto-
cols first appeared as Pure ALOHA [1] and Slotted ALOHA [21]. The throughput
of Aloha-like protocols was significantly improved by the Carrier Sense Multi-
ple Access (CSMA) protocol [14]. Recently, CSMA and its enhancements with
collision avoidance (CA) and request to send (RTS) and clear to send (CTS)
mechanisms have led to the IEEE 802.11 [29] standard for wireless ad-hoc net-
works. The performance of contention based MAC protocols is weak when traffic
is frequent or correlated and these protocols suffer from stability problems [23].
As a result, contention-based protocols are not suitable for sensor networks.

Our work is most related to contention-free MAC protocols. In these proto-
cols, the nodes are following some particular schedule which guarantees collision-
free transmission times. Typical examples of such protocols are: Frequency Di-
vision Multiple Access (FDMA); Time Division Multiple Access (TDMA) [15];
Code Division Multiple Access (CDMA) [25]. In addition to TDMA, FDMA
and CDMA, various reservation based [13] or token based schemes [7, 10] are
proposed for distributed channel access control. Among these schemes, TDMA
and its variants are most relevant to our work. Allocation of TDMA slots is well
studied (e.g., in the context of packet radio networks) and there are many cen-
tralized [19, 24], and distributed [2, 8, 20] schemes for TDMA slot assignments.
These existing protocols are either centralized or rely on a global time reference.

There is considerable work on multi-layered, integrated views in wireless net-
working. Power controlled MAC protocols have been considered in settings that
are based on collision avoidance [17, 16, 27], transmission scheduling [9], and lim-
ited interference CDMA systems [18]. Some recent work on energy conservation
by powering off some nodes is studied in [22, 28, 6, 5]. While GAF [28] and SPAN
[6] are distributed approaches with coordination among neighbors, in ASCENT
a node decides itself to be on or off [5]. S-MAC [30] proposes that nodes form
virtual clusters based on common sleep schedules. Sleep and wake schedules are
used in [12], but based on energy and traffic rate at the nodes in order to balance
energy consumption. A different approach is used in [26], with an adaptive rate
control mechanism to provide a fair and energy-efficient MAC protocol.



Paper Outline. In Section 2 we give Algorithm LooseMAC and an outline of its
analysis (the detailed analysis can be found in [4]). We proceed with Algorithm
TightMAC in Section 3, followed by some concluding discussion in Section 4.

2 Algorithm LooseMAC

Here we present Algorithm LooseMAC and an outline of its analysis. Each node
selects the same frame size, which is proportional to min{δ3

1 , δ
2
2}. The algorithm

is randomized and guarantees that all nodes will find their slots quickly, with low
communication complexity. Further, the algorithm is self-stabilizing with good
containment properties.

For simplicity of the presentation, we will assume that slots are aligned
(frames do not need to be aligned). All results hold immediately for when the
slots are not aligned (with small constant factors, since each slot may overlap
with at most two slots in a neighbor’s frame). For notation convenience, given a
set of nodes V = {v1, v2, . . . , vn}, we will denote node vi simply as node i.

2.1 Description of LooseMAC

Algorithm 1 depicts the basic functionality of LooseMAC. Consider some node
i. Node i divides time into frames of size Λ. The task for node i is to select a
conflict-free slot. When this occurs we say that the node is “ready”, and we set
its local variable variable ready to TRUE.

Algorithm 1 LooseMAC(node i)

1: Divide time into frames of size Λ;
2: ready ← FALSE;
3: while not ready do

4: Select a slot σi randomly in the frame;
5: Send a “beacon” message in slot σi;
6: Listen for a period of Λ time slots;
7: if no collision is detected by i and no neighbor of i reports a conflict then

8: ready ← TRUE;

Initially, when node i enters the network it is not ready. Node i selects ran-
domly and uniformly a slot σi in its frame. In σi, node i sends a “beacon”
message mi to its neighborhood. Let Z denote the time period during the next
Λ time slots. If σi doesn’t create any slot conflicts in its neighbors during Z,
then node i keeps slot σi and becomes ready. After the node becomes ready it
remains ready and doesn’t select a new slot (with the exception of when a new
neighbor joins the network, which is described in Section 2.2). Below we explain
how node i can detect that σi creates a conflict, and therefore, whether to keep
or abandon the selected time slot (see also Figure 2).



