
 

 Page 1 of 1 

Federation University ResearchOnline 

https://researchonline.federation.edu.au 

Copyright Notice 

 

This is the peer-reviewed version of the following article: 

 

 

 

Chen, C., Li, J., Balasubramaniam, V., Wu, Y., Zhang, Y., & Wan, S. (2021). Contention 
Resolution in Wi-Fi 6-Enabled Internet of Things Based on Deep Learning. IEEE Internet 
of Things Journal, 8(7), 5309–5320.  

 

https://doi.org/10.1109/JIOT.2020.3037774  

 

Copyright © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing this material 
for advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works. 

 

CRICOS 00103D RTO 4909   

See this record in Federation ResearchOnline at: 
https://researchonline.federation.edu.au/vital/access/manager/Index  

https://researchonline.federation.edu.au/
https://doi.org/10.1109/JIOT.2020.3037774
https://researchonline.federation.edu.au/vital/access/manager/Index


Contention Resolution in Wi-Fi 6-Enabled Internet

of Things Based on Deep Learning
Chen Chen , Senior Member, IEEE, Junchao Li, Venki Balasubramaniam , Member, IEEE, Yongqiang Wu,

Yuru Zhang, and Shaohua Wan , Senior Member, IEEE

Abstract—Internet of Things (IoT) is expected to vastly
increase the number of connected devices. As a result, a multi-
tude of IoT devices transmit various information through wireless
communication technology, such as the Wi-Fi technology, cellular
mobile communication technology, low-power wide-area network
(LPWAN) technology. However, even the latest Wi-Fi technol-
ogy is still ready to accommodate these large amounts of data.
Accurately setting the contention window (CW) value signifi-
cantly affects the efficiency of the Wi-Fi network. Unfortunately,
the standard collision resolution used by IEEE 802.11ax networks
is nonscalable; thus, it cannot maintain stable throughput for
an increasing number of stations, even when Wi-Fi 6 has been
designed to improve performance in dense scenarios. To this end,
we propose a CW control strategy for Wi-Fi 6 systems. This
strategy leverages deep learning to search for optimal config-
uration of CW under different network conditions. Our deep
neural network is trained by data generated from a Wi-Fi 6
simulation system with some varying key parameters, e.g., the
number of nodes, short interframe space (SIFS), distributed
interframe space (DIFS), and data transmission rate. Numerical
results demonstrated that our deep learning scheme could always
find the optimal CW adjustment multiple by adaptively perceiv-
ing the channel competition status. The finalized performance of
our model has been significantly improved in terms of system
throughput, average transmission delay, and packet retransmis-
sion rate. This makes Wi-Fi 6 better adapted to the access of a
large number of IoT devices.

Index Terms—Contention window (CW) optimization, deep
learning, Internet of Things (IoT), Wi-Fi 6.
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I. INTRODUCTION

I
NTERNET of Things (IoT) is currently a booming research

and application area, which aims to connect everyday phys-

ical things to a global-scale network via wireless data com-

munication and identification technologies, such as sensors

and radio-frequency identification (RFID). It revolutionizes a

large number of data-driven applications in a wide variety

of real-world domains. IoT-based solutions potentially pro-

vide competitive advantages in various key sectors of society,

e.g., smart cities, smart homes/smart building management,

healthcare, security, transportation, and surveillance [1]–[4].

In general, one of the key parts of the IoT design focuses on

the wireless communication system that acts as a data-bridge

to offload the computation, storage, and access requirements

from a large number of diversified applications and control

messages. However, although evolving at the 5G era, the exist-

ing cellular technologies still lack the ability to support a

large amount of data exchange from many battery-powered

devices spread over a wide area [5], [6]. Even with the ongo-

ing narrow-band IoT (NB-IoT) technology, which claims to

support a deployment density of 200 000 NB-IoT devices

within a cell, the network performance is still not satisfied

after several field tests due to the overwhelming computations,

complex signal fading, and differentiated Quality-of-Service

(QoS) requirements, especially diversified data or service mod-

els. As a result, the standardization of the IoT network is

still an open issue and a hot topic even when many tech-

nologies are already popular in specific application scenarios,

such as LoRa, eMTC, NB-IoT, Internet of Vehicles (IoVs), and

Wi-Fi [7]–[11].

