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Abstract Contest success functions, which show how probabilities of win-
ning depend on resources devoted to a con�ict, have been widely used in the

literature addressing appropriative activities (economics), international and

civil wars (political science), and group con�ict and selection (evolutionary

biology). Two well-known forms of contest success functions predict contest

outcomes from the di¤erence between the resources of each side and from the

ratio of resources. The analytical properties of a given con�ict model, such

as the existence of equilibrium, can be drastically changed simply by altering

the form of the contest success function. Despite this problem, there is no

consensus about which form is analytically better or empirically more plausi-

ble. In this paper we propose an integrated form of contest success functions,

which has the ratio form and the di¤erence form as limiting cases, and study

the analytical properties of this function. We also estimate di¤erent contest

success functions to see which form is more empirically probable, using data

from battles fought in seventeenth-century Europe and during World War II.
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1 Introduction

Traditionally scholars treated con�ict as a pathological state requiring spe-

cial treatment. However, in recent years, various theories of con�ict have found

important applications in and made contributions to �elds such as economics,

political science, and evolutionary biology. Economists have examined as-

pects and implications of appropriative activities, such as rent-seeking behav-

iors, and the trade-o¤ between appropriation and production when property

rights are not well-de�ned (Tullock, 1967, 1980; Hirshleifer, 1991; Grossman,

1994). Political scientists, focusing on political turmoil such as war, civil war,

and demonstration, have scrutinized the cause of these con�ict situations and

their implications (Fearon, 1995; Collier and Hoe er, 2001; Sambanis, 2004;

Kalyvas et al., 2008). More importantly, early human lethal con�ict is being

recognized as a key factor in explaining human cooperation in evolutionary

biology (Bowles, 2008; Choi and Bowles, 2007; Garcia and Bergh, 2008).

In these studies the technology of con�ict is usually described by a function

called the contest success function. A contest is �a game in which participants

expend resources on arming so as to increase their probability of winning

if con�ict were to actually take place� (Gar�nkel and Skaperdas, 2006, p.1)

and contest success functions show how probabilities of winning depend on

the resources devoted to con�ict. Two well-known forms of contest success

functions predict contest outcomes from the di¤erence between the resources

of each side and from the ratio of resources.

In spite of the frequent use of the two di¤erent forms of contest success func-

tions, there is no agreement on which form better represents the technology

of con�ict. Jack Hirshleifer points out that the ratio form has the impractical
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implication that a side investing zero e¤ort loses everything as long as the

opponents spend a small amount of resources (Hirshleifer, 1989, 1991). How-

ever, since the di¤erence form does not admit the existence of an interior pure

strategy Nash equilibrium in widely used con�ict models, the ratio form is

more commonly used.

In this paper we present an integrated form of contest success functions,

which has the ratio form and the di¤erence form as limiting cases, and study

the analytical properties of this form. We also estimate di¤erent contest suc-

cess functions using war data, which provide a natural candidate for a variable

that measures e¤ort or resources, namely the number of combatants.

To compare these two common functions we consider the following example.

For concreteness we use the language of military combat, following Hirshleifer

(1991). Suppose p is the winning probability of side 1 when two �ghters

of side 1 face one �ghter of side 2 � a situation that we denote by (2; 1):

We ask the following question: when a thousand and one �ghters of side 1

contend with a thousand �ghters of side 2, namely (1001; 1000), should we

still assign the same value of p to the winning probability of side 1? Similarly,

if the number of �ghters of side 1 and side 2 are 2000 and 1000 respectively,

(2000; 1000), would p be the correct probability of side 1�s winning? One may

argue that because the importance of one more �ghter becomes smaller as

the total number of �ghters grows, we should assign a probability less than

p to (1001; 1000): Regarding the case (2000; 1000); one may think that the

e¤ectiveness of �ghting ability may increase faster as �ghter size increases, so

side 1 can have a higher probability of winning in (2000; 1000) (see Lanchester,

1916).

The problem is that in analysis one necessarily chooses one speci�c form of
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contest success functions, thus adopting one interpretation of these functions,

even though we do not have a good answer to the above questions. The main

purpose of this paper is to de�ne a new contest success function which provides

more �exibility in speci�cation than the existing forms. Section 2 provides the

derivation, which closely resembles that of a CES production function (Arrow

et al., 1961). The probabilistic derivation, like McFadden�s (1974) and Jia�s

(2008), is also provided. We examine the existence of a pure strategy interior

Nash equilibrium. In section 3 we present the empirical estimation of various

contest success functions using battle data of seventeenth-century Europe and

World War II and section 4 concludes the paper.