If mi creates slot conflicts in some neighbor j, then j responds by transmitting
a message mj reporting the conflict (this message simply says that j detected a
conflict, without specifying which nodes are conflicting). Node j sends mj during
its currently selected slot σj . Since the frame length of j is also Λ, the message
mj is sent before the end of Z. If mj is received by i without collisions, i decodes
mj to note that j detected a conflict. For safety, i assumes that the conflict was
with σi, and i abandons slot σi continuing by selecting another slot in its next
frame. If mj collides at node i, i does not know if mj was reporting a conflict or
not as i cannot decode two or more colliding messages. Again i assumes that the
collided message was reporting a conflict, abandons slot σi and selects another
slot in its next frame. The process repeats until i does not detect any message
collisions or does not receive any conflict reports during Z. Note that a node will
transmit at most twice during any arbitrary period of Λ slots, since the frame
size is Λ and a node transmits at most once during every particular frame.

j
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Fig. 2. Execution of the LooseMAC algorithm, where the shaded slot corresponds to a
collision and the waived lines to a conflict report message.

To enable a node to detect slot conflicts, the node marks the time slots that
are being used by its neighbors. Consider node j. Suppose that a neighbor i
sends a message mi to j at a slot π. If node j receives mi without collisions, and
π is unmarked, then j marks π as being used by i. If later i selects another slot,
node j will mark the new slot position and unmark the previous position. Using
the marking mechanism, node j can detect slot conflicts as follows. Suppose that
a neighbor node k sends a message during slot π, which is already marked with
i. Node j then detects a conflict between the time slots chosen by i and k. A
conflict occurs also if nodes i and k transmit at the same time, which is observed
as a message collision by j. Actually, in the LooseMAC algorithm (Algorithm 1,
when a node picks a new slot in its frame it picks it among the unreserved slots.
We obtain the following result.

Lemma 1. For some constant c, if Λ ≥ c min{δ3
1 , δ

2
2}, all non-ready nodes be-

come ready within Λ · log n time slots, with probability at least 1 − 1
n
.

Sketch of proof: We sketch the case Λ ≥ cδ3
1 (the case Λ ≥ cδ2

2 is treated
similarly). Let i be a non-ready node and let Ri denote the nodes that are ready
in ∆1(i). Suppose i selects a new slot σi, and let Z denote the following Λ slots,



and Z ′ the preceding Λ slots. Let p1 denote the probability that some neighbor
node conflicts with σi (i.e. attempts to reserve the same slot), let p2 be the
probability that i hears a collision during Z, and let p3 be the probability that i
receives a conflict report during Z. Then the probability that i fails to become
ready is at most p1 + p2 + p3.

Node i selects a slot from among Λ−Ri slots. σi can only conflict with a non-
ready neighbor of i. Let j be one such neighbor. j chooses from among Λ − Rj

slots, therefore j selects the same slot σi with probability at most 1/(Λ−Rj) ≤
2/Λ for Λ ≥ 2δ1 (since Rj ≤ δ1). The union bound then gives p1 ≤ 2(δ1−Ri)/Λ ≤
2δ1/Λ . Node i will hear a collision if two neighbors j, j′ both transmit on the
same slot σk. This occurs with probability at most 4/(Λ−Rj)(Λ−Rj′) ≤ 16/Λ2,
since a node may transmit at most twice during Z. Since there are at most Λ
such slots hear a collision and at most δ2

1/2 different pairs of neighbors, the union
bound gives p2 ≤ 8δ2

1/Λ.