On the contrary, as a mature technology with more than 17

years of development and standardization, Wi-Fi had remark-

able success in the deployment of IoT networks in indoor

and outdoor environments during the last decade. In addi-

tion, Wi-Fi is currently not only the most common Internet

access technology but has also been expanded across a wide

variety of markets, including consumer, mobile, and automo-

tive. Although Wi-Fi has achieved great success in business,

research, and daily usage, the existing Wi-Fi standard is still

unable to provide satisfactory network access performance

for numerous IoT devices with diversified service require-

ments. Fortunately, the IEEE organization recently started

a new task group, i.e., the IEEE 802.11ax or Wi-Fi 6,

to investigate and deliver next-generation Wi-Fi technolo-

gies for the scenarios of dense IoT networks with a large

number of data traffics. Different from the previous Wi-Fi

standard, the Wi-Fi 6 standard uses popular technologies,
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Fig. 1. Multiservice versus four ACs.

Fig. 2. OFDMA UL random access.

such as multiuser, multiple-input, multiple-output technology

(MU-MIMO), orthogonal frequency-division multiple access

(OFDMA), dedicated channel allocation, and machine learn-

ing to increase the physical bit rate [12]. At the same time,

Wi-Fi 6 achieves efficient multiuser access by reducing the

frame error rate (FER) and improving the spectrum reuse rate

to provide a better user experience [13]–[15].

Although Wi-Fi 6 is expected to increase the actual through-

put by four times in a dense user environment,the requirement

for backward compatibility with the original carrier sense

multiple access with collision avoidance (CSMA/CA) mecha-

nism, this makes the MAC layer incompetent in the multiuser

OFDMA PHY in downlink (DL) and uplink (UL) cases. In

addition, as depicted in Fig. 1, the original access category

(AC) configuration based on coarse service classification, i.e.,

best-effort, background traffic, video, and voice cannot satisfy

the diversification of services especially in the IoT paradigm.

As a result, a fine-grained contention resolution is necessary

to match the service diversification in IoT networks.

In fact, in Wi-Fi 6, when the STA receives the trigger frame

for random access (TF-R frame), it uses the UL OFDMA

backoff mechanism (UL-OFDMA Backoff, OBO) to com-

pete for the resource unit (RU), as shown in Fig. 2. Similar

to the original CSMA/CA scheme, a backoff counter is ran-

domly generated in the OFDMA contention window (OCW)

before attempting to send packets, and the channel can only

be accessed when the backoff counter decreases to 0.

Fig. 2 shows an example of UL random access [16]. The

figure shows that STA1, STA2, and STA3 have UL data to

send, and their OBO counters are 11, 5, and 1, respectively. In

the first attempt of random access, the available resources are

RU1–RU3. After the backoff process, STA3’s OBO counter is

initially decreased to 0, and the RU3 is randomly assigned to

STA3. In the second round of random access, STA2’s OBO is

initially reduced to 0, and the RU1 is randomly selected for

access. This example indicates that the backoff mechanism

for 802.11ax has no difference with the common approach,

where the contention window (CW) obeys the binary expo-

nential backoff (BEB) policy. The BEB simply exponentially

doubles the OCW value at collisions to avoid repeated colli-

sions. However, it always resets the OCW value to obtain the

minimum OCW (OCWmin) after a successful transmission on

the basis of a blind assumption of low-level network conges-

tion. As a result, the 802.11ax high efficiency wireless local

area networks (HEW) also suffers from an issue, where the

traditional BEB scheme is unaware of the channel contention

level and cannot provide optimized throughput in highly dense

network environments. For a dense network, resetting the CW

to its minimum size may result in more collisions and poor

network performance. Similarly, for a small network environ-

ment, a blind increase in CW size may cause an unnecessarily

long delay in accessing the channel.

On the contrary, although BEB is prone to severe data

collisions in the dense environment, an intelligent backoff

strategy can address the issue effectively [17]. Actually, many

research works have proposed modifications to the BEB-

based CSMA/CA, especially in IEEE 802.11ax networks.

In [18], a self-scrutinized channel observation-based scaled

backoff (COSB) mechanism is presented to handle the high-

density contention challenges in 802.11ax networks. In [19],

an adaptively scaled backoff (ASB) mechanism to mitigate

the performance degradations of BEB in highly dense IEEE

802.11ax networks was proposed. In [20], a priority-based

backoff scheme was envisioned to overcome the unexpected

delay of time critical traffic, such as ultrahigh definition (UHD)

video traffics. Although these previous efforts have empha-

sized the importance of an intelligent backoff scheme to

the performance guarantee of 802.11ax networks, their fixed

adjustment pattern or limited adaptivity when increasing and

resetting the CW still induces performance degradation and

cannot optimize the system output. To satisfy the diverse

requirements of dense WLANs, prospective HEW is antic-

ipated to autonomously access the best channel resources

with the assistance of sophisticated wireless channel condition

inference to control channel collisions [21]. Such intelligence

is possible with the introduction of deep learning techniques

into the Wi-Fi 6 systems.