2 Integrated Form

2.1 Derivation

Denoting the resources or �ghting e¤ort devoted to a contest by side 1 and

side 2 by x1 and x2 respectively and winning probabilities of side 1 and side

2 by u(x1; x2) and v(x1; x2); we have the di¤erence form and the ratio form of

contest success functions (Hirshleifer, 1989):

Di¤erence : ud(x1; x2) =
exp (�x1)

exp (�x1) + exp (�x2)
for 0 � x1; x2

vd(x1; x2) =
exp (�x2)

exp (�x1) + exp (�x2)
for 0 � x1; x2
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Ratio : ur(x1; x2) =

8><>:
(x1)

�

(x1)
�+(x2)

� if 0 < x1 or 0 < x2

1
2

if x1 = 0 and x2 = 0

vr(x1; x2) =

8><>:
(x2)

�

(x1)
�+(x2)

� if 0 < x1 or 0 < x2

1
2

if x1 = 0 and x2 = 0

The superscript, d or r, indicates the di¤erence or the ratio form. Clearly

the di¤erence form gives the winning probabilities based on the di¤erence

between resources, x1�x2 , since ud(x1; x2) = 1
1+exp(��(x1�x2)) , while the prob-

ability of winning in the ratio form depends only on the ratio, x1=x2; because

ur(x1; x2) =
1

1+(x2=x1)
� . We also note that the ratio form of contest success

functions is not continuous at (0; 0); which accounts for the impossibility of

(0; 0)�s being a Nash equilibrium in a con�ict model. We will discuss this more

precisely in section 2.2.

Note that in the example given in the introduction, the ratio of the increase

in �ghters of side 1 to the corresponding increase in side 2, necessary to keep

the probability of winning constant, captures the degree of overvaluing (or

undervaluing) the probability of winning. Speci�cally we compute

case 1: ratio of increases in �ghters =
1001� 2
1000� 1 � 1 (1)

case 2: ratio of increases in �ghters =
2000� 2
1000� 1 � 2 (2)

Motivated by this, we de�ne a new rate which can serve as a measure

comparing two forms of contest success functions and call this the marginal

rate of augmentation (MRA). This measure shows the quantity of additional

resources side 1 needs to augment its existing resources to keep the probability

of winning constant against an increase in the other side�s resources. More
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precisely if we consider the level set of side 1�s contest success function �u =

u(x1; x2) and use the notation x2 = x2(x1) such that �u = u(x1; x2(x1)); MRA

is the slope of x2(x1):

MRA :=
dx2
dx1

= �ux1
ux2

where ux1 = @u=@x1; ux2 = @u=@x2: So if MRA is high more resources should

be devoted to obtain the same probability of success. Using MRA we now

de�ne an elasticity of augmentation as follows:

elasticity of augmentation (�)

=
percentage increase in MRA

percentage increase in relative size of contestants�resources

=
d ln(�ux1=ux2)
d ln(x2=x1)

The elasticity of augmentation is a normalized percentage increase in MRA

and since u+v = 1, we can also write � = d ln(vx1=ux2 )

d ln(x2=x1)
:When � is low, we expect

that side 1 would need to augment its resources by a smaller amount to keep

up the same probability of success. This may correspond to the situation

described by the di¤erence form. By contrast, a high � implies that side 1

should extend its resources by greater amounts to gain the same probability

of success. This situation is possibly captured by the ratio form. By simple

calculation we verify that for the di¤erence form the elasticity of augmentation

is 0, whereas for the ratio form the elasticity is 1.

