
Context and Adaptivity in Pervasive Computing
Environments: Links with Software Engineering

and Ontological Engineering

Ahmet Soylu1,2, Patrick De Causmaecker1,2, Piet Desmet1

1K.U. Leuven, Interdisciplinary Research on Technology Education and Communication (iTec),
 Kortrijk, Belgium

2K.U. Leuven, Combinatorial Optimization and Decision Support (CODeS),

Kortrijk, Belgium
Email: {Ahmet.Soylu, Patrick.DeCausmaecker, Piet.Desmet}@kuleuven-kortrijk.be

Abstract—In this article we present a review of selected
literature of context-aware pervasive computing while
integrating theory and practice from various disciplines in
order to construct a theoretical grounding and a technical
follow-up path for our future research. This paper is not
meant to provide an extensive review of the literature, but
rather to integrate and extend fundamental and promising
theoretical and technical aspects found in the literature. Our
purpose is to use the constructed theory and practice in
order to enable anywhere and anytime adaptive e-learning
environments. We particularly elaborate on context,
adaptivity, context-aware systems, ontologies and software
development issues. Furthermore, we represent our view
point for context-aware pervasive application development
particularly based on higher abstraction where ontologies
and semantic web activities, also web itself, are of crucial.

Index Terms— pervasive computing, context, context-
awareness, adaptivity, semantic web, ontologies, software
engineering.

I. INTRODUCTION

Machines that fit the human environment instead of
forcing humans to enter theirs will make using a
computer as refreshing as taking a walk in the woods [1,
2].

Computing has already dispersed from dedicated and
stationary computing units into the user environment and
presently we are surrounded with mobile, multimodal and
multiuser computing devices. [3] notes that pervasive
computing (a.k.a. ubiquitous computing, ambient
intelligence) takes advantage of distributed computing
and mobile computing while inheriting problems (e.g.
remote access, high availability, power management,
mobile information access) in these fields increasingly.
Apart from these problems, since they have been studied
under related domains effectively, it is reasonable to say
that we already achieved a lot as a part of Weiser’s vision
in the sense of hardware and network technologies by

considering the advancements in the networking
technologies, computing power, miniaturization, energy
consumption, materials, sensors etc. [4]. However we are
still far from the complete puzzle, pervasive computing is
not just about developing such small computing residents
for the real life, variety of applications exploiting such
extended hardware infrastructure are the other side of the
coin. Spreading computing all over life imposes new
challenges which were already foreseen in this vision.
Anywhere and anytime computing needs to cope with
computing devices which are mobile, users which are
mobile and software applications which are mobile. [5]
partly referred to this mobility as “constantly changing
execution environment”; we rather call it “constantly
changing computing setting” which refers to mobility and
dynamism of both related parties. Furthermore,
heterogeneity of such environments hardens the
challenges of such vision since software and hardware
markets have already been populated with variety of
applications and tools coming from different vendors.

Does this increasing digitization of life require more
attention of people? This question, which originates from
mobility and dynamism, requires achievement of the
following approach:

The most profound technologies are those that
disappear. They weave themselves into the fabric of
everyday life until they are undistinguishable from it [1].

In other words seamless integration of computing into
people’s life is a must of the pervasive computing vision.
If we don’t want people to bother about the computing
devices and the applications surrounding them, while
they are making use of them, we need to make computing
devices and applications to bother about people. Utilizing
all these physical resources and synchronizing various
applications available through this extended dynamic
infrastructure for the benefit of the users requires an
“ intelligence” behind. This implies that computing
systems need to reach a level of understanding of the
settings in which they are being used, and the complex
relations between the various elements of these settings.
This ability is called “Perception”, however this is one
side of the coin. On the other hand computer systems

This article is based on “Context and Adaptivity in Context-Aware
Pervasive Computing Environments”, Soylu A., De Causmaecker P.,
Desmet P., 2009 Symposia and Workshops on Ubiquitous, Autonomic
and Trusted Computing, 7-9 July 2009, Brisbane, Australia, © 2009
IEEE.

992 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.9.921-1013

need to be able to exploit this understanding by adapting
their behaviors accordingly (i.e. that is to response
properly according to perceived context), which is called
“Adaptivity”. These two interrelated challenges make
pervasive computing diverge from mobile computing and
distributed computing since the challenges needed to
cope with are not strictly bound with these fields. Besides
they are rather new and their theoretical grounding is not
yet sufficiently mature. Moreover autonomous
applications in such environments need to operate
collectively in order to achieve maximum utility (at least
to ensure a conflict free execution), however the
heterogeneity of the pervasive environments hinders
seamless integration of different applications and
devices, that is, interoperability. Standard compliance is
of prominent importance for such a requirement since
standards help to ensure interoperability and five other
important abilities: (1) re-usability, (2) manageability, (3)
accessibility, (4) durability [6]. All in all, we define
pervasive computing environments as follows:

...intelligent digital ecosystems which are seamlessly
situated in user's physical environment. Such ecosystem
is defined as a collection of seamlessly integrated,
mobile/stationary and autonomous/non-autonomous
devices and applications, where higher mobility and
autonomy is of crucial. Intelligence for such systems is
defined as capability of being able to perceive changing
computing context and to response collectively in a
proper manner (i.e. to adapt) for maximum user utility.

Accordingly, we consider perception, adaptivity,
interoperability and standard compliance as key enablers
of pervasive computing apart from other technical
challenges, inherited from aforementioned fields, and
social challenges (i.e. privacy, trust and security). Our
main research is about enabling any-where and any-time
adaptive learning environments which is highly
dependent on pervasive computing vision. Despite the
fact that this paper is based on a domain specific (i.e. e-
learning) perspective in order to enable pervasive e-
learning, the solutions and approaches we do aim to
follow and propose are rather generic. In this paper, our
contribution can be grouped under two categories: (1)
theoretical, (2) technical. From theoretical point of view,
we do extract and extend theoretical aspects found in the
existing literature, and we work toward to integrate these
ideas into a common understanding for the future
pervasive computing systems. Regarding technical point
of view, we review the related literature with the purpose
of integrating and extending existing technical work
which are generic, standard-based, and compliant with
the overall understanding which we synthesized. Readers
should bear in mind that our purpose is not to give an
exhaustive review of the literature, but merely to provide
a selective and integrative review of comparatively
important and promising approaches found in the
literature. Our selection criteria is particularly based on
following parameters: (1) standard-compliance (although
limitations of the available standards might hinder our
efforts, since available standards are based on the
characteristics of traditional computing, keeping available

standards in the core of the development and research and
to extend them when required is our guiding mantra), (2)
generalness, (3) applicability, (4) simplicity, (5) ease of
development, (6) extensibility, and (7) scalability.

The remainder of this paper is structured as follows: in
section II, we introduce methodology and domain
specific motivation of our research. We elaborate on the
notion of context and its relation with adaptivity in
section III, we further refer to characteristics and
categorization of context in respective subsections. In
section IV, categorization of context-aware systems is
briefly referred while context management is elaborated
in section V. We further investigate some key problems
and basic solution approaches in section VI. In section
VII, we introduce our view point for context-aware
application development based on model driven and
ontology driven approaches by referring related literature,
we also emphasize use of World Wide Web as an
information source for pervasive environments. Finally
we conclude this paper in section VIII.

II. MOTIVATION AND METHODOLOGY

Challenges which are based on natural characteristics
of pervasive computing systems (i.e. mobility, dynamism
and heterogeneity) can be evaluated from a more domain
specific perspective, that is, e-learning in our case. E-
learning refers learning which uses variety of
technologies such as internet, television etc. in a manner
pointed out by [7]:

…e-enhancements of models of learning. That is to say
that; using technology to achieve better learning
outcomes, or a more effective assessment of these
outcomes, or a more cost-efficient way of bringing
learning environment to the learners [7].