Fig. 3. IEEE 802.11ax each layer structure diagram.

Therefore, a BEB scheme based on deep learning is

proposed to dynamically adjust the backoff strategy in accor-

dance with the real-time system performance. As shown in

Fig. 3, this study mainly optimizes the channel access mech-

anism of IEEE 802.11ax MAC. In summary, our model aims

to optimize the system throughput, latency, and retransmis-

sion rate or identify the optimal tradeoff point among them by

relying on the parameter optimization and feedback iterative

capability of machine learning. The basic idea behind our

work can be generalized as follows. Initially, we collected data

from thousands of simulations in terms of system through-

put, latency, and OCW multiple factors. Then, we conducted

a loss function to evaluate the performance of our deep

learning model on throughput, latency, and retransmission

rate. Subsequently, we train our model weights with col-

lected data and use the trained model to predict the system

throughput, latency, and retransmission rate. An optimal back-

off multiple factor is finally determined in accordance with

the predicted performance indices. With our deep learning-

based BEB scheme, the system performance of the 802.11ax

network could be intentionally optimized in real-time and

timely response to the channel variations as well as contention

levels. Our work is to adaptively adjust the parameters of Wi-

Fi 6, especially the parameters of access control to enable

the traditional Wi-Fi 6 to adaptively work in more 6G future

scenarios, as shown in Fig. 4. The figure shows the integrated

communication scene of air, space, ocean, and land [22], [23].

Our contributions are summarized as follows.

1) A regression model between the OCW multiple factor

and system performance indices is implemented in IoT

systems by using the error backpropagation algorithm.

2) A deep learning model is established with the OCW

multiple factor as the input and the system through-

put, latency, and nodal retransmission rate as the output.

Our model is then trained using the Bayesian regular-

ization algorithm, and the mean square error (MSE) and

Fig. 4. Diagram of integrated air, space, ocean, and land communication.

curve fitting degree are considered to evaluate the model

output. At the same time, we set the network conver-

gence conditions, such as the lower limit of the MSE

and the upper limit of the number of network iterations,

to ensure that the training process is short.

3) The OCW multiple factor is predicted in accordance

with the real-time network performance, by which the

BEB policy of the 802.11ax network could be adap-

tively adjusted corresponding to the channel variations

and packet contention levels.

Paper Framework: The remainder of our article is orga-

nized as follows. Section II reviews some relevant works on

Wi-Fi MAC layer optimization with pros and cons given for

IoT systems. Section III describes the procedure for training

data acquisition and preprocessing. Our deep learning-based

BEB model is presented in Section IV. Section V demonstrates

the experimental configurations, numerical results, and corre-

sponding performance analysis. Our article is concluded in

Section VI.

II. RELATED WORK

At present, studies on Wi-Fi MAC layer optimization

are relatively mature. In the literature, research directions

can be roughly divided into two categories, namely, tra-

ditional optimization methods and machine learning-based

optimization methods.

A. Traditional Optimization Methods

Traditional optimization methods can be further divided

into several categories, e.g., priority-based optimization algo-

rithms, probability-based optimization algorithms, and adap-

tive optimization algorithms.

Priority-Based Optimization Algorithm: In [24], a MAC

layer optimization algorithm for the TDMA/CSMA hybrid

protocol is proposed, and its backoff window is calculated on

the basis of the node priority and the number of node conflicts

at the current moment. This algorithm divides the priority of

nodes into four levels, with level 1 having the highest priority.

This algorithm focuses on the network priority of the nodes.

Thus, the nodes with higher priorities can have greater prob-

ability to occupy empty slots. However, the algorithm divides



the priority into 1, 2, 3, and 4 levels, and the CW increase fac-

tor is simply increased in accordance with 1, 2, 3, and 4 times,

without considering the actual transmission requirements.

Probability-Based Optimization Algorithm: In [25], a selec-

tion probability-based backoff algorithm (SPB) is proposed.

The backoff mechanism becomes steeper when the network

is idle, owing to the SPB algorithm, and the backoff mecha-

nism is smoother when the network is crowded. This algorithm

improves system fairness and optimizes system throughput.

The increase and decrease in the backoff window of the

SPB algorithm are controlled by the amplification index and

reduction index. However, the amplification index and reduc-

tion index are fixed values, and they cannot be intelligently

changed, following the network environment.