The parameter � in the two forms is a �mass e¤ect parameter scaling

the decisiveness of �ghting e¤ort disparities�(Hirshleifer, 1991) and measures

the slope of the contest success function in an evenly balanced match � the

contest where x1 = x2. By computing the marginal probabilities of winning in
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an evenly balanced match,

@ud

@x1
=
�

4
;
@ur

@x1
=
�

4

�

x1

and we see that @ud=@x1 = @ur=@x1 =
�
4
if x1 = x2 = 1: Since we would

like to �nd an interpolation between the di¤erence form and the ratio form

with a constant elasticity of augmentation we require this probability to equal

�
4
at x1 = 1 for a newly derived function. With these parameters, we have

proposition 1:

Proposition 1 Suppose we have the following equations:

d ln(�ux1=ux2)
d ln(x2=x1)

= � for x1; x2 � 0 (3)

ux1(x1; x2) =
�

4
for x1 = x2 = 1 (4)

u(x1; x2; �) =
f�(x1)

f�(x1) + f�(x2)
(5)

where 0 � �; � 6= 1; � > 0 and f�(0) > 0; f� is increasing and di¤erentiable

for x1; x2 � 0: Then equation (6) is a unique solution satisfying (3), (4), and

(5)

u(x1; x2; �) =
exp

�
� 1
1��x

1��
1

�
exp

�
� 1
1��x

1��
1

�
+ exp

�
� 1
1��x

1��
2

� for 0 � � < 1 (6)

Moreover we have

u(x1; x2; 0) = u
d(x1; x2) and u(x1; x2; �)! ur(x1; x2) as �! 1 (7)
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Proof. By rearranging (3) we obtain

(x1)
�ux1 + c(x2)

�ux2 = 0 for some c 6= 0 (8)

Using (5) and (8) we �nd

(x1)
�f 0�(x1)f�(x2)� c(x2)�f�(x1)f 0�(x2) = 0 for x1; x2 � 0 (9)

By evaluating (9) at x1 = x2 > 0 we conclude c = 1: We set x2 = 1 in (9) and

�nd
f 0�(x1)

f�(x1)
=
f 0�(1)

f�(1)

1

x�1
(10)

and using (4) and (5) we see that f 0�(1)=f�(1) = �. Then by solving (10) we

obtain

u(x1; x2; �) =
exp(� 1

1��x
1��
1 )

exp(� 1
1��x

1��
1 ) + exp(� 1

1��x
1��
2 )

So we have u(x1; x2; 0) = ud(x1; x2) and the fact that u(x1; x2; �)! ur(x1; x2)

as �! 1 follows from an application of L�Hopital�s rule.

We call u(x1; x2; �) in (6) an integrated form of contest success function

and write u�(x1; x2) := u(x1; x2; �). According to proposition 1 an integrated

contest success function equals the di¤erence form when � = 0 and approaches

the ratio form as �! 1: Skaperdas (1996) shows that a function of the form (5)

satis�es the desirable axioms of contest success functions, where the desirable

axioms include monotonicity, anonymity, and independence from irrelevant

alternatives (See Skaperdas, 1996, pp.284-286). Hence by proposition 1 we

also conclude that the integrated form is a unique function which satis�es the

properties of (3, 4) and the desirable properties of a contest success function,
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Figure 1: Comparison of contest success functions. Each line shows the

combinations of x1 and x2 where side 1�s probability of winning is 0.4. We use the values,
� = 1; � = 0:3

and this provides an axiomatic characterization of the new integrated form.

Figure 1 depicts the level sets of the integrated form, the di¤erence form, and

the ratio form. As we expect the integrated form describes the intermediate

level of probabilities between the di¤erence form and the ratio form.

Next we consider the probabilistic derivation of the integrated form. We

write X � F (s) to indicate that the distribution of a random variable, X; is

F (s); and recall X follows Gumbel type (type I) extreme value distribution

if X � exp(�e��s) and Fréchet type (type II) extreme value distribution if

X � exp(�s��) for s � 0; where � is a positive constant. We suppose the

result of a contest depends on performance, hi ; and performance is in turn

determined by xi and a random factor �i: i.e. hi = hi(xi; �i) (Gar�nkel and

Skaperdas, 2006).

If the speci�cation of performance is in additive form, hdi = xi + �i, and �i

follows a Gumbel type distribution, the di¤erence form of the contest success
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function equals Prfhd1 > hd2g (McFadden, 1974). When �i follows a Fréchet

type distribution and the speci�cation of performance is in multiplicative form,

hri = xi�i; the ratio form of the contest success function can be derived from

Pr fhr1 > hr2g (Jia, 2008). We set hi(�) :=
x1��i �1
1�� +

�1��i �1
1�� and easily see that

Prfh1(0) > h2(0)g = Prfhd1 > hd2g and Prfh1(1) > h2(1)g = Prfhr1 > hr2g;

where we use notations hi(1) = lim�!1 hi(�):