E-learning evolved a lot by the emergence of
computers and later internet, and continues its raise with
the advancements in network and mobile services and
software market which offers variety of advanced
learning environments, tools and adaptive technologies.
Apart from technological advancements, e-learning also
faced with some important pedagogical movements
particularly learner centric and self directed approaches
which are based on constructivist learning theories. These
approaches consider learners as active participants of the
learning instead of passive consumers and change the role
of teachers as facilitators who assist learners to clarify
their goals and enable them to be capable of planning,
executing and evaluating their learning progress and
outcomes collaboratively, without taking a particular
position in the discussions, rather than being pure source
of information [8, 9]. [10] notes that providing active,
stimulating, authentic learning experiences that support
learner collaboration, construction and reflection is major
challenge for success of e-learning. Such approaches
triggered the creation of learner-centric, social and
collaborative learning environments. Today embedding
social networking and collaboration into learning
progress is considered as driving force for learner’s
motivation and activity [11]. Moreover social software
(e.g. blogs, wikis etc.) gained an important place for e-

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 993

© 2009 ACADEMY PUBLISHER

learning thus the mine of data, World Wide Web, because
of Web 2.0’s great collaborative potential, Wisdom of
Crowds, and simple find-remix and share rule. As a
consequence, e-learning market has already been over
populated with such tools and platforms to support
different types of learning communities with learning
management, content management and communication
tools [9]. Learners are not bound to neither individual
learning environments, as closed box of pure information,
nor to classical in-class learning environments anymore.
Instead by the guidance of the constructivist theories they
are facing with variety of tools including their particular
learning environments which enables them to collaborate,
to reach endless amount of information of web, and to
remix-share it, thus also to create social networks.
Depending on the case, these tools are being used
individually by learners, or by means of mash-ups, or as
heterogeneous systems which involve several tools and
might be centered around a particular learning system
[12]. Furthermore, with the emergence of pervasive
computing vision learners and the learning process also
goes for time, place and device independence, that is,
learn anywhere-anytime.

Pervasive learning goes hand-in-hand with the idea of
“always on” education and extends concepts of
collaborative learning, cooperative learning,
constructivism, information rich learning environments,
self-organized learning, adaptive learning, multimodal
learning, and a myriad of other learning theories [13].
Growing tool and device landscape and the pervasive
computing vision, forces e-learning domain to adjust
itself within this new landscape appropriately. Therefore
there is also a line of research towards pervasive learning
(a.k.a. ubiquitous learning) where a pervasive e-learning
environment might be defined as a setting in which
students can become totally immersed in the learning
process [14]. Pervasive computing takes part in an
experience of immersion as a mediator between the
learner’s mental (e.g. needs, preferences, prior
knowledge), physical (e.g. objects, other learners close
by) and virtual (e.g. content accessible with mobile
devices, artifacts) contexts [15]. We work towards
enabling different applications in such learning
environments to be seamlessly integrated (i.e. to be
interoperable) and to be aware of the setting which they
are used and to collectively adapt their behaviors
according to the available context information. Enabling
computing settings where capabilities, requirement and
characteristic of entities are known to each other
decouples these entities, that is, independence which is
required for mediation process, that is adaptation. Hence,
we particularly list following basic interrelated
requirements for such pervasive learning environments:
(1) device independence: applications and data should be
always accessible without any device dependence, (2)
application independence: data should be always
accessible without any application dependence, (3)
adaptivity and adaptability: learning environment and
elements of this environment should dynamically adapt
according to context of learner(s) and users should be

able to configure such environments such as
composing/decomposing data and applications, (4)
collective operation: applications in such environments
must be able to collectively operate for the benefit of
users in a seamless manner. Adaptivity is long studied
both in adaptive web systems and adaptive e-learning
systems [16], and in such systems adaptivity is generally
considered as an aspect between user and application
based on user profiles and models. However, although we
do follow a user-centric approach, other requirements
(1,2 and 4) make it necessary to broaden the adaptivity
from learners to the whole environment in which user is
engaged in order to be able to mediate between different
independent entities of such settings. Although we do not
claim to propose solutions for all the challenges of
pervasive computing or pervasive learning, the
approaches which we propose are common enough to be
employed within generic pervasive environments. That is
only possible by first providing a generic understanding
(i.e. theory).

Briefly our research question can be formulated as
follows:

How to enable adaptivity (in broader sense) in
Pervasive Learning Environments through applying
available context information?

Accordingly, our main approach is to integrate and
extend available technical and theoretic approaches in
pervasive computing, context-aware computing and
adaptive systems literature into e-learning. In this stage
we mainly focus on constructing a theory which
represents overall framework of our understanding and to
which our future practice should comply with. The theory
that we focus on is broad while the practice is limited in
the scope (i.e. e-learning) which is based on constructed
theory. Therefore many of the challenges introduced in
this paper are either in our long term agenda or merely
mentioned for the attention of other researchers.
Challenges specific to our main research is subject to
another publication. The overall approach is depicted in
Fig. 1, the lower domains are much more generic and
theory intensive in order to constitute overall frame of our
research. The upper domains are more specific and
dependent on lower domains, innovative aspects of the
research increases towards specific domains while
integrative aspects are higher in more generic domains. In
this stage of our work, we mostly focus on the theoretical
and technical aspects of context-aware pervasive
computing and adaptivity (in a generic sense) in such
environments, that is, first two levels of our research pie.

Figure 1. Fitting Boxes – uLearning Research Pie: abstract view of
the research required for enabling anywhere and anytime adaptive
learning environments - innovation through integration.

Pervasive Computing

Context-aware computing

Adaptivity

e-Learning Innovate

Integrate

Practice

Theory

994 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

Adaptivity (in a more specific sense) and e-learning is
subject to another in depth research where specifics of the
domain and existing work (i.e. e-learning, adaptive e-
learning) need to be elaborated based on the theory and
practice introduced in this paper.

III. CONTEXT AND ADAPTIVITY

The notion of context is of crucial for pervasive
computing systems, it is a central notion for context-
aware pervasive computing environments as we already
mentioned in section I. Indeed, according to the view
represented previously, pervasiveness, context-awareness
and adaptivity are bound to each other, that is, one
implies the other one. The notion of context has, over
time, been extensively discussed in the literature [17, 18,
19, 20, 21, 22]. [23] reviews related work and after
briefly criticizing the concept, author gives the well
known definition of context:

Context is any information that can be used to
characterize the situation of an entity. An entity is a
person, place, or object that is considered relevant to the
interaction between the user and application, including
the user and applications themselves [23].

Previous definitions of context in the literature usually
refer to context as location, identity of users, and nearby
people. Intuitively it is reasonable to accept location,
identity, activity and time [18, 23] as important elements
of context. However these elements are not sufficiently
broad to cover the notion. The definition given in [23] is
more generic and open-ended and covers context as a
whole. The reason why it is not possible to give a more
specific definition is the openness of the notion of
context; a particular knowledge is considered to be
context information in one setting while it is not part of
context in another setting. [24] points out that it is not
always possible to enumerate a priori a limited set of
context that matches the real world context and [25] also
refers to the same issue by pointing out that it is not
possible to enumerate all important aspects of a situation.
Therefore, by following the definition of [23], we are lead
to conclude that defining the scope for context should
leave an important role for context-aware application
development rather than providing an exhaustive
definition of context.

Since it is not possible to predefine all the dimensions
of context, then how can we decide whether a piece of
information can be counted as context or not? [26]
remarks that context of use will have a substantial impact
on the appropriate behavior of applications, without being
a primary input source. Well, then imagine an automatic
door which uses a sensor to detect presence of a person in
front for switching between its states (i.e. close or open).
Location of the user is indeed primary input for this
particular system, and obviously the application for this
system is primarily designed to sense the situation (i.e.
presence of a person) and to act accordingly. Several
example applications can be listed where context
information is used to adapt application behavior without
being primary input of the application in contrast to the
previous example. Then, should we also consider primary

inputs of applications as context information? Or should
we only consider context as the information which is not
primary input of the application but which characterize
the situation? Here is another example: consider a word
predictor application for speaking-impaired people [27].
This application can use previous user inputs to predict
the word which the user presently tries to type. Here
primary input of a previous context turns out to be
another context dimension. Indeed every application,
whether we consider it context aware or not, is designed
for a specific and restricted context of use. Therefore
these applications provide a particular set of behaviors for
a fixed context of use. Hence, we are lead to conclude
that context awareness is ultimately related with
adaptivity. It is based on exploiting recruited context
information and to adapt its behavior accordingly. In
order to consider a piece of information to be context, it
has to be ensured that this piece of information enables
the corresponding application to modify its behaviors
with respect to this piece of information and its relation
with other context dimensions. [28] states:

[...] something is context because of the way it is used
in interpretation, not due to its inherent properties. The
voltage on the power lines is a context if there is some
action by the user and/or computer whose interpretation
is dependent on it, but otherwise is just part of the
environment [28].