Adaptive Optimization Algorithms: In [26], a MAC layer

optimization algorithm based on transmission limit adapta-

tion is proposed. Its central idea is to ensure that nodes

can complete the data interaction within three retransmis-

sion times. If the retransmission time is more than three,

then the CW window value is increased by the linear backoff

algorithm. In [27], the linear backoff algorithm is superior

to the exponential backoff algorithm in terms of collision

probability performance. This algorithm combines the linear

backoff avoidance algorithm with the exponential algorithm,

thereby reducing the system delay while reducing the prob-

ability of system conflicts and improving the fairness of the

system. However, either in linear backoff or exponential back-

off, the multiples of the increase and decrease in the backoff

window of this algorithm are fixed values. Thus, the adapt-

ability to different network environments is reduced. In [28],

an optimization algorithm based on network load adaptively

adjusting the backoff index is proposed. This algorithm uses a

nonlinear curve fitting to predict the backoff index and assigns

backoff index on the basis of network load and business priori-

ties. It uses the smaller delay as the cost, improves the network

throughput, reduces the packet loss rate, and optimizes the

overall network performance. This algorithm uses curve fitting

to predict the backoff index, but does not effectively measure

the quality of the curve fitting, thereby inevitably reducing

the reliability of the algorithm. In [29], an improved algo-

rithm based on the hybrid-distributed coordination function

(HBCDF) is proposed to represent the competition window.

The HBDCF algorithm uses the transmission control protocol

(TCP) congestion control mechanism, which can effectively

reduce the DCF collision probability and network delay in

larger networks, thereby improving the saturation throughput

of the system. This simulation results show that the HBCDF

algorithm cannot improve every standard of the network

(such as collision probability, network delay, and throughput),

thereby reducing its fairness. In addition, the algorithm has

not yet reached a conclusion on the optimal threshold and

optimal slope of different network scales, thereby limiting its

performance improvement. In [30], a COSB mechanism for the

CSMA/CA of high-efficiency WLANs is devised. The COSB

guarantees high throughput and low delay by reducing the

number of collisions during the channel access mechanism in

saturated and unsaturated traffic environments. However, in a

dense network environment, COSB suffers from the fairness

problem because some STAs continuously operate at a high-

erCWsize, and few fortunate STAs can operate at a lower CW

size. Under COSB, once the STA reaches a larger CW, it has to

transmit successfully many times to return to the smaller CW.

This approach seems diffcult in a dense network environment

due to the high probability of collision.

B. Machine Learning-Based Optimization Methods

On the contrary, with the improvement of computing power

and the promotion of the development of big data, algorithms

based on machine learning and deep reinforcement learning

are proposed to optimize MAC layer channel access.

Algorithms Based On Machine Learning: In [31], a frame-

work called intelligent-CW (ICW) that allows nodes to

adapt their CWmin values based on observed transmissions

is proposed, ensuring they receive fair share of the chan-

nel airtime. The CWmin value at a node is set on the basis

of a random forest, which is a machine learning model that

includes a large number of decision trees. ICW achieves high

throughput efficiency while maintaining fair allocation of the

unlicensed channels with other neighboring nodes. One of the

most important features of ICW is that its learning structures

can be easily trained and optimized to ensure high spectrum

efficiency. However, this algorithm does not consider the set-

ting of the CWmax and CW increasing methods. In [32], a

machine-learning-enabled EDCA (MEDCA) mechanism for

QoS-supported MAC layer channel access in dense WLANs

is proposed. This mechanism utilizes a Q-learning algorithm,

which is one of the prevailing models of machine learning, to

infer the network density and adjust its backoff CW accord-

ingly. This MEDCA mechanism overcomes the limitations of

EDCA by implementing a channel observation-based collision

probability for the scaling of backoff parameters.

Algorithm Based On Deep Reinforcement Learning: In [33],

an intelligent QL-based resource allocation (iQRA) mecha-

nism is proposed for MAC layer channel access in dense

WLANs. The proposed intelligent paradigm learns diverse

WLAN environments and optimizes performance, compared

with conventional nonintelligent MAC protocols. However, the

performance of iQRA may degrade in small networks due to

low and irregular rewards.

We have proposed a conflict avoidance optimization algo-

rithm based on deep learning by analyzing the problems using

these algorithms. This algorithm can effectively predict the

system throughput, delay, and packet retransmission rate under

different increase multiples of CW. Through the prediction

results, we can select the appropriate CW increase factor to

improve system performance.