A neighbor j will report a conflict in Z only if two of its neighbors collide in
Z∪Z ′. A similar argument to the bound for p2 bounds this probability by 16δ2

1/Λ.
Since there are at most δ1 such neighbors, the union bound gives p3 ≤ 16δ3

1/Λ.

Thus, for some c, p1 + p2 + p3 ≤ cδ3
1/Λ. If Λ ≥ 4cδ3

1, then the probability
that i becomes ready is at least 1

4 . Consequently, after log n independent tries, i
will not be ready with probability at most 4− log n = 1

n2 . Since there are at most
n non-ready nodes, applying the union bound gives the result.

2.2 Fresh Nodes

Algorithm LooseMAC adapts dynamically to nodes joining or leaving the net-
work. When a node leaves, it informs its neighbors who can then unmark the slot
they reserved for the departing node. If a node fails or crashes, it cannot inform
its neighbors, and its slot will remain marked; the correctness of the algorithm
and the rest of the network remain unaffected.

The situation is more complicated when a node joins the network, due to
the hidden terminal problem. Suppose node i enters the network. Nodes j and
k that were previously not 2-neighbors may now be 2-neighbors because they
both become neighbors of i. In this case, j and k may be using the same slot and
creating a conflict in i. Thus, j and k may need to reselect slots. To accomplish
this, node i will force nodes j and k to become non-ready. In order to achieve
this, when i joins the network, it is in a special status which is called fresh. Node i
informs its neighbors about its special status by sending control messages. When
a neighbor node j receives a control message from i indicating that i is fresh,
then j becomes non-ready.

While i is fresh, it selects a random slot in its frame and transmits a message
reporting that it is fresh. It continues to do so in the subsequent frames until it
hears no collisions, nor any conflict reports. When this happens, it knows that
every one of its neighbors has received its “I’m fresh” message, and so it switches
to the non-fresh, non-ready status. At this point, every neighbor of i has become
non-ready. i now continues with the original LooseMAC algorighm as a non-ready



node. The analysis of the time for fresh nodes to become non-ready is similar to
the proof of Lemma 1:

Lemma 2. For some constant c, if Λ ≥ c min{δ3
1 , δ

2
2}, all fresh nodes become

non-fresh within Λ · log n slots with probability at least 1 − 1
n
.

2.3 Complexity of LooseMAC

A network is in a stable state when all nodes are ready. Once a network is stable,
it remains so until a node joins the network. We show that from an arbitrary
initial state I, the network will stabilize if no changes are made to the network.
Suppose that Λ ≥ c min{δ3

1 , δ
2
2}, and let S be the set of non-ready nodes in state

I. Let Sf ⊆ S be the set of fresh nodes in state I.
Lemma 2 implies that, with probability at most 1

n
, after Λ · log n slots, some

node fails to become non-fresh. Similarily, after an additional Λ · log n slots,
Lemma 1 implies that, with probability at most 1

n
, after Λ·log n slots, some node

fails to become ready. Applying the union bound, we have that with probability
at least 1− 2

n
, every node is ready after 2Λ · log n slots, i.e., w.h.p., the network

has reached a stable state.
Containment. Nodes that send control messages until stabilization are af-

fected nodes. Only nodes in ∆1(Sf ) ⊆ ∆1(S) become non-ready on account of
the fresh nodes. Nodes that are neighbors of non-ready nodes may need to send
control messages to report conflicts, thus the affected nodes are all in ∆2(S).

Communication Complexity. Each affected node sends at most O(log n) con-
trol messages, since in every frame it sends at most 1 message. Each message has
size O(log n) bits, since the message consists of the sender’s id (log n bits), fresh
status (1 bit), and conflict report (1 bit). We thus have the following theorem.

Theorem 1 (Complexity of LooseMAC). From an arbitrary initial state I
with non-ready nodes S, the network stabilizes within 2Λ · log n slots with prob-

ability at least 1 − 1
Θ(n) . The affected area is ∆2(S). Each affected node sends

O(log n) messages, of size O(log n) bits.