The mostly used context dimension is location,
however it is a known fact that context is not limited to
the location and physical objects in the environment.
Consider the field of the Adaptive Web [16]. Much work
has been done to define user models (e.g. user
knowledge, goals etc.) and user profiles (e.g. user
interests etc.) in order to enable web applications to act
accordingly. Such adaptivity includes adaptive
presentation, adaptive information filtering etc.. User
profiles and user models are also type of context which
are abstracted to a higher level mainly from logs of
applications with which users interact. This implies that
context information does not necessarily require to be
gathered by sensors. Finger prints of users (i.e.
application logs, web logs etc.) collected by applications
can also be exploited to reach high level context
information. Adaptive web applications belong to the
field of Adaptive Systems and indeed they eventually are
useful in the field of context-aware and pervasive
computing systems. This relation implies that most of the
practice and knowledge constructed in this field may be
applied to the context-aware systems. Eventually it is the
application which needs to adapt. Applications primarily
need to adapt to the user, however the environment that
the user lives in and the devices that are in contact with
the user in turn influence the user. Applications adapt to
the user as wells as to the environment, the devices and
the complex relationships among each other. This is the
result of mobility and dynamism of aforementioned
peers. In an arbitrary setting where each device has its
own characteristics and resources like screen size, CPU
power, memory size, available input and output devices
etc., applications need to adapt according to the context

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 995

© 2009 ACADEMY PUBLISHER

of the devices (i.e. resource awareness) to better serve the
users [29, 30]. Adaptivity should not be understood as a
one-to-one relation between user and application, in a
pervasive computing setting, rather it should be
considered as a relation between application and other
elements of such settings (e.g. devices, physical
environment, users etc.). Pervasive computing considered
to be the third wave in the computing where first wave is
main frame computing – one computer for many users-,
second wave is personal computing – one computer per
user -, and third wave is the one where many computers
available for one user. Indeed the later wave (i.e.
pervasive computing) should be considered more broadly,
that is, many computers for many users. That makes
computing much more sophisticated from application
development point of view, since applications are not
only required to accommodate needs of only one user but
of many users, that is, to adapt masses.

As a conclusion, context is an open concept since it is
not limited with one’s imagination. Any system that
exploits available context information needs to define the
scope for the context. Adaptivity is the primary relation
between computing and context, and to count any
information as context we need such a relation. Any
system can focus on any context category (in particular to
the user(s)). However, we need to be aware of that the
application needs to adapt to various context dimensions
although it also has its own context dimensions.

A) Characteristics of the Context

In the previous section instead of focusing on the
definition of context, we rather tried to comment on
context from different perspectives to give a deeper
insight into the notion. We now investigate some specific
characteristics.

First of all, context is “dynamic” [24, 31, 32, 33].
Although some context dimensions are static like the
name of a user, most of the context dimensions are highly
dynamic like the location of a user. Furthermore, some
context dimensions change more frequently than others.
One dimension may change its state every second while
another dimension only changes its state every year, this
also implies that context is temporal [33, 34]. What is
more important to see is the evolving nature of context,
i.e. it is “dynamically constructed” [32]. Consider user
knowledge: it evolves dynamically over time, i.e. user
adds new knowledge pieces to his knowledge or some
knowledge is forgotten. These changes in state do not
require destruction of previous states, but the states
evolve. Therefore [32] suggests not to support a particular
context but to support the evaluation of context:

[...] not to use of predefined context within ubiquitous
computing system, but rather how can ubiquitous
computing support the process by which context is
continually manifest, defined, negotiated, and shared
[32].

It is intuitively evident that several context dimensions
are somehow interrelated [32, 33], that is, context is
“ relational”. For instance, there are different kinds of
relations between people in your home and in your job.
Your being at home or in office is normally related with

present time. Perception is not just about realizing
concepts but also about understanding relations between
these concepts which are necessary to interpret situations
and behaviors. Relationships between context dimensions
thus hold an important place for both context
representation and interpretation.

[35] points out that computational systems are good at
gathering and aggregating data and humans are good at
recognizing contexts and determining what is appropriate.
The computer system level of understanding and
recognition is limited, hence computer systems are far
from recognizing situations properly. Besides, it is a
known fact that even human beings sometimes are unable
to understand/evaluate the exact situation. That is what
we call misunderstanding. Hence even for a given well
modeled closed domain (i.e. a closed set of real world
data), a computer system might lack proper perception.
This is related to imperfection of context information,
that is, context is “imperfect”: ambiguity, irrelevance,
impreciseness and incompleteness of context dimensions
[33, 34, 36]. Consider the context information acquired
via sensors. It is a known fact that sensors do not provide
hundred percent of accuracy. Besides, multiple sensors
might provide different readings for the same context
value. How can one really judge a student’s knowledge
based on his answers to a multiple choice exam? Can one
logically decide that it is night by simply considering the
light level?

B) Categorization of the Context

It is possible to categorize context in various ways by
considering different characteristics of the context. These
categorizations are useful both for application
development and for understanding of the context. [33]
notes that classifying context is useful for managing
quality of context, for instance dynamic context elements
are prone to noise. Moreover such classifications are also
useful for context modeling, in early conceptual phases
and later, and they are required to define some specifics
of adaptivity and context management (e.g. abstraction).

Acquired raw context information usually requires a
certain level of abstraction which will be discussed
briefly in section V. However, for a short insight,
consider the example of location: a sensor might sense
location as coordinates whereas the application might
require this information in a more abstract way like the
name of the city. Therefore location information based on
coordinates requires to be abstracted in order to be
comfortable with the application. Hence it is possible to
categorize context from the application point of view [37]
into (1) low level context information (a.k.a.
implementation context) and (2) high level context
information (a.k.a. application context). Low level
context information is usually sensed by sensors or
collected by means of application logs. [33] considers
low level context information as environmental atomic
facts. High level context information is derived from low
level context information. However these are implicit
means of collecting low level context information. It is
also possible to gather context information explicitly, e.g.
asking the user to provide context information directly.

996 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

[33] suggests that the ideal case is placing fewer demands
on user attention (i.e. less direct user interaction).

Context can also be categorized from the collection
point of view [38] which is indeed related with the above
categorization: (1) direct (sensed or defined), (2) indirect
(by means of inferring from direct context). Direct
context refers to the collection of context information
without realizing any extra processing of the gathered
information. If the information is gathered implicitly by
means of sensors, it is called “sensed context”. If the
information is gathered explicitly, it is called “defined
context”. We already mentioned that sensors are not the
only means of collecting context information, application
logging is just another way to do so. Therefore we
propose to further categorize sensed context as “sensor
based” and “application based”. Direct context refers to
low level context and indirect context refers to high level
context information according to the previous
categorization.

Context information can be categorized from a
temporal point of view into two categories: (1) static
context, and (2) dynamic context. Static context does not
change by time like gender or name of a person. Dynamic
context keeps changing in different frequencies
depending on the context dimension like your location or
age. This implies that for a dynamic context dimension,
various values might be available. Hence, management of
temporal character of context information is of crucial
either in the sense of historical context or in the sense of
validity of contextual information available.

Apart from categorizing context based on
characteristics of the context, [5] categorizes context
based on grouping similar context dimensions into: (1)
computing context, (2) user context, and (3) physical
context. Later [39] extends this categorization with (4)
time context. [40] provides a similar context
categorization; (1) physical context, (2) social context,
and (3) internal context. [41] provides another
categorization which includes (1) infrastructure context,
(2) system context, (3) domain context, and (4) physical
context. These categorizations are usually at higher
granularity, hence they do not reveal enough information
about themselves, and this might limit their usefulness for
development of context-aware systems. Moreover some
of them are more application oriented, hence the
categorizations are not well balanced. We propose eight
categories for context aware settings where we want to
achieve an optimal granularity and want to represent
main actors (i.e. entities) of a typical pervasive
computing setting in a more real-world oriented manner.
This categorization provides a clear layering for context-
aware system development and may serve as an initial
step toward a generic conceptualization. We argue for a
layered categorization of context without considering any
taxonomical relation: (1) user context (internal, external),
(2) device context (hard, soft), (3) application context, (4)
information context, (5) environmental context (physical,

digital – e.g. network -), (6) time context, (7) historical
context, (8) relational context. It is important to know
what application is in use in which device, in which
environmental setting, and at what time by which user
etc.. Therefore context varies as a product of dimensions
under disclosure of these context categories. User context
splits into “external user context” and “internal user
context”. External user context is easier to sense (e.g.
name, gender, height, and weight etc.) while internal user
context is harder to sense [40] (e.g. user feelings – hate,
love etc. -). Internal context might be derived by
interpreting diverse low level context information such as
blood pressure, hormone levels etc. Considering the
device context, we distinguish “hard device context” and
“soft device context” where hard device context refers to
the physical properties of the device (e.g. CPU, memory
etc.) and soft device context refers to the available
software components in the device etc.. Application
context refers to capabilities and requirements of an
application, e.g. target platform, memory requirements
etc.. Concerning environmental context, we distinguish
“physical environment context” and “digital environment
context”. Physical environment context covers the real
world entities and their characteristics such as nearby
objects and their identities while digital context refers to
the digital entities such as network capabilities.
Information resides in digital space together with
applications, context adaptive access of information is of
crucial part of computing, particularly for the web
environment. Hence information context refers to
properties of meaningful information pieces available in
different formats (e.g. text, image etc.), it is surprising to
see that information has not been considered as an
independent entity either in available context
categorizations or various context models in the literature
(to the best of authors knowledge). Time usually refers to
time of situation, time zone, part of the day etc..
Historical context refers to situations that occurred before
based on the temporal characteristic of context.
Relational context refers to relationships between the
different context dimensions, that is, it aggregates and
represents different types of relations between the
elements of a particular context-aware setting. Although,
relations have been used in context conceptualization,
they have not be considered as a context entity explicitly,
we advocate that it is worth to consider relations as an
contextual information since they also characterize the
situation of an entity. Historical context elements and
relationships among context elements (this is relational
context) are important for interpreting the situations. We
previously mentioned that proposed categorization may
serve as a generic conceptualization (i.e. upper ontology)
for our future context model. In Fig. 2 and Fig. 3 a rough
conceptualization is depicted with some possible
immediate sub-entities.