III. DATA COLLECTION

This chapter simulates the IEEE802.11ax CSMA/CA

network system. The original data of the experiment are

obtained through MATLAB [34] simulation, including system

throughput, system delay, and packet retransmission rate.

Table I shows a brief description of the symbols used in the

text. To ensure the accuracy and completeness of the data col-

lection process, we reasonably set the simulation parameters of



TABLE I
LIST OF NOTATIONS

TABLE II
SIMULATION PARAMETERS

Fig. 5. Packet generation procedure.

the system. The final system simulation parameters are shown

in Table II. The data packet generation process is shown in

Fig. 5, where the input protocol is the CSMA/CA protocol.

To obtain the influence of the increase multiple of CW

on the system output parameters, We use 0.1 times as the

step size to expand the CW increase factor from 1.1 times

to 10 times, resulting in 90 different CW increase factors.

We simulate systems with different CW multiples and set

the collection rate of system throughput, delay, and packet

retransmission rate to 1s, that is, we collect the output data

of the system every 1 s of time. Therefore, in the total sim-

ulation time of 200 s, 200 output data with time change will

TABLE III
SAMPLED RAW DATA

are obtained. Then, we repeat the experiment 1000 times to

obtain 200 × 1000 data under one CW increase multiple. We

average 200 × 1000 output data to obtain the final output

data of system throughput, delay, and packet retransmission

rate under different CW growth multiples. The definitions of

system throughput, delay, and packet retransmission rate are

as follows.

1) Throughput S is the amount of valid data successfully

received by the terminal per unit time; it is expressed in

S =
Ds

∑

k∈� Tk

(1)

where Ds is the effective amount of data successfully

received by the terminal, Tk is the time considered when

the transmission state is k, and � is the state set. The

transmission status includes the following: waiting for

transmission status, successful transmission status, and

failed transmission status.

2) The delay T represents the time required for one data

packet to travel from one end to the other, and it is

expressed in formula

T =
∑

z∈α

Tz (2)

where Tz is the time considered when the transmission

state is z, and α is the state set. The transmission sta-

tus here includes the following: queuing status, sending

status, processing status, and propagation status.

3) The data packet retransmission rate is the number of

data packets retransmitted by the terminal per unit time.

The raw data example is shown in Table III.

The sample data in Table III show that the system through-

put has a large order of magnitude. We know that when using

MSE for error analysis, if the input parameter has a large order

of magnitude, even if the final predicted value is very close

to the true value, then the error result is maintained at a high

order of magnitude. Thus, the magnitude of the error cannot

be effectively reflected. At the same time, the larger magnitude

of the input parameters also reduces the convergence speed of

the network [36]. Therefore, prior to the deep learning, we

need to normalize the data of throughput, delay, and packet

retransmission rate to the range of [0,1] [37], and the exam-

ples of normalized processed data are shown in Tables IV–VI.

This data set is unavailable for all application scenarios. The

data set is collected in real time; thus, for different application

scenarios, data are collected in real time.

Prior to the deep learning, we need to divide the data into

different types. We divide the original data according to the



TABLE IV
EXAMPLE OF NORMALIZED THROUGHPUT

TABLE V
EXAMPLE OF NORMALIZED AVERAGE TRANSMISSION DELAY

TABLE VI
EXAMPLE OF NORMALIZED PACKET RETRANSMISSION RATE

Fig. 6. Architecture of the proposed neural network.

ratio of 7:1.5:1.5, in which the training data account for 70% of

the total data, and the verification data and the test data account

for 15% of the total data, respectively. After the neural network

model is established by deep learning, the output prediction

data need to be denormalized to obtain the final prediction

data value.

IV. PROPOSED MODEL

This section mainly introduces the proposed deep learning

model. In Section IV-A, the architecture model of the neu-

ral network is introduced, the information of the input layer,

hidden layer, and output layer of the network architecture are

described, and the process of determining the number of hid-

den layers is discussed. In Section IV-B, the algorithm flow

of the deep learning neural network is described in detail. The

neural network architecture and the neural network algorithm

flow are shown in Figs. 6 and 7, respectively.

Fig. 7. Flowchart of the proposed CW adaptive model.