3 Algorithm TightMAC

We consider now the case where nodes have different frame sizes. We present
the self-stabilizing Algorithm TightMAC in which each node i has a frame
size proportional to φi; recall that φi = maxj∈∆2(i) δ2(j) is the maximum
2-neighborhood size among i’s 2-neighbors. This algorithm runs on top of
LooseMAC. (We refer to the frames of TightMAC as “tight”, and the frames
of LooseMAC as “loose”.)

A node entering the network first runs LooseMAC. Once its 2-neighborhood
is ready, it uses its selected slot in the loose frame (loose slot) to communicate
with its neighbors. It can thus compute the size of the tight frame, and find
a conflict-free tight slot (in the tight frame). Then the node starts using the
tight frame’s slots. The tight frames and the loose frames are interleaved so that



a node can switch between them whenever necessary. This enables algorithm
TightMAC to be self-stabilizing, due to the self-stabilizing nature of LooseMAC.

Ready Levels. After a node runs LooseMAC, the TightMAC algorithm requires
that all nodes in its 2-neighborhood are ready (in order to compute φi). In
order to make this possible, we modify the LooseMAC algorithm to incorporate
5 levels of “readiness”: ready-0 (or ready); ready-1; ready-2; ready-3; and, ready-
4. Further, we modify the loose frame size to be the smallest power of 2 that

is at least the required loose frame size, i.e., Λ = 2d log c min{δ3

1
,δ2

2
} e. A node

becomes ready-0 as explained earlier in LooseMAC. A node becomes ready-K
(for K > 0) if all nodes in its neighborhood are ready at level at least K − 1.
We assume that when nodes send messages, they also include their ready status
(fresh, not-ready, ready-0, ready-1, ready-2, ready-3 or ready-4). Thus, when
a node becomes ready-K, it sends a message (in its loose slot) informing its
neighbors. When a ready-K node has received ready-K messages from all of its
neighbors it becomes ready-(K+1) (if K < 4).

If a node is ready-K and hears that one of its neighbors is fresh, then it
becomes not-ready. If a node hears that one of its neighbors drops down in ready
level, it adjusts its ready level correspondingly. Any node that is not ready-4 is
operating on the loose frame. A node starts executing the TightMAC algorithm
when it is ready-4.

3.1 Description of TightMAC

Algorithm 2 gives an outline of TightMAC. A node first executes LooseMAC until
it becomes ready-4. In the main loop of TightMAC, all the control messages are
sent using loose slots, until the node switches to using tight frames.

Algorithm 2 TightMAC(node i)

1: repeat

2: Execute LooseMAC(i)
3: until i becomes ready-4
4: Transmit neighborhood information and compute φi;
5: Choose a frame Fi with |Fi| = 2dlog 6φie;
6: Inform neighbors for the relative position of Fi, with respect to i’s loose slot;
7: Execute FindTightSlot();
8: Start using the tight frame;

The highest throughput is obtained by choosing φ to be the maximum 2-
neighborhood size among a node’s 2-neighbors, φi = maxj∈∆2(i) δ2(j). This
means that nodes need to obtain their 2-neighborhood size, and each node
needs to communicate to its 1-neighbors the actual IDs of the nodes in its 1-
neighborhood, which is a message of size O(δ1 log n) bits. An alternative is to
use an upper bound for φi, which is to take the maximum of an upper bound on