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 997

© 2009 ACADEMY PUBLISHER

Figure 2. First part of the proposed upper context conceptualization, external state and internal state concepts has been shown as a part of user
concept where user concept is part of environment.

[42] notes that generic uniform context models are
more useful. Although there are already some proposals
for a generic context models in the literature (see section
V.), our rough proposal provides clear advancements
similar to previously mentioned context categorizations
such as optimal granularity and balanced representation
of actors. Secondly information has been shown as an
independent entity, and as a main actor of context which

has been omitted in previous conceptualizations and
categorizations, importance of such approach is detailed
in section VII. This initial conceptualization only defines
the borders of our understanding of context, a more
elaborate formalized conceptualization (i.e. ontology) is
to be developed where previous context models and
standardized vocabularies are to be re-used.

Figure 3. Second part of proposed upper context conceptualization, environment concept is composed of digital environment and physical
environment concepts.

We can further group aforementioned context
categories into technical and non-technical context for the
sake of separation of concerns. Non-technical context
includes context categories which are not related with the
technical aspects such as internal user context, while the
technical context involves context categories related with
the technical aspects of context such as device context,
and digital environment context. Although there is no
straightforward way to distribute previous context
categories into technical and non-technical context folds,

non-technical context categories are mainly domain
specific and require to be identified by domain experts,
e.g. for pervasive learning environments, an expert is
required to identify context categories or individual
context dimensions related with learning aspects.

IV. CONTEXT AWARE SYSTEMS

In previous sections, context in pervasive computing
has been reviewed. In what follows we elaborate on the
definition of context-aware computing as it has been

Enviroment
hasTime

Digital Env. Physical Env.

Application Information
Device

Time Location
hasLocation

composedOf composedOf

isPartOf isPartOf
isPartOf

composedOf composedOf

isPartOf

User

External State Internal State

Knowledge Goal

hasState hasState

isa isa

Enviroment

isPartOf

998 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

discussed in e.g. [17, 22, 23, 40, 43]. Earlier definitions
usually involve a loose enumeration of context
dimensions (e.g. location, nearby people etc.), and the
later ones often concatenate on the relation between
computing, context and user. It is clear that context needs
to be employed to better serve the users, such point is
already commonly noted in definitions like:

[… context aware computing] aims to enable device to
provide better service for people through applying
available context information [40].

Above a generic definition of context aware computing
is given, which emphasizes the relation between user,
context and computing, but how do we apply available
context information? Although various categorizations
for context-aware systems are already given [5, 23, 43],
we prefer to re-interpret these categorizations based on
adaptive systems, particularly according to adaptive web
systems. This is because we defined adaptivity as a key
factor of intelligence and as a key relation between
context and computing for context-aware computing
systems. Therefore by referring to [5, 23, 43] and the
field of adaptive web [16] for categorization of context-
aware computing applications, we propose below
categorization: (1) context based filtering and
recommendation of information and services: examples
might include finding the nearest printer, accessing the
history of a nearby object etc., (2) context based
presentation and access of information and services: e.g.
selecting voice when screen displays are not available
(multimodal information presentation and user
interfaces), dynamic user interfaces etc., (3) context
based information and service searching: e.g. location
aware query rewriting for a search for available
restaurants (query rewriting is a technique used in
adaptive web systems for information filtering by
rewriting a user query according to the user profiles) etc.,
(4) context adaptive navigation and task sequencing:
adaptive navigation is a technique employed in adaptive
web systems. We can extend this idea in pervasive
computing since a user’s interaction might consist of
several related sub-tasks in relation with his goals and
might lead to context aware task sequencing, (5) context
based service and application modification/configuration
: this need mainly arises from different devices available
in the environment, e.g. disabling particular features
depending on the capabilities of target device, (6) context
based actions: [44] proposes three levels of context
dependent automatic actions: manual, semi-automatic,
and automatic. [45] notes that fully automatic actions
based on context are rarely useful, and incorrect actions
can be frustrating, (7) context based resource allocation:
this might include allocating physical recourses (e.g.
memory, even non-hardware physical resources) for the
use of other entities in the setting (e.g. applications, users
etc.).

It is worth to note that, adaptive behaviors of context-
aware systems are not necessarily need to depend on the
current context, rather such systems should also be able
to adapt proactively by making use of current context or
historical context to predict future context of the setting.

An example is given in [46] where a user walks through
the building and submits a printing request, the selected
printer should not depend on the user’s current location
but rather to his final destination. According to
presented categorizations and elaborations, we extend
previous definition of context-aware systems as follows:

Context aware computing aims to enable better service
delivery through proactively adapting use, access,
structure and behavior of information, services,
applications and physical resources with respect to
available context information.

Above categorization also stresses the applicability of
several techniques and methods in the field of the
adaptive web as we already mentioned previously. Other
interesting examples might be applications of
collaborative filtering, mass adaptivity, case based
adaptivity etc. in context aware systems. Collaborative
filtering is the process of filtering or evaluating items
using the opinions of other people [16]. Since pervasive
computing systems are able to interact with different
people in different context settings, they can use captured
information for collaborative filtering, case based
recommendation, and these systems can employ
adaptivity for masses which are sharing common
characteristics (e.g. understandings, behaviors etc.) in
common pervasive computing settings. [47] is an
example which provides recommendations by comparing
users with other users in pervasive computing systems.
Furthermore, a case based reasoning example is provided
by [48], proposed methodology is to abstract raw context
to user situation, to generate current user’s case, and to
provide adaptive behaviors by semantically comparing
user’s current case with other previously stored cases and
corresponding behaviors of the system.

As a final remark, pervasive computing environments
do not necessarily fully automate their behaviors where
such behaviors can be in varying granularity as shown in
Fig. 4 [49].

Figure 4. Space representation of context based Adaptation-
Customization [49].

Such environments should also allow users to
customize structure and behaviors of their environment
(i.e. user control). Pervasive systems might facilitate such
customization by means of adaptive guidance where
environment does not automatically act or force user to

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 999

© 2009 ACADEMY PUBLISHER

one action but rather provides users with the required
contextual information and recommendations. That is,
adaptive behaviors do not necessarily need to result in
“must”s or “have-to”s but in many cases also in
“should”s and “might”s to give users a degree of control
with the possible directions and their reasoning behind. In
other words, in the scale of dynamic and static system
adaptation, enabling users to control the environment
does not imply that contextual information is useless for
such a case. Rather, system can extend the limits of
contextual information perceivable by the user’s physical
capabilities by serving contextual information gathered
by sensors to the users rather than automatically adapting
itself. An up-to-date and specific example is a famous
social networking website, Facebook. This web
application provides users with the contextual
information of their network (by means of notifications)
like who watches, reads what or who becomes friend
with whom. In this way users can identify people with
similar likes and arrange their own environment
accordingly. Such case is also of use in the domain of e-
learning, a system can provide users with the contextual
information of the environment and other learners like
who read what, who knows what, who takes the same
courses or who works on the same problem, so learners
can find appropriate mentors or construct a learning path
for themselves. Such approach might be called as
“environment awareness” for users which is counterpart
of context-awareness for machines.

V. CONTEXT MANAGEMENT

We identify following groups of components for
context management infrastructure by adopting [50] and
[51] as shown in Fig. 5 which are required for realization
of context-aware adaptation: (1) context modeling and
representation, (2) context capturing (sensing), (3)
context abstraction and reasoning, and (4) context
dissemination (access and querying).

Figure 5. Components of context management infrastructure: context
modeling, context capturing, context reasoning, and context
dissemination.