Since we have Prfx1 + �1 < x2 + �2g = Prf�1 � �2 < x2 � x1g for given

x1 and x2; McFadden (1974)�s result is obtained by showing that �1 � �2 �
1

1+e�s for �i � exp(�e��s). Similarly because Prfx1�1 < x2�2g = Prflog �1 �

log �2 < log x2 � log x1g holds, Jia�s derivation is equivalent to showing that

log �1 � log �2 � 1
1+e�s for �i � exp(�s��) for s � 0: Proposition 2 provides

the generalization of these derivations. In the proposition we use the following

de�nition of the rational power of real numbers, s
n
m : form;n natural numbers

s
n
m :=

8><>: ( m
p
s)n if s � 0

�( m
p
�s)n if s < 0

(11)

where m
p
s; for s > 0, denotes a unique positive real number y such that ym = s:

Proposition 2 Suppose that � = 1� n
m
; m; n are natural numbers such that

m > n and �1; �2 � F (s) i.i.d. and F (s) = exp
�
�e��

1
1�� s

1��
�
for �1 < s <

1 and hi(�) :=
x1��i �1
1�� +

�1��i �1
1�� : Then

Prfh1(�) > h2(�)g =
exp

�
� 1
1��x

1��
1

�
exp

�
� 1
1��x

1��
1

�
+ exp

�
� 1
1��x

1��
2

�
Proof. From (11) we see that 1

1��s
1�� is continuous, increasing and 1

1��s
1�� !

�1 as s ! �1 and 1
1��s

1�� ! 1 as s ! 1; so F (s) is indeed a
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distribution function. Since Prfh1(�) > h2(�)g = Prf 1
1��x

1��
1 � 1

1��x
1��
2 >

1
1���

1��
2 � 1

1���
1��
1 g; in the view of McFadden (1974) (or lemma in the appen-

dix) it is enough to show that 1
1���

1��
1 � exp(�e��s): Again from (11) and

the de�nition of F (s) we have

Prf 1

1� ��
1��
1 < sg = Prf�1 <

� n
m
s
�m

n g

= exp(�e��s)

We note that the distribution function F (s) does not possess a continuous

density since F (s) is not di¤erentiable at 0: Moreover if �i � Fi(s) indepen-

dently and Fi(s) = exp
�
�ie��

1
1�� s

1��
�
, from lemma 1 in the appendix we

have

Prfh1 > h2g =
1 exp

�
� 1
1��x

1��
1

�
1 exp

�
� 1
1��x

1��
1

�
+ 2 exp

�
� 1
1��x

1��
2

� (12)

As �!1; (12) approaches a generalized ratio form (Gar�nkel and Skaperdas,

2006) and 1 represents the relative �ghting e¤ectiveness of side 1 against side

2 (see Dupuy, 1987; Kalyvas et al., 2008).

2.2 Existence of Pure-Strategy Nash Equilibrium

Despite the fact that both the ratio form and the di¤erence form have

their respective analytical advantages, the ratio form is more commonly used

since it admits an interior pure-strategy Nash equilibrium for frequently-used

con�ict models (Gar�nkel and Skaperdas, 2006). We study the conditions for

� which allows a pure strategy Nash equilibrium, using a simple con�ict model

(Hirshleifer, 1989; Gar�nkel and Skaperdas, 2006). Assume side 1 and side 2
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have resources x1 and x2, where x1; x2 2 [0; �x] and �x � 1; and they compete

for a prize of the value 2�x, the sum of total available resources: The costs

of competing are the resources devoted to the contest, so we write expected

payo¤s for side 1 and side 2:

�1(x1; x2) = 2�x u� (x1; x2)� x1 (13)

�2(x1; x2) = 2�x v�(x1; x2)� x2 (14)

where 0 � � < 1: In the model with u� being replaced by the ratio form ur in

(13) and (14), (x1; x0) = (0; 0) cannot be a Nash equilibrium since an arbitrary

small increase in resources from 0 will raise the probability of winning from 0.5

to 1 and hence the marginal probability of winning at 0 is in�nity (Hirshleifer,

1989). This is one of the main reasons why Hirshliefer criticizes the ratio form:

peace is never observed as an equilibrium outcome (Hirshleifer, 1991, p.132).