the 2-neighborhood size over i’s 2-neighborhood: φi = maxj∈∆2(i) δ2(j), where

δ2(j) =
∑

k∈∆1(j) δ1(k) is an upper bound on δ2(j). Since the steady-state

throughput is 1/φ, this results in lower throughput. However, the advantage is
that only the 1-neighborhood size needs to be sent, which has a message length
of O(log n) bits. In either event, only 1-neighborhood information needs to be
exchanged (whether it is 1- neighborhood node IDs or 1-neighborhood size).
When a node becomes ready-1, it knows its 1-neighborhood (by examining the
number of marked slots in its loose frame), so it can send the relevant informa-
tion to its neighbors. When a node becomes ready-2, it will have received the
1-neighborhood information from all its neighbors. It processes this information
to compute either δ2 or δ2, which it transmits. When a node becomes ready-3, it
will have received the δ2 or δ2 information from all its neighbors and hence can
take the maximum which it transmits. When a node becomes ready-4, it will
have received maximums from all its neighbors, so it can take the maximum of
these maximums to compute φ or φ. This entire process requires at most 3 con-
trol messages from each node. For simplicity we will present most of the results
using φi and δ2(i). The same results hold for φi and δ2(i) with similar proofs.

Finally, node i chooses its tight frame size Fi to be the smallest power of 2
that is at least 6φi; i notifies its neighbors about the position of Fi relative to its
loose slot (this information will be needed for the neighbor nodes to determine
whether the tight slots conflict); and, node i executes FindTightSlot (described
in Section 3.2) to compute its conflict-free tight slot in Fi. After the tight slot
is computed, node i switches to using its tight frame Fi.

To ensure proper interleaving of the loose and tight frames, in Fi, in addition
to the tight slot, node i also reserves slots for its loose slot and all other marked
slots in its loose frame. This way, the slots used by LooseMAC are preserved
and can be re-used even in the tight frame. This is useful when node i becomes
non-ready, or some neighbor is non-ready, and i needs to execute the LooseMAC
algorithm again.

3.2 Algorithm FindTightSlot

The heart of TightMAC is algorithm FindTightSlot, which obtains conflict-free
slots in the tight frames. The tight frames have different sizes at various nodes
which depends locally on φi. Different frame sizes can cause additional conflicts
between the selected slots of neighbors. For example, consider nodes i and j with
respective frames Fi and Fj . Let si be a slot of Fi. Every time that the frames
repeat, si overlaps with the same slots in Fj . The coincidence set Ci,j(si) is the
set of time slots in Fj that overlap with si in any repetitions of the two frames.
If |Fi| ≥ |Fj |, then si overlaps with exactly one time slot of Fj . If on the other
hand |Fi| < |Fj |, then |Ci,j(si)| > 1. Nodes i and j conflict if their selected slots
si and sj are chosen so that sj ∈ Ci,j(si) (or equivalently si ∈ Cj,i(sj)); in other
words, si and sj overlap at some repetition of the frames Fi and Fj .

The task of algorithm FindTightSlot for node i is to find a conflict-free slot in
Fi. In order to detect conflicts, node i uses a slot reservation mechanism, similar



Algorithm 3 FindTightSlot()

1: SlotFound ← FALSE;
2: while not SlotFound do

3: Select ← FALSE;
4: With probability 1/φi: Select ← TRUE;
5: if Select then

6: Let si be an randomly chosen unreserved slot in the first 6δ2(i) slots of Fi;
7: Send the position of si (relative to its loose slot);
8: Listen for a period of Λ time slots;
9: if no conflict is reported by any neighbor then

10: SlotFound ← TRUE;

to the marking mechanism of LooseMAC. When frame Fi is created, node i
reserves in each Fi as many slots as the marked slots in its loose frame. This
way, when FindTightSlot selects slots, it will avoid using the slots of the loose
frame, and thus, both frames can coexist.

Slot selection proceeds as follows. Node i attempts to select an unreserved
conflict-free slot in the first 6δ2(i) slots of Fi. We will show that this is possible.
Node i then notifies its neighbors of its choice using its loose slot. Each neighbor
j then checks if σi creates any conflicts in their own tight slots, by examining
whether si conflicts with reserved slots in j’s tight and loose frame. If conflicts
occur, then j responds with a conflict report message (again in its loose slot).
Node i listens for Λ time slots. During this period, if a neighbor detected a
conflict, it reports it. Otherwise the neighbor marks this slot as belonging to i
(deleting any previously marked tight slot for i). If i receives a conflict report,
the process repeats, with i selecting another tight slot. If i does not receive a
conflict report, then fixes this tight slot. Note that this communication between
i and its neighbors can occur because all its neighbors are at least ready-2.