Context capturing is handled by applications and
physical sensors. [52] classifies sensors into following
categories: (1) physical sensors which are hardware
sensors available through physical environment to deliver
physical measurements, (2) virtual sensors which are
based on information and logs captured by the user
applications and, (3) logical sensors which are based on
reasoning various contextual information to produce

higher level context information. Context dissemination
is strictly related with the architecture of the context-
aware application. Context information might be stored in
central context brokers/blackboards, e.g. [42, 53, 54], or
every application might hold its own contextual
information, that is, context information might be
distributed, e.g. [55, 56, 57] . Furthermore a hybrid
approach might be possible where common contextual
information is centralized and every application holds its
specific contextual information. In all cases it is
reasonable to call own-managed context information as
“ local context”, context information managed by other
entities as “remote context”, and context information
managed by central brokers as “central context” by
extending the understanding presented in [58]. The most
commonly used methods for context dissemination are
push and pull mechanism [54, 59, 60, 61, 62]. In push
mechanism applications register themselves to remote
context entities or the central context brokers in order to
be updated whenever a context of interest changes or is
added. In pull mechanism, applications actively pool the
remote and central context entities to check availability of
context of interest, this might be possible by submitting
synchronous or asynchronous query requests to the
remote or central context entities. Within the same
application, similar mechanisms can be employed, either
by registered context listeners, e.g. [63], which triggers
actions or asserts new contextual information, or by an
ad-hoc manner where application itself checks the state of
particular context information according to active
execution stage.

Although distributed context management is
researched by several users in the literature, e.g. [55, 56,
57], complexity and low efficiency of such approaches
for the real-time systems do not seem to be promising yet.
Resource-limited devices can hold their own contextual
information, however even for limited amount contextual
information reasoning can be time consuming for such
devices (see section VI) or even not possible according to
available resources. Considering e-learning, e-learning
environments are complex, and variety of contextual
information might be of use, hence presently we would
prefer to use context broker architecture where reasoning,
privacy and security, dissemination of contextual
information are handled by such central architectures. A
promising example is given in [53]. Such approach is of
great use for the real-time, reasoning intensive
applications. Scalability issues might arise in such
architecture, for such a case using several powerful
context-brokers can be of immediate solution.

In the following sub sections we do elaborate on the
context modeling and representation, and context
abstraction and reasoning respectively.

A) Context Modeling and Rrepresentation

Applications become perceptive when they maintain
the model of its occupants and activities and user is only
willing to accept an intelligent environment offerings
services implicitly if he understands and foresees its
decisions [64]. Furthermore, [65] notes that it is hard to
re-use and change context information embedded into

Context Modeling

Context Capturing

Context Reasoning

Context Dissemination

1000 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

functional modules. Today’s traditional intelligent
computing is based on either ad-hoc AI techniques (e.g.
data-mining, machine learning etc.), or based on hard-
coded enumeration of possible contexts of use. However
pervasive computing opens up infinite context space
where it becomes hard to manage bindings between
infinite context and behavior spaces (i.e. adaptive
behaviors). Hence in order to enable computers to decide
on (i.e. reason) adaptive actions (i.e. automatic, semi-
automatic, manual) through automated reasoning and/or
mediation processes - which requires to construct a
bridge between humans and computers by enabling them
to share a common world model - computing systems
need to maintain a formal model of the settings in which
they are being used and the complex relations between
the various elements of these settings.

Several machine learning techniques (e.g. Bayesian
networks, fuzzy logic etc. [50, 66]), statistical methods
[67], and ontolgies as an AI paradigm can be used to
model contextual information. [36] analyses several
approaches in the literature according to data scheme
used and concludes that ontologies are promising for
context modeling. They represent explicit, formal (i.e.
machine understandable) and shared conceptualization of
real world aspects [68]. [69] refers to several reasons in
order to use ontologies for context modeling: (1)
knowledge sharing, (2) logic inference, (3) knowledge re-
use. Considering context representation based on
ontologies, [70] lists the following requirements for
context representation: (1) structured, (2)
interchangeable, (3) composable / decomposable, (4)
uniform, (5) extensible, (6) standardized. There are
several techniques to represent ontologies. We adopt
categorization provided in [71] into: (1) AI based, (2)
software engineering (e.g. UML), e.g. [33], (3) database
engineering (e.g. ER, EER), and (4) application oriented
techniques (e.g. key-value pairs), e.g. [31]. Software
engineering techniques and database engineering
techniques are limited in expressivity, i.e. they are not
capable of expressing heavyweight ontologies (i.e.
ontologies which model a domain with more constraints
and expressiveness) but rather capable of modeling
lightweight ontologies (i.e. ontologies which model a
domain in a less expressive way and with less
constraints). Indeed software engineering and database
engineering are highly related with abstracting and
modeling real world phenomena and logics into computer
applications for a restricted context of use. This
restriction causes software engineering and database
engineering techniques to fall short when modeling
generic context information. However it is not surprising
to see that several software methodologies are well suited
for ontology development (e.g. ontology re-engineering
and software re-engineering [71]). AI based techniques
are capable of representing high level ontologies,
techniques based on frames and first order logic are
mainly used. OWL (Web Ontology Language) [72],
which provides a syntax and knowledge representation
ontology, appeared as a prominent ontology formalization
(i.e. representation) language with the advent of the

semantic web. OWL is capable of representing main
components of an ontology like classes (i.e. concepts),
relations, instances and attributes. Since OWL is among
the AI based techniques, it is suitable for high level
ontologies. It can express complex relations between
concepts, it is capable of acquiring dynamic information.
Furthermore strong reasoning techniques and tools based
on OWL provide a mean to deal with ambiguity in
context. Hence it is reasonable to state that it is capable of
capturing characteristics of context and criteria listed by
[70]. There are already various works in the literature
which employs ontologies, examples include [40, 43, 44],
in order to maintain a context model and to apply
reasoning over this model.

There are various tools and standards in the domain
which supports ontology development and use based on
OWL. We refer to prominent ones in what follows.
Protégé provides a graphical interface to develop OWL
based ontologies, JENA provides a semantic web
framework where different ontology querying languages
such as SPARQL and RDQL, and reasoning support are
available. Semantic web rule languages such as RuleML
and SWRL are already available and supported by
various tools, which are used to describe logic rules.

B) Context Abstraction and Reasoning

We previously mentioned that context information is
categorized as low level (i.e. implementation level) and
high level (i.e. application level) context information.
Low level context information is usually sensed by
sensors or might be acquired from application logs.
Afterwards it requires to be abstracted to the high level
context information. According to [37] this happens in
three ways: (1) one-to-one: one low level context value
matches one high level context dimension, (2) context
fusion: several low level context values match one high
level context dimension, (3) context fission: one low level
context value matches several high level context
dimensions. Accordingly, we prefer to define context
abstraction as process which asserts new contextual
information by processing available context information.

We refer to [55] for an analytical understanding of
context abstraction. We incorporate low level context –
high level context mapping approaches given in [37] and
[55] (see Fig. 6). [55] defines “application space” (i.e. or
in broader sense: context space, C) as the universe of
discourse in terms of available contextual information for
an application and defines subspaces which reflect the
real life situations within application spaces, which are,
“situation spaces” (S). Authors further define “context
state” as collection of context attributes’ (i.e. dimensions)
values at time t. Each context dimension have a “value
space” (V n) where value spaces represent range of values
that a particular context dimension might have (e.g. 01 to
100 for age of a user). These value spaces might have
discreet number of qualitative or quantitative elements or
might represent a continuous range (discretization
required). According to [55], some context dimensions
might have greater importance than other context
dimensions for a specific situation, therefore a weight is
needed to be defined for each context dimension in each

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 1001

© 2009 ACADEMY PUBLISHER

particular situation. Furthermore, authors note that for a
particular situation, every context dimension can only
match to some accepted values in its value space, and
each accepted value in this set might have a different
level of importance for this particular situation.
Therefore every accepted value for a particular context
dimension in a particular situation should have a different
weight assigned (e.g. number of people in a room: 40
people should add greater contribution than 10 people
would add for the situation of having a party, for
example, where number of people in a room might vary
from 10 to 50 for the situation of having a party).
Moreover, some situations in situation space consists of
combination of other situations (i.e. sub-situations). In
order to have a consistent terminology we advocate the
following understanding by re-interpreting [55]. Context
information which maps to an adaptive behavior is a
situation where a situation might be abstracted from low
and high level context information and from other
situations. A single atomic context dimension is low level
context information where high level context is abstracted
from low level context information and from other high
level context information. High level context information
does not map to any adaptive behavior but to the
situations. Adaptive behavior represents both actions
(manual, automatic etc.) and the change in application’s
normal flow and structure (e.g. adaptive presentation,
recommendation etc.) based on the context. Accordingly
we prefer to define context reasoning as a function which
maps situations to adaptive behaviors. It is worth to note
that abstraction can also considered to be a reasoning
process, however for the sake of simplicity and
consistency we prefer such distinction.