A. Introduction to Network Architecture

The proposed deep neural network model is built on the

basis of feedforward neural network [38], [39]. We have opti-

mized the network structure through multiple experimental

simulations and selected the structure with the best experi-

mental effect as the final network structure. Fig. 6 shows that

this deep neural network has three layers, including an input

layer, a double hidden layer, and an output layer [40]. The

relationship between the input and output of each layer in this

neural network is expressed by

net
(L)
i =

sL−1
∑

j=1

w
(L)
ij h

(L−1)
j + b

(L)
i (3)

h
(L)
j = f

(

net
(L)
i

)

(4)



TABLE VII
PERFORMANCE OF DIFFERENT NUMBER OF HIDDEN LAYERS

where sL−1 represents the number of neurons in layer L-1; w
(L)
ij

represents the connection weight between the jth neuron in the

L-1 layer and the ith neuron in the L layer; b
(L)
i represents the

offset term of the ith neuron in the Lth layer; h
(L−1)
j represents

the output of the jth neuron in the L-1 layer, and can also

represent the input of the jth neuron in the L layer; net
(L)
i

represents the transition term of the ith neuron in the Lth layer;

and f () represents the neuron activation function.

Input Layer: The input layer is a single input and the input

parameter is OCW increase multiple.

Hidden Layer: This network has two hidden layers, namely,

hidden layer 1 and hidden layer 2. Generally, the more number

of hidden layers indicates a stronger learning ability of the

network, more complex the network, and higher possibility

of the overfitting phenomenon. In a single input network, the

number of the hidden layers should not be extremely large.

The simulation result shows that the network performance of

two hidden layers is the best; thus, selected number of hidden

layers is two. Table VII shows the performance comparative

results of different hidden layers. This neural network sets the

number of neurons in hidden layers 1–8 and that in hidden

layers 2–5.

Table VII shows that the MSE of the hidden layer neural

network with one layer is higher, and the regression fitting

curve is very poor. The MSE of the hidden layer with four

and five layers increases, and the effect of the regression fit-

ting curve is general, which shows that the number of hidden

layers is large. Thus, we should select the neural network with

the number of hidden layers greater than 1 and less than 4.

Although the MSE of the hidden layer with three-layer neu-

ral network is the lowest, the regression fitting curve is not

as good as that of the two layers, and the number of MSE

of the two layers satisfies the requirements. In a comprehen-

sive consideration, we select the double hidden layer neural

network.

Output Layer: The number of neurons in the output layer is

three, and the output parameters are system throughput, system

delay, and data packet retransmission rate.

B. Introduction of Algorithm Flow

As shown in Fig. 7, the algorithm flow is mainly divided

into six steps. The steps are as follows.

Step 1: The weights, bias terms, and learning rates are

initialized in the neural network.

Step 2: Forward propagation is activated, the expected value

of the loss function is obtained with respect to system through-

put, delay, and packet retransmission rate. The loss function

is represented by

E =
1

m

m
∑

i=1

E(i) (5)

where m is the total number of training samples and E(i) is the

loss function of a single training sample and is expressed by

E(i) =
1

2

n
∑

k=1

(Yk(i) − yk(i))
2 (6)

where the coefficient (1/2) is set to facilitate the derivation

of the equation, and the value is not fixed; n represents the

number of output neurons in the output layer, and the output

neurons of this deep neural network are system throughput,

delay, and packet retransmission rate. Thus, n = 3; Yk(i) is

the true value of the kth output neuron, and yk(i) is the pre-

dicted output value of the kth output neuron. Therefore, the

loss function of this deep neural network can be expressed by

E =
1

2m

m
∑

i=1

3
∑

k=1

(Yk(i) − yk(i))
2. (7)

Step 3: According to the loss function, the output unit error

term and hidden unit error term are calculated. The output

unit error term is the gradient value of the loss function with

respect to the output element, and the hidden unit error term

is the gradient value of the loss function with respect to the

hidden element. Each unit error term can be further divided

into a connection weight error term and a bias error term.

The connection weight error term and offset error term of

the output layer of a single training sample are expressed by

equations (8) and (9), respectively

∂E(i)

∂w
(L)
zj

=
∂

∂w
(L)
zj

(

1

2

n
∑

k=1

(Yk(i) − yk(i))
2

)

= − (Yz(i) − yz(i))f
′(x)

∣

∣

x=net
(L)
z

h
(L−1)
j (8)

where w
(L)
zj represents the connection weight of the zth neu-

ron in the output layer (layer L) and the jth neuron in layer

L-1; and z represents the system throughput, delay, and packet

retransmission rate of this deep neural network. f ′(x) repre-

sents the derivative of the activation function. The types of

activation functions of each layer of this deep neural network

are shown in Table VIII

∂E(i)

∂b
(L)
z

=
∂

∂b
(L)
z

(

1

2

n
∑

k=1

(Yk(i) − yk(i))
2

)