In the algorithm, a node chooses to select a new slot with probability 1/φi,
so not many nodes attempt to select a slot at the same time, which increases
the likelihood that the selection is succesful. This is what allows us to show
stabilization with low message complexity, even with small frame sizes.

The intuition behind the frame size choice of approximately 6φi is as follows.
Take some node j which is a 2-neighbor of i. Node j chooses a slot in the first
Z = 6δ2(j) of its tight frame Fj . Node i has frame size larger than Z. Thus,
node i cannot have more than one slot repetition in Z. This implies that i and
j conflict at most once during Z in their tight frames, and so, the possible
conflicting slots for j during Z are bounded by the 2-neighborhood size of j.
This observation is the basis for the probabilistic analysis of the algorithm.

Lemma 3. Let node j ∈ ∆2(i) select tight slot sj; sj does not cause conflicts in

any node of ∆1(i) with probability at least 1/2.

Proof. The neighbors of j have reserved at most 2δ1(j) slots in j (one loose and
one tight slot). Therefore, node j chooses its slot sj from among 6δ2(j)−2δ1(j) ≥
4δ2(j) unreserved slots in its frame Fj . This slot can cause conflicts only in



neighbors of i that are in S = ∆1(i) ∩ ∆1(j) ⊆ ∆1(j). The only nodes that can
reserve slots in members of S are therefore 2-neighbors of j. Each such node can
mark at most two slots (one loose and one tight slot), and so at most 2δ2(j)
(absolute) time slots which can possibly conflict with sj are reserved in all the
nodes in S. Therefore, there are at least 2δ2(j) slots available, of the 4δ2(j)
chosen from, hence the probability of causing no conflict is at least 1

2 .

Lemma 4. For node i, during a period of Λ time slots, no conflicts occur in

∆1(i) with probability at least 1/2.

Proof. Let Z be the period of Λ time slots. A conflict is caused during Z in ∆1(i)
by any slot selection of nodes in ∆2(i). A slot selection by node j ∈ ∆2(i) occurs
with probability 1/φj. From Lemma 3, a slot selection of j causes conflicts in
∆1(i) with probability at most 1/2. There are at most δ2(i) nodes similar to j.
Let q be the probability that any of them causes a conflict during Z in ∆1(i),
then q ≤ δ2(i)/(2 min{j∈∆2(i)} φj). Since for any j ∈ ∆2(i), φj ≥ δ2(i), we have

that q ≤ 1
2 , hence the probability of no conflicts is 1 − q ≥ 1

2 .

Lemma 4 implies that every time i selects a slot in its tight frame, this slot
is conflict-free with probability at least 1/2. Since i selects a time slot with
probability 1/φi in every loose frame, in the expected case i will select a slot
within O(φi) repetitions of the loose frame. We obtain the following result.

Corollary 1. For some constant c, within c · φi · Λ · log n time slots, a ready-4

node successfully chooses a conflict-free tight time slot in Fi, with probability at

least 1 − 1
n2 .

3.3 Complexity of TightMAC

The network is stable if all nodes in the network have selected conflict-free tight
slots. When a network stabilizes, it remains so until some node joins/leaves the
network. We now show that starting from an arbitrary initial state I, if no
changes occur in the network after I, the network reaches a stable state.

Let S be the non-ready nodes in state I. By Theorem 1, with high probability,
LooseMAC requires O(Λ log n) time slots for all nodes to become ready. Then,
O(1) time is required for the nodes to become ready-4. Consider a node i. Sup-
pose that the algorithm uses φi and δ2(i) for practical considerations (smaller
message sizes). Node i sends O(1) messages of size O(log n) bits so that itself
and its neighbors can compute φ. From Corollary 1, with high probability, node
i then requires O(φiΛ logn) time slots to select a conflict-free tight slot. Since,
δ2
1 ≥ φi, the total time for stabilization is O(δ2

1Λ log n). When a fresh node i
arrives the nodes in ∆5(i) drop in ready level, hence the affected area is at
most ∆6(i). Following an analysis similar to Corollary 1, we obtain the following
theorem.