According to Fig. 6, situation S1 is abstracted by one to
one match of context dimension c1, and S2 is abstracted
by fusion of c2 and c3. c2 affects several situations (i.e. S2
and S3), that is, fission. Furthermore, some situations in
situation space consists of combination of other situations
(i.e. sub-situations). For instance S2, S4 and Sn are sub-
situations of S5, since context dimensions of sub-
situations are totally covered by S5. However this also
requires that situation S5 and its sub-situations need to
have same accepted values of their context dimensions.
Weighting approach allows us to calculate confidence
values for inferred situations. That means provides a way
to deal with ambiguity of context information.

Projecting low level context information to the high
level context information and mapping situation space to
behavior space, that is building the relation between the
context and adaptive behavior, are not usually
straightforward. It is hard to handle these mappings for
systems having huge application and behavior spaces.
The difficulty also arises from the main characteristics of
context as discussed before: context is a dynamic
construct, it is relational and imperfect. Context
abstraction and reasoning based on ontologies is mainly
handled by rule sets (i.e. pre-defined or user defined [48])
and ontological reasoning, i.e. subsumption and
realization [71, 73]. A typical system usually includes a
knowledge base and a context reasoner. Knowledge base

stores terminological knowledge (in a T-box) e.g.
concepts, properties etc., and assertional knowledge (in
an A-box), e.g. individuals. Subsumption determines
subconcept-superconcept relationships of concepts
occurring in a T-box where realization computes which a
given individual necessarily belongs to [73]. Reasoner
holds context transformation rules in order to abstract low
level context information, and context-behavior binding
rules which binds context dimension(s) into a particular
application behavior [37, 73].

Figure 6. Context abstraction based on one-to-one, fusion, and fission
approach. V sets represents value spaces for context dimensions, C
represents context space while S represents situation space.

Considering adaptive behavior; rules which maps
application space to behavior space (i.e. to the automatic
behaviors) are usually pre-defined or user defined, as
previously mentioned, that is called first order adaptation
[74]. On the other hand if such rules are learnt by the
system (i.e. through machine learning techniques), that is
called as second order adaptation [74].

VI. KEY PROBLEMS AND BASIC APPROACHES

In this section, we will briefly refer to some key problems
and basic solution approaches. Scope of this section is
mainly limited with ontology based approaches, hence
problems and solutions also are.

A) Dealing with Imperfectness

Imperfection of context has been studied by several
researchers in the literature. Since basing automatic
actions on imperfect context information is problematic,
researchers usually refer to user involvement to decide on
correctness of the context or actions (i.e. mediation), to
detect inconsistencies or evaluate correctness of the
context based on artificial intelligence techniques, e.g.
[27, 35, 44, 45, 75, 76].

Considering other approaches in the literature, it is
quite common to employ a metadata approach [77] to

1002 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

annotate acquired and derived context information with
quality parameters. RDF reification is a common way of
annotating ontologies based on OWL and RDF with
quality parameters. However [78] notes that such
approaches are not expressive enough to capture rich
types of context information and to support reasoning.
[79] list several metadata parameters for the quality of
context: (1) precision, (2) confidence, (3) trust level, (4)
certainty, (5) granularity and (6) Uptodateness, while
[38] uses following similar quality measurements: (1)
accuracy, (2) resolution, (3) certainty and (4) freshness.
Uptodateness or freshness usually associated with an
aging function based on a life cycle management
approach where this aging parameter also affects the
value of other quality elements like decreasing
confidence or accuracy level depending on the freshness
of the context information [57, 80, 81]. [78] notes that
related approaches in the literature for reasoning about
uncertainty with various metadata terms such as
confidence and accuracy are not expressive enough to
capture rich types of context information and support
reasoning mechanism. Therefore authors decide to go for
an integrated solution by combining Bayesian networks
and ontologies, since ontologies are good at representing
structural contextual information where Bayesian
networks are good at representing probabilistic contextual
information. Such approach combines probabilistic
models for uncertainty and ontologies for knowledge
reuse and sharing. Authors achieved their aim by adding
new language elements to OWL and by creating a
mapping through OWL model to Bayesian model.

Approach presented in [55], which has been introduced
in section V, can be considered amongst more generic
solutions. The introduced weighting approach allows us
to calculate confidence values for inferred situations since
every context dimension and every acceptable value for a
contextual dimension is associated with a weight value.
That means it provides a way to deal with ambiguity of
context information. Authors also enable agents to merge
or partition different perspectives of context which are
managed by different agents in order to provide
increasing level of accuracy. Another approach
represented in [73] introduces means to handle irrelevant
context dimensions where OWL ontologies are used as a
representation formalism. It uses a context filter where
authors define situation-action mapping as a policy. The
more a policy is used, the more important it is. Authors
use a weight recorder to record usage of policies where
they eliminate irrelevant contextual information
according to usage records of policies.

Since it is not possible to clean all the ambiguity of the
context information based on artificial intelligence
techniques, metadata approaches or many others, it is
reasonable to use artificial intelligence techniques and
others to some extent, and to employ a user mediation
mechanism [27] for crucial situations, examples include
[27, 75]. [76] emphasizes user involvement because user
knows more, without user involvement system cannot
evolve and system can lead wrong operations. The matter
is enabling right level of balance between automatic

actions and user mediation which should of course
optimized based on priorities and importance of the
situations.

B) Reasoning Performance and Managebility

Ontologies might grow up into huge knowledge bases
which is problematic along with the heavy reasoning load
for resource constrained devices in a pervasive
environment [82, 83]. Through experiments [69]
concludes that reasoning is time expensive, but still good
for non-real-time applications. Authors identify three
main performance factors: CPU speed, complexity of
logic rules and size of context information.

In [69], authors suggest separating context use and
reasoning where reasoning is done by resource rich
devices and complexity of rule set need to be controlled.
In a knowledge base there is a T-box which holds general
concepts, their properties etc., and an A-box which holds
individual specific information (i.e. instances). Tbox is
usually static and classification and loading is time
consuming in T-box [84, 85], hence it is usually loaded
and classified offline [85]. There are numerous attempts
in the literature to cope with this challenge like partial
ontology fetching and evaluation, ontology encoding,
synchronization and replication of ontologies etc. [30, 83,
86]. The most basic approach is to create plug-in (i.e.
modular) ontologies, it is also beneficial from
management point of view. [87] notes that modularity is
the key requirement for large ontologies in order to
achieve re-use, manageability and evolution. Usually
there is an upper ontology (generic ontology) and a
domain ontology (lower ontology, or plug-in ontology)
[53, 62, 69, 88, 89], this approach enables corresponding
domain ontologies to be plugged into a generic ontology
based on the application domain. We further advocate
that a domain ontology alone also might include
considerable amount of irrelevant contextual information
hence it needs to be further partitioned, it is reasonable to
call these sub-partitions as task ontologies where the root
element of such ontologies are called as active or master
context element. An example might be as follows, a smart
home domain ontology can be partitioned as bed-room
ontology, kitchen ontology etc., where master context
elements are “being in the bed-room”, and “being in the
kitchen” respectively. It is reasonable to say that
identifying such active context spaces might be used to
control size of T-box and logic reasoning. A possible
approach might be using basic data-mining techniques
over the condition set of the inference rules in order to
partition context space. A similar approach is presented in
[90], since only one context is active at any point in time
the number of rules that have to be evaluated are limited.
[61] remarks that A-box increase causes exponential
increase in reasoning process time, hence only related
items need to be collected at the time of reasoning [84].
[61] notes that subscribe (PUSH) method allows us to
know what we need in A-box beforehand for Pre-
selection. Approach presented in previous sub-section
which focuses on eliminating irrelevant context
information based on policy recorders [73] also enhances

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 1003

© 2009 ACADEMY PUBLISHER

reasoning process according to the view presented in this
section.

Performance of reasoning engines is also of crucial.
[91] lists two types of inference engines which are
database (DB) based and main memory (MEM) based. In
main memory systems reasoning is done when the query
is requested. They are more efficient but they lack
scalability because of memory needs. DBMS based
engines are slower but good choice when large and
complicated knowledge is required, and they are scalable.
[91] evaluates performance of following inference
engines Minevra (DB), Hawk (DB), Pellet (MEM), Jena
(MEM) based on a set of criteria, e.g. load time, query
response time, query soundness and completeness etc..
Experiments lead authors to conclude that all the
mentioned inference engines are far from being
commercialized although Jena presents a better
performance overall. Although research on enhancing
performance of reasoners is challenging, only
encountered example is [85] which employs prime
numbers to encode concepts in an ontology for enhancing
ontological reasoning (e.g. subsumption).