= − (Yz(i) − yz(i))f
′(x)

∣

∣

x=net
(L)
z

(9)

where b
(L)
z represents the offset value of the zth neuron in the

output layer. The output layer of this deep neural network

is the third layer, i.e., L = 3. We set δ
(3)
z = −.(Yz(i) −

yz(i))f
′(x)|

x=net
(3)
z

; therefore, the connection weight error term

and offset term error of the output layer can be further

expressed as



∂E(i)

∂w
(3)
zj

= δ(3)
z h

(3−1)
j (10)

∂E(i)

∂b
(3)
z

= δ(3)
z . (11)

The calculation process of the connection weight error term

and the offset error term of each hidden layer is the same and

is not described here.

Step 4: The connection weights and bias term of the neural

network are updated. The updated formulas are as follows:

w
(L)′
ij = w

(L)
ȳ − η

∂E

∂w
(L)
ij

(12)

b
(L)′
i = b

(L)
i − η

∂E

∂b
(L)
i

(13)

where a and b represent the updated weight and offset values,

respectively; η represents the learning rate, and η ∈ (0, 1).

Step 5: The global error of the network is calculated.

Step 6: Whether the error value satisfies the requirements

or whether the number of training iterations is used up is

determined. If any of these conditions is satisfied, then the

output parameters are the best parameters at present; if all the

conditions are not satisfied, then repeat steps 2–6.

V. EXPERIMENTAL AND NUMERICAL RESULTS

A. Experimental Performance Measurement Index

The measurement index of network model performance.

1) The R value of regression, it is used to measure the

correlation between the predicted value and the target

value, and when the R value is 1, the predicted value of

this deep neural network is closest to the target value.

2) MSE, used to determine whether the output of this deep

neural network is accurate. If MSE < 10−3, then this

deep neural network is initially considered desirable.

3) The regression fitting curve of the neural network

to original data. The regression fitting curve is one

of the most important indices to evaluate the neural

network. The higher curve fit indicates more accurate

data prediction result and more reliable network.

B. Experimental Scene, Parameter Table, and Network

Topology

MATLAB is used to establish the proposed feedforward

neural network architecture scenario, and the experimental

simulation is conducted in accordance with the network topol-

ogy introduced in Section IV. The detailed information on the

network topology are presented in Section IV. The experi-

mental parameters are shown in Table VIII, where logsig is

a logarithm function of type S, tansig is a hyperbolic tangent

function, trainbr is a Bayesian regularization algorithm, and

learngd is a learning function of gradient descent weight.

C. Experimental Simulation Results

D. Experimental Result Specification

Fig. 8 shows a network regression diagram. The figure

shows that the R value of the verification data is 0.99818,

TABLE VIII
EXPERIMENTAL PARAMETERS

Fig. 8. Regression performance of the proposed neural network.

Fig. 9. Training performance of the proposed neural network.

and the R value of the test data is 0.99878. The correlation

between the output data of the neural network and the target

data has exceeded 99.8%, which indicates that this network

can predict the output result accurately.

Fig. 9 shows that the MSE no longer decreases when the

number of iterations of this neural network algorithm is 49. At

this time, the MSE of the verification data is 2.2486e-4, which

is already lower than 10e-3, and the MSE of the training data

is less than 10e-4, thereby satisfying the requirement of MSE.

Fig. 10 shows the comparison between the original data of

system throughput and the predicted data of neural network



Fig. 10. System throughput with different CW.

Fig. 11. Average transmission delay with different CW.

Fig. 12. Packet retransmission rate with different CW.

under variable CW increase multiple. The figure shows that the

prediction result of the neural network can accurately reflect

the change in system throughput. When the CW increase

multiple is 2.5–6.5 times, the predicted data result is higher

than the original data, and the maximum deviation is less than

6%, which is a normal phenomenon in the data prediction

process.

Fig. 11 shows the comparison between the original data

of system delay and the predicted data of neural network

under the variable CW increase multiple. The figure shows

that the prediction curve of the network basically coincides

with the curve of the original data. This finding indicates that

this network can predict the change in system delay well.

Fig. 12 shows the comparison between the original data of

the packet retransmission rate and the neural network fore-

cast data under the variable CW increase multiple. The data

prediction curve only fluctuates at CW increase multiples of

1.8–1.9 and 2.5–3.0, and the floating ranges are less than 5%,

Fig. 13. System throughput.

Fig. 14. Statistical performance of system throughput.

which is a normal floating range. This result indicates that this

network can predict the packet retransmission rate effectively.