We look for a symmetric interior pure-strategy Nash equilibrium. Denoting

such an equilibrium by (x�1; x
�
2); we �nd the �rst order condition for the best

response of side 1, xBR1 , given x2:

2��x
1

(xBR1 )�
u�(x

BR
1 ; x2)(1� u�(xBR1 ; x2))� 1 = 0 (15)

At a symmetric equilibrium, u�(xBR1 ; x2) =
1
2
: Had we used the di¤erence form

instead of the integrated form or set � = 0, the left hand side of (15) would

not have depended on x1: Because of this an interior symmetric equilibrium

generally fails to exist in the di¤erence form, and this accounts for the more

popular use of the ratio form in con�ict models.
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In the integrated form, if a symmetric equilibrium (x�1; x
�
2) exists, from (15)

x�1 = x
�
2 =

���x
2

� 1
�

(16)

To simplify the analysis we assume ��x < 2 and �00�(t) < 0 for t 2 [0; �x]

where ��(t) := 2�x u (t; x�2) � t: The �rst assumption, ��x < 2; guarantees

x�1 =
�
��x
2

� 1
� < ��x

2
< �x and the second one ensures that ��(t) achieves a global

maximum at x�1. With these two assumptions x
�
1 = x�2 =

�
��x
2

� 1
� is indeed

a unique symmetric Nash equilibrium and we view x�1 = x�2 =
�
��x
2

� 1
� as a

generalization of the solution in the case of the ratio form (For example, see

equation (10) in Gar�nkel and Skaperdas, 2006).

Moreover we verify that lim�!0 x
�
1 = 0; in the limiting case approaching

the di¤erence form, an interior pure strategy Nash equilibrium converges to

0 and this shows one instance where there is no interior pure strategy Nash

equilibrium in the di¤erence form. We conclude that under reasonable condi-

tions the integrated form of the contest success function allows an interior pure

strategy Nash equilibria for all 0 � � < 1: In �gure 2 we present a numerical

example of this analysis.

3 Empirical Evidence

Since we do not have an a priori answer as to which form of the contest

success function is more plausible, we conduct an empirical analysis. As arms

races and wars are the most important and obvious examples of con�ictual

contest (See Konrad, 2007, for various forms of con�ict), we believe that the

estimation of contest success functions using war data would provide mean-
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Figure 2: Existence of an interior pure strategy Nash equilibrium.
We draw side 1�s best response (thick line), side 2�s best response (dashed line), side 1�s

indi¤erence curves (thin line) in each panel. We use values, � = 1; �x = 1. From the shape

of indi¤erence curves we see that �00�(t) < 0 for all t:

ingful estimates of the parameters, � and �.

3.1 Estimation Method

We use battle data from seventeenth century European wars in Bodart

(1908, pp. 49-177) and from World War II in Dupuy (1987, pp. 293-295).

Military combat, a violent, planned form of physical interaction between two

hostile opponents, has a natural hierarchy: war, campaign, battle, engagement,

and duel (Dupuy, 1987). Among these we consider two levels of military

combat: war and battle. A war is an armed con�ict or a state of belligerence

usually lasting for months or years, while a battle involves combat between

two armies with speci�c missions, normally lasting one or two days. The

seventeenth century European wars data cover 315 battles with each battle

corresponding to one observation in our data. Each observation has a record

of the winner, the loser, and the total number of personnel in winning and

14



losing armies.

We observe that each battle gives two pieces of information: the winning

probability of a winner and the losing probability of a loser. Because of this

di¢ culty in interpretation, we consider two constructions of data sets from

the original battle data. In the �rst construction � the case presented in

the text � we associate each battle with either a winning event or a losing

event depending on a random draw. Alternatively, we expand the original

battle data such that each battle represents both winning and losing events

to each battle, hence obtaining a new data set with 630 observations. In this

case, presented in the appendix, we correct the standard errors by clustering

battles. We provide descriptive statistics for European battles in the appendix.

Denoting the indicator of winning by yi we use the following econometric

model:

yi � Bernoulli(�i) (17)

(D) �i = F (�(x1i � x2i) + �1 + �2Darmy i + �3Dwar i)

(R) �i = F (�(lnx1i � lnx2i) + �1 + �2Darmy i + �3Dwar i)

(I) �i = F (�(x1��1i � x1��2i ) + �1 + �2Darmy i + �3Dwar i)

where F (s) = 1
1+e�s ; Darmy, Dwar are dummy variables indicating the identity

of armies and the kind of wars (see appendix).