Theorem 2 (Complexity of TightMAC). From an arbitrary initial state I,
with non-ready nodes S, the network stabilizes within O(δ2

1 ·Λ · log n) time slots,

with probability at least 1− 1
Θ(n) . The affected area is ∆6(S). Each affected node

sends O(log n) messages, of size O(log n) bits.



4 Discussion

We have introduced and presented the theoretical analysis of a distributed,
contention-free MAC protocol. This protocol is frame based and has the desir-
able properties of self-stabilization and containment, i.e., changes to the network
only affect the local area of the change, and the protocol automatically adapts
to accommodate the change. Further, the efficiency of the protocol depends only
on the local topology of the network, and so bottlenecks do not affect the en-
tire network. In general, such frame based protocols tend to be preferable when
traffic is constant (rather than bursty).

The time to stabilization and throughput are related to the maximum 1 or
2-neighborhood size. For unit disc graphs, the maximum k-neighborhood size δk

grows at the same rate as the 1-neighborhood size, i.e., δ1 = Ω(δk) for fixed k.
Since the average 1-neighborhood size required to ensure connectivity in random
graphs is O(log n), [11], it follows that throughput is inverse polylogarithmic and
time to stabilization is polylogarithmic in the network size.

Practical Considerations. Our model assumes that a node detects a collision if
and only if two or more nodes (including itself) within its transmission radius
attempt to transmit. One way to distinguish a collision from random background
noise is to place a threshold on the power of the incoming signal. Signals with
sufficiently high power are collisions. Since wireless signals attenuate with dis-
tance rather than drop to zero at the transmission radius, it is then possible
many nodes that are outside the transmission radius will transmit at the same
time, resulting in a collision detected at the central node, even though none of
the nodes are actually colliding. The correctness of the algorithm is not affected,
however the required frame size or convergence time may get affected, because
(for example) a spurious collision may prevent a node from taking a time slot.
A natural next step is to investigate such issues using simulation techniques for
real sensor networks.

We have assumed that the time slots of the nodes are aligned, even though
the frames may not be aligned. This simplification is not necessary, because
we can accommodate misaligned time slots by having a node become ready in
its time slot only if there are no collisions detected in its time slot as well as
neighboring time slots. This means that a node’s time slot may block off at most
4 time slots at every one of its two neighbors, which means that the frame size
will have to be at most a constant factor larger.

All our discussion applies when there is no relative drift between the local
clocks of the nodes. In practice there can be a very small drift (clock skew). One
approach to addressing this problem is to run a clock skew algorithm (for example
[3]) on top of our protocol. Another solution which illustrates the value of the
self stabilizing nature of our protocol is to allow the algorithm to automatically
address the clock skew when it leads to a collision. In such an event, the algorithm
will re-stabilize and the communication can continue from there. This second
approach will be acceptable providing the clock skew results in collisions at a
rate that is much slower than the rate of stabilization.



Future Research. Two natural directions are to improve the convergence prop-
erties or to obtain lower bounds on the stabilization time and/or the required
frame size for any such distributed contention free algorithm which does not use
global time synchronization. Many aspects of our protocol are hard to analyze
theoretically and would benefit from experimental analysis, for example, how
the performance varies with the rate at which the network topology is changing,
or what the lifetime of the network will be. Further, we have made certain sim-
plifying assumptions such as the graph is undirected, when in fact link quality
may vary with time. Future directions would be to investigate how the choice
of the power level would interact with such parameters as the performance of
the protocol, the lifetime of the network and the connectivity of the network. It
would also be useful to compare the performance of our algorithms with existing
algorithms (such as IEEE 802.11 and TDMA) on real networks using simulation
packages (such as OPNET and NS2).
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