Fig. 13 shows a comparison chart of system throughput

performance. The figure shows that in the simulation time of

200 s, the system throughput performance is the highest when

the CW increase multiple is 1.7 times, and compared with

the 802.11ax scheme, the throughput performance is improved

by approximately 7%. In scenes that require high system

throughput, such as industrial video data transmission and data

backup, the proposed optimization algorithm can be used to

select the CW increase multiple that maximizes the system

throughput to improve the network throughput performance,

thus, satisfy meet the needs of these scenes.

Fig. 14 shows a box chart of the system throughput

performance comparison. The figure shows that when the CW

increase multiple is 1.7 times, the system throughput is the

highest and the floating range of the throughput is the small-

est. Compared with the 802.11ax scheme, the scheme with

a CW increase at multiple of 1.7 times is more suitable for

scenes with higher throughput performance requirements.

Fig. 15 shows a comparison chart of system delay

performance. The figure shows that within 200 s of simula-

tion time, the system delay of the 802.11ax scheme is higher.

However, the system delay is the lowest when the CW increase

multiple is five times. In scenes that require high system delay

performance, such as mobile access scenarios and voice calls,

the proposed optimization algorithm can be used to select

a suitable CW increase multiple to improve network delay

performance. For example, the CW increase multiple can be

set to three times to satisfy the requirements of such scenes.

The CW increase factor is selected to be three times given that



Fig. 15. Average transmission delay.

Fig. 16. Statistical performance of average transmission delay.

Figs. 14 and 16 show that the system delay performance dif-

ference between the CW increase factor of three times and five

times is small. However, at three times, the system throughput

performance is approximately 17% higher than at five times.

Fig. 16 shows a box chart of system delay performance

comparison. The figure shows that when the CW increase

multiple is five times, the system delay is the lowest and the

floating range of the delay is the smallest. The scheme with a

larger CW increase multiple (such as three times or five times)

is more suitable for scenes with higher delay performance

requirements than the 802.11ax scheme.

Fig. 17 shows a comparison chart of system packet retrans-

mission rate performance. The figure shows that within 200

s of simulation time, the data packet retransmission rate of

the 802.11ax scheme is higher, but the data packet retrans-

mission rate is the lowest when the CW increase multiple

is 5. In scenes that require high performance for packet

retransmission rates, such as industrial sensor communica-

tion scenarios, the CW increase multiple of three times

can be selected to improve the performance of network

packet retransmission rates to satisfy the needs of these

scenes.

Fig. 18 shows a box chart of system data packet retrans-

mission rate performance comparison. The figure shows that

the system data packet retransmission rate is the lowest when

the CW increase multiple is five times. Compared with the

802.11ax scheme, the scheme with a larger CW increase

multiple (three times or five times) is more suitable for

scenes with higher performance requirements on the packet

retransmission rate.

Fig. 17. Packet retransmission rate.

Fig. 18. Statistical performance of packet retransmission rate.

VI. CONCLUSION

The CSMA/CA protocol has been widely used in the field of

Wi-Fi-enabled IoT systems. However, the BEB strategy lim-

its the optimization of network performance. Deep learning

algorithms are used to establish a model between the backoff

window increase multiple and the system throughput, average

transmission delay, and data packet retransmission rate. This

model can effectively predict the system performance of dif-

ferent increase multiples of the backoff window. On the basis

of the prediction results, the increase multiples of the back-

off window are selected to optimize the system performance

and used the CSMA/CA protocol to improve the performance

of wireless communications. We use the Bayesian statistical

regularization algorithm to train the network and introduce a

dynamically changing learning rate to enhance the generaliza-

tion ability of the network. At the same time, a threshold is

set to detect algorithm generalization ability in the network. If

the number of consecutive training of the algorithm exceeds

this threshold and the training error does not decrease but

increases, then the training is forced to end. These measures

enable this network to obtain a strong generalization ability

that can be used in different applications without repeated

training. The experimental simulation results showed that the

performance of system throughput, system delay, and packet

retransmission rate is improved using the predicted optimal

backoff window increase multiple. A suitable CW increasing

multiple can be selected from the model prediction results in

accordance with the system performance priority level to sat-

isfy the performance tradeoffs among the parameters of the

system performance index. Thus, a reasonable improvement

of the system performance parameters is achieved. Moreover,

this algorithm does not require multiple training for various



application scenarios. Our future works will investigate the Wi-

Fi 6 performance improvement with multidimensional features

introduced, e.g., channel, coding, and interleaving.
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