The speci�cations of the models in equation (17) are the direct consequence

of proposition 2 and the dummy variables control for combat e¤ectiveness due

to the identity of armies or the speci�city of wars. Indeed using F (s) and
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� = �
1�� we can write model (I) as

�i =
exp�1+�2Darmy i+�3Dwar i exp(� 1

1��x
1��
1i )

exp�1+�2Darmy i+�3Dwar i exp(� 1
1��x

1��
1i ) + exp(

1
1��x

1��
2i )

so we can regard the part exp�1+�2Darmy i+�3Dwar i as a ratio of i�s;
1
2
; in (12).

We also note that model (D) is a standard logit regression and model (R) is a

logit regression with the data log-transformed. Model (D), (R), and (I) esti-

mate the di¤erence form, the ratio form, and the integrated form, respectively.

We estimate each parameter using the maximum likelihood method, which is

the standard method in estimating logit models. We could not estimate the

di¤erence form and the integrated form in the case of the World War II data

since the data provides only the ratio of combat powers.

3.2 Estimation Results

In table 1 we note that all estimates of � in the di¤erence and the ratio

forms are positive, which shows that one side�s winning probability is an in-

creasing function of that side�s own e¤ort. For the integrated form we can

recover the implied � = 2:28009; using the relation � = (1� �)�.

To compare ��s in each model we compute one side�s marginal probability

of winning at an evenly balanced match when the number of combatants is half

of its total available resources; i.e. if we denote the total available resources

by �x, this marginal probability of winning is 1
4

�
(�x=2)�

. Since the mean number

of combatants in the seventeenth century European war data is 21,035 (see

appendix), we can use this number as a proxy for �x
2
. Table 2 shows the

marginal probabilities of winning in an evenly balanced match.
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17C European War World War II

Di¤erence Ratio Integrated Ratio

� 1:98� 10�5 0:70377 3.41982

(9:32� 10�6) (0:120365) (0.6776)

� �18:19199
(6:4571)

� 1:125335

(0:21571)

Number of 315 315 315 188

Observations

Percentage of 65:40 67:62 67:30 84.04

Correctly Predicted

Log-likelihood Value �200:8481 �188:23251 �188:0628 �70:6855

Table 1: Estimation of contest success functions. All estimates are sig-
ni�cant at the 99% level. We use dummy variables of armies and wars in
the European war estimation and dummy variables of armies indicating either
Allied forces or German forces in the World War II data. Standard errors, in
parentheses, are corrected for heteroskedasticity.

We may interpret these numbers as follows: in response to an increase

of 10,000 in the number of combatants (from 21,035 original combatants),

the di¤erence form, the ratio form, and integrated form predict increases in

winning probabilities by 4.95%, 8.36%, 7.78%, respectively. In the case of

World War II, using the fact that the average strength of battles is around

14,000 (Dupuy, 1987, pp. 169) we compute a marginal probability of winning

�104 as 2.4472 (or 244.72%) which is much larger than those of the European

wars. This fact suggests that the contest success function for World War II

is more non-linear than the one for the seventeenth century European wars

and �the tremendous advantage of being even just a little stronger than one�s

17



D R I

marginal winning probability �104 0.0495 0.08364 0.077827

Table 2: Estimates of the mass e¤ect parameter

opponent�, which is pointed out as one of the stylized facts of warfare by

Hirshleifer (1991, p 131), only appears in World War II data.

Which form of contest success functions better describes battle? As we

see in Table 1 and the appendix, estimates of � are close to 1. Our tentative

conclusion would be that a contest success function close to the ratio form

would best describe the probabilities of winning in battles. Of course the

peculiarity of 17th century European wars or other possible data problems

may have hindered the correct estimation of our model. This problem, if it

exists, can be corrected by extending data sets to cover other kinds of wars.

4 Discussion

In the paper we have proposed an integrated contest success function which

has the di¤erence form and the ratio form as limiting cases. Also we have

derived this new form axiomatically and provided a probabilistic derivation.

These results provide a generalization of the existing results. In addition we

have shown that the integrated form has desirable analytical properties which

admit an interior pure strategy Nash equilibrium. Regarding the question of

the empirical plausibility of contest success functions, a tentative conclusion

is that the ratio form of contest success functions square with seventeenth

century European wars.