We refer to scalability and manageability issues
briefly, prominently based on a database approach. [92]
notes that database style management is much more
scalable then ontologies however it is not standardized.
Reasoning engines usually hold individuals and concepts
in a specific format (e.g. RDF triples) which is usually
not subject to be accessed directly by other users or
applications, even this is possible, it is hard to manage.
However database style of management allows other
users and applications to access and manipulate data in a
easy way (e.g. various views, query engines etc.).
Contextual information is not only required for reasoning

purposes, applications and users might also need to
manipulate such information. For example, imagine set of
questions (i.e. items) and answers which are given by
students to these questions. They are stored in a DB, item
difficulties can be considered as contextual information.
In order to abstract item difficulties from set of answers
given, a computational process is required which is
difficult to apply through ontological representation of
the data. [93] uses a hybrid approach based on using
knowledge bases and databases however authors limit use
of databases for static contextual information. We
advocate that scalability and manageability of databases
and reasoning support of knowledge bases need to be
employed together. Therefore we propose following
rough model which is inspired from SQI [94] which
might be of use. Overall approach is depicted in Fig. 7.
According to proposed model, contextual information
should be kept in databases, and only required contextual
information need to be loaded to knowledge base for
reasoning purposes. A query interface enables various
applications and agents to submit queries in different
query formats (e.g. SQL, SPARQL, RDQL etc.) which is
subject to arrangement between the application and the
query interface. Query is mapped to local query language
of the database or knowledge base and query results are
returned back in a common format (RDF, XML etc.)
which is also subject to arrangement. Application also
can send a command to load related contextual
information from database to knowledge base. In order to
enable such approach, a wrapper need to maintain a
mapping between knowledge base and database.
Automation of such mapping is possible, we refer readers
to section VII for details of such automation and
mapping.

Figure 7. Merging relational databases and knowledge bases in order to enable scalable and efficient context reasoning and context management,
only relevant contextual information is loaded for reasoning.

Q
e
r
y

I
n
t
e
r
f
a
c
e

Applications/Agents

Common Query Language

Wrapper

Database Results in Common Format

Knowledge Base

Local
Query /
Result

Local
Query /
Result

1004 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

VII. TOWARDS A GENERIC APPROACH

[95] reports that context-aware applications are not yet
come into market because of high development
overheads, social barriers such as privacy and security,
and an imperfect understanding of truly compelling uses
of context-awareness. Furthermore several researchers
remarks that context-aware computing lacks of
appropriate infrastructure and middleware support, e.g.
[38, 96, 97]. Hence, several research initiatives focused
on developing such frameworks or middleware
infrastructures based on various available software
architectures, methods, techniques etc. , e.g. [53, 54, 57,
65, 98, 99].

Almost none of these developments or frameworks has
been really considered as a killer application, they are
usually based on context models and encapsulated
common functionalities in one way or another way, e.g.
agent based [98, 99], service oriented [57, 65], central
brokers [53, 54] etc.. However approaches presented in
the current literature of pervasive computing did not
really manage to go beyond the borders of traditional
computing and software engineering, although use of
context models, particularly based on ontologies, can be
considered as an important movement. Available studies
employ ontologies for modeling and reasoning over
context information, however we advocate that use of
ontologies should be employed in every phase of
software development, that is, both for separating
reasoning logic and designing and specifying software
artifacts. In other words we consider shift towards
approaches based on higher abstraction as a key
challenge in order to cope with increasing complexity of
pervasive computing environments. Secondly, available
approaches greatly undermine the place of World Wide
Web (WWW) for tomorrow’s pervasive computing
environments. WWW is the biggest available digital layer
of today and it is reasonable to claim that it will continue
to be so tomorrow. Therefore, it is a fact that utilizing
such a huge information source for pervasive computing
environments are of great challenge. Fortunately,
semantic web approaches which are already being used
for context modeling and reasoning will be of great help.
In subsection A and subsection B, proposed approaches
are elaborated respectively.

All in all, researchers should re-construct and adjust
software engineering approaches and use of WWW for
pervasive computing environments which is tomorrow’s
computing indeed. In the following sub-sections we
introduce our approach for these two mentioned
challenges. Bear in mind that although the approaches we
are going to mention are not purely novel since they are
studied in their corresponding domains, our contribution
is mainly based on synthesis and integration of such
promising approaches based on a pervasive computing
perspective.

A) Application Development

Apart from introducing new challenges pervasive
computing also greatly catalyzes the problems inherent to
the software development. Such challenges can be

considered from development time and run time point of
view. It is a known fact that maintaining knowledge of
the application is essential since software development is
subject to various changes. [100] refers to four
fundamental forms of change: personnel (e.g.
programmers, designers etc.), development platforms,
deployment platforms, and requirements. Hence, in
traditional application development, practically, that
expert knowledge is lost; more accurately, that
knowledge is embedded in code ready for architectural
archaeology by someone who probably wouldn’t have
done in that way [101]! Therefore, a properly managed
application knowledge ensures sustainability of the
application by absorbing such changes. On the other side,
pervasive computing requires computing entities in such
environments to be aware of each other’s characteristics
and functionalities and to be able to communicate and
share information in order to ensure collectivity. That is,
assumptions done at the development time should be
minimal and applications should be able to adjust
themselves according to the various run time settings
which might differ from each other in the sense of
underlying technology, capabilities, requirements etc..
Approach presented in [102] reflects our understanding
for context-aware pervasive application development
(e.g. application context, hard device context, soft device
context etc.). [102] simply considers devices as portals,
applications as tasks, physical surroundings as computing
environments. Based on this vision, authors divide the
application life-cycle into three parts: design-time, load
time and run time. Authors define criteria and models for
each part. Considering design time, it is suggested that
applications and application front-ends should not be
written with a specific device in mind. Besides
applications should not have assumptions about available
services, therefore abstract user interfaces and abstract
services need to be described. The structure of the
program needs to be described in terms of tasks and sub-
tasks instead of simply decomposing user interaction.
Considering load time it is suggested that applications
must be defined in terms of requirements and the devices
must be described in terms of capabilities. Considering
run-time, it is noted that it must monitor the resources,
adapt applications to those resources and respond to
changes. Such approach is based on higher abstractions
of entities, including applications themselves. Indeed, that
is how programming evolved from machine code
assemblers to data structures, to object oriented languages
and to the compilers in order to cope with increasing
complexity. High-level languages replaced assembly
language, libraries and frameworks are replacing isolated
code segments in reuse, and design patterns are replacing
project-specific code [103]. The next cycle of the
abstraction, compelled by pervasive computing era, needs
to reduce semantic gap between problem domain and
representation domain based on higher abstractions of the
business logic, application itself, and the reasoning logic
based on contextual information. Conceptualizing the
problem domain which is based on encapsulated abstract
representations of entities, their capabilities,

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 1005

© 2009 ACADEMY PUBLISHER

requirements, available functionalities and the complex
relations between these entities and their characteristics
will greatly reduce semantic gap with the representation
domain and will isolate developers from the low level
technical aspects of development. Ontologies might be
considered as solution for such a higher level of
complexity. [104] notes that it will be important to
integrate ontologies with the software generation and
management, perhaps using ontologies to semi-
automatically generate interfaces. We further advocate
using a top level of abstraction to automatically derive
required software artifacts ranging from application code
to specification, that is, letting programmers specify
what programs should do rather how it should do it [99].
Moreover, ontologies can be used to automatically verify
applications [105] before creating the code by means of
using ontological reasoning process.

Early examples of context-aware pervasive
applications are rather ad hoc, and are not based on a high
level context models, hence reasoning support is not
available, limited or hard coded. Examples include [31,
106, 107], although these systems did progress in various
aspects of pervasive computing they are weak in
supporting knowledge sharing and reasoning because
lack of a common ontology [53]. Pervasive computing
vision has opened up infinite context space which is
required to be bind over infinite behavior space. Hence, it
is hard to manage model of a setting and increasing
number of rules in an ad hoc way, besides it is hard to
share or reuse constructed knowledge which is directly
hard coded into the application. Accordingly, latter
applications are based on high level context models,
particularly based on ontologies represented by OWL,
RDF, UML etc., examples include [33, 62, 69, 70, 99,
108]. However existing work in the literature is mainly
based on using traditional software engineering and
computing paradigms in one or another way (i.e. various
software architectures, encapsulating context
management functionalities in various ways etc.), but far
away from being revolutionary, and the novelty of
contribution is almost limited with separating reasoning
logic from application code. However, according to our
perspective, ontologies need to be employed in every part
of context-aware pervasive application development in
order to enable higher abstraction. [109] notes that
ontologies can be of use for (1) communication between
computer-computer, between human-human, between
human and computer; (2) computational inference; (3)
knowledge re-use and organization. Communication
between computer and computer addresses the
interoperability problems, where human-human
communication addresses the terminological ambiguity
between developers and leads to a consistent framework
for unification [110, 111]. One of the benefits of using
ontologies is that they aid interaction between users and
the environment since they concisely describe the
properties of the environment and the various concepts
used in the environment [104]. Particularly, enabling
higher level of user-computer communication is of help
for user mediation which is only possible when both

entities share the same conceptual understanding of the
setting. Furthermore, [112] points out that ontologies can
be used for software engineering either at run-time or at
development time. Having a knowledge base which is
external to application for reasoning purposes is example
of use of ontologies at run time (i.e. computational
inference). Considering development time, a system can
be specified and designed by the use of ontologies in a
computing independent way, then designed ontology can
be used to automatically generate application code, code
skeletons (i.e. skeletal code) and other software artifacts
such as database schema, UML diagrams etc.. Moreover,
constructed knowledge is preserved and is ready to be re-
used or to be shared. Development time use of ontologies
is highly undermined by previous approaches for context-
aware pervasive computing. Indeed a typical context
ontology, by the nature of context, involves considerable
amount of application knowledge. Therefore constructed
knowledge should be used for automated code generation
rather then re-modeling, re-defining and manually
generating application.