Another way of interpreting the integrated contest success function is
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through the transformation of variables. Since we do not know the exact unit

of measurement for �ghting e¤ort or resources in various con�ict situations, we

may interpret the problem of choosing contest success functions as a problem

of choosing a transformation method � the transformation of observed vari-

ables into variables with correct measurement. In this interpretation, as we

have seen in the text, the di¤erence form with the log transformation corre-

sponds to the ratio form. More generally, the integrated form of contest success

functions arises from the di¤erence form with a transformation Xi =
xi�1
1�� .
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Appendix: Lemma and Tables

First we prove the lemma used in the text.

Lemma 1 Suppose that for i = 1; 2, �i � exp(�ie��s) independently where

i > 0; � > 0 and �1 < s <1: Then �1 � �2 � 1
1+2e

��s :

Proof. It is easy to check �(s) := 1
1+2e

��s is a distribution function. From

the de�nition of �i, we have Prf�2 2 dsg = exp(�2e��s)2 exp(��s)�ds.

Hence from the de�nition of conditional probability and the independence

between �1 and �2; we have

Prf�1 < �2 + xg =

Z 1

�1
Prf�1 < s+ xgPrf�2 2 dsg

=

Z 1

�1
exp(�1e��s��x) exp(�2e��s)2 exp(��s)�ds

=

Z 1

0

exp(�t(1e��x + 2))2dt

=
2

1e
��x + 2

(18)

We use the change of variable; t = exp(��s); in the third line and the asserted

claim follows from (18)
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We provide tables containing descriptive statistics and alternative estima-

tions.

War Number of Battles
War of the Spanish Succession 108
Thirty Years�War 64
Austro-Turkish War 34
Great Northern War 29
Dutch War 19
War of the League of Augsburg 18

Other wars 43

Table A1: 17th century European wars. Other wars include wars with less

than ten battles. These are the Turkish War with Venice and Austria, English Civil War,

Hungarian-Turkish War, Polish-Turkish War, Second English Civil War, The Fronde, War

of the Quadruple Alliance, Polish-Swedish War, Spanish-Portuguese War, Swedish-Danish

War, The First Northern War, War of Devolution, Chamber of Reunion, English Scottish

War, Franco-Spanish War, Moldavian Campaign, Monmoth�s Rebellion, Polish Insurgency,

and Turkish-Ventian War. The classi�cation of war is based on Dupuy and Dupuy (1986)

and Palmer and Colton (1984).

Statistics Number of Personnel
Number of observations 630

Mean 21035
Maximum 260000
Minimum 1000

Standard Deviation 24047
Median 15000

Table A2: Descriptive statistics for number of personnel involved in

17th century European war.
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Statistics Combat Power Ratio
Number of observations 188

Mean 1.4332
Maximum 7.54
Minimum 0.1326

Standard Deviation 1.30212
Median 1

Table A3: Descriptive statistics for combat power ratio in World

War II data.

17C European War
Di¤erence Ratio Integrated

� 2:24� 10�5 0:803

(9:30� 10�6) (0:133)

� �20:478
(5:159)

� 1:117

(0:214)

Number of 630 630 630

Observations
Percentage of 70:63 73:97 73:73

Correctly Predicted
Log-likelihood Value �382:443 �354:87 �354:552

Table A4: Alternative data set. Each battle represents both a winning event

and a losing event. The standard errors, in parentheses, are corrected for heteroskedasticity

and clustering.
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Model 1 Model 2 Model 3 Model 4
� �2505:666 �19:123 �20:099 �49:866

(226:199) (7:736) (19:510) (93:992)

Implied � 0:749194 2:52424 3:739 13:9193

� 1:0003 1:132 1:186 1:279

(0:0000299) (0:204) (0:242) (0:340)

Number of Observation 308 315 315 184

Log-likelihood Value �182:557 �185:612 �192:636 �95:279

Table A5: Alternative estimation. Model 1: Excludes observations with armies

of size greater than 100,000; Model 2: Some observations indicate that the battle took

place in a garrison. We use the dummy variable when the observation has this indication;

Model 3: Excludes dummy variables for wars; Model 4: Includes only battles among eight

major armies: French, Imperial, Swedish, Spanish, Turkish, English, Dutch, Russian. The

standard errors, in parentheses, are corrected for heteroskedasticity and clustering.
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