Hence, we refer to related literature briefly for
ontology driven development which can be employed for
context-aware pervasive application development. [113]
proposes a development method called “ontology
oriented programming”, where the problem domain is
expressed in the form of an ontology and such ontology is
used to generate object oriented application code. This is
programming paradigm is of a higher abstraction level
than object-oriented programming (concepts versus
objects), but which finally, through the indicated
compiler, makes it possible to generate object-oriented
code [113]. Although [114] sufficiently addresses the
related literature for ontology-driven development,
particularly at development time, Model Driven
Development (MDD) [100, 101, 105] approach which is
based on the same idea of automatically generating
application code from models seems to be more mature.
This is because of the experience, tools and standards
available for this approach are more standardized and
advanced. Prominently, Model Driven Architecture
(MDA) [115], which is initiated by OMG consortium,
holds an important place for MDD. MDA initiative offers
a conceptual framework for defining a set of standards in
support of MDD [104]. MDA software development life
cycle includes a five step process [103]: (1) capture
requirements in a Computing Independent Model (CIM),
(2) create a Platform Independent Model (PIM), (3)
transform the PIM to one or more Platform Specific
Models (PSM) by adding platform specific rules and code
that the transformation did not provide, (4) transform
PSM to code, (5) deploy the system in a specific
environment. UML standard which uses UML meta-
model [101] is in the core of MDA for modeling. We
previously mentioned that UML is considered to be a
software engineering paradigm which can be used for
representing ontologies, however it is only limited to
represent lightweight ontologies. Therefore, UML
approach in MDA might not be a proper choice to model
both reasoning logic, application logic and contextual

1006 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

entities. Hence use of OWL and OWL knowledge
representation ontology (i.e. ontology to represent an
ontology, corresponds to UML meta-model) instead of
UML and UML meta-model might satisfy our purposes.
People use UML or object oriented languages because
they are more close to development layer and might

facilitate it, so OWL should also come closer to
development layer [115]. This is possible by developing
easy-to use visual development environments and tools.
Accordingly, MDA process can be adopted to such
ontology based approach as shown in Fig. 8 [117].

Figure 8. An integrated abstract software development approach based on Model Driven and Ontology Driven Development where models are used
both for automatic software artifact generation (i.e. development time) and for creating external reasoning logic (i.e. run time) [117].

In this approach, first a domain ontology need to be
created, probably by applying one of the techniques [71,
118] for ontology development (omitted in the figure for
the sake of brevity). Later, part of such ontology need to
be employed for reasoning purposes, this is because not
every element of this ontology need to be part of
reasoning logic but rather part of application logic.
Therefore, a Platform Independent Application Model
(PIAM) is to be subtracted from the Domain Ontology.
Platform Specific Application Models (PSAM) - e.g.
JAVA, .NET etc. - and Artifact Dependent Models
(ADM) need to be derived from PIAM. Finally, platform
specific code, and various software artifacts need to be
created by using PSAM(s) and ADM(s) respectively.
Furthermore it might be required to fine-tune the code
itself or to complete skeletal application code. Inserting
handwritten code in MDA is especially important in
MDA, because the process is both model-driven and
iterative. That means that MDA tools are continually
generating code [103]. Use of ontologies as a top level
abstraction and to map it to different purpose-specific
representations is supposed to enable rapid, sustainable
application development which is quite suitable to the
nature of application development for context-aware
pervasive settings. An interesting example is presented in
[78] where authors derive a Bayesian model from an
ontology, that is, to merge Bayesian models and
ontologies, for better reasoning in the sense of context
quality. Such example clarifies what we do really refer by
saying “purpose specific representation”, it does not
necessarily need to be application code, or database

schema, higher expressivity of ontologies enables them to
be mapped less expressive representations. Complexity of
pervasive spaces requires availability of different
viewpoints of a model (e.g. a UML diagram might be
more proper for documentation purposes, since it
provides higher visual expressivity).

In this stage, it is required to have a brief look at
available work in the literature which focus on ontology
based automatic software artifact generation, particularly
application code and database schema. [119] shows how
to convert RDF schema and RuleML sources into Java
classes, and [120] presents how to create a set of Java
interfaces and classes from OWL ontology such that an
instance of Java class represents an instance of a single
class of the ontology with the most of its properties, class
relationships and restriction-definitions maintained [120].
Similarly in [121], authors show how an OWL/RDF
knowledge base can be integrated with conventional
domain-centric data models (Enterprise Java Beans) and
object-relational mapping tools (e.g. Hibernate).
Considering relational databases, [122] presents a
mapping technique from ontologies to relational
databases in order to facilitate rapid operations (e.g.
search, retrieval etc.) and to utilize benefits of relational
management systems (e.g. transaction management,
security etc.)

[97] points out that middleware must enable
programmers to develop applications dynamically
without having to interact with the physical world of
sensors, actuators, and devices. In other words, we need a
middleware that can decouple programming and

Platform
Independent

Application Model

e.g. Database
Schema

Other Software
Artifacts (e.g.

UML,
Documentation)

Paltform Specific

Code

Computing
Independent

Domain Ontology

Context Ontology
for Reasoning

Platform Specific
Application
Model(s)

Artifact Dependent
Model(s)

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 1007

© 2009 ACADEMY PUBLISHER

application development from physical space
construction and integration. We further advocate that
ontologies also have potential to enable users to program
their own environment by means of synchronizing (e.g.
sequencing, conditioning etc.) accessible services given
by various entities (e.g. Outlook, TV, refrigerator etc.) of
the environment. This is more than just being in the loop
by means of meditation. We refer to such approach as
“environment programming” which is only possible by
enabling users and computers to share same conceptual
understanding and enabling different entities to be
plugged in the environment in a plug and play manner in
order to advertise their available services.

B) Semantic Web

Pervasive computing enlarged traditional computing
setting into the human layer of the earth. World Wide
Web is the biggest digital information layer, hence it is
unavoidable to stretch and integrate such an information
layer over this new enlarged computing setting [123].
Two different approaches can be listed to merge web and
pervasive computing environments, the first one is from
application point of view where researchers use web as an
application and communication space, that is, mapping is
from real world to web as presented in [124] where real
life objects have web presences. Second approach is from
information point of view [123] where mapping is from
web to real world which is our focus in this paper.
Various researches in the literature use internet as an
information source, and for many others use of internet
might greatly advance their work (e.g. schedule
information for smart spaces etc.), examples include [61,
99, 125]. Particularly, challenge can be identified as
follows [123]:

…to enable variety of devices in pervasive computing
environments to be able to extract and use valuable web
resources by semantically structuring commonly
published information chunks (e.g. events, user profiles
etc.) and annotating various web documents with
contextual information (e.g. size, format, requirements
etc.) in order to enable adaptive retrieval and
presentation of such documents.

Semantic web standards (e.g. OWL) have been used
for varying challenges of pervasive computing systems
such as context modeling as previously mentioned.
However apart from its constructive existence in
pervasive computing environments, semantic web
activities, particularly embedded semantics [126], also
have a crucial role for enabling pervasive computing
environments to exploit web information. Different
devices in pervasive environments connected to each
other in various means such as wired and wireless
networks, infrared connections, Bluetooth etc. Apart from
these local ties, pervasive computing environments are
also mostly connected with World Wide Web
environment as shown in Figure 10 (a). Web environment
is a huge information source, hence enabling pervasive
computing environments to exploit valuable information
in the web environment without imposing any extra
burden is a challenging task which is of prominent

importance. The semantic Web components such as
XML, RDF, OWL etc. allows machine understandability
of information however in explicit means. They are
useful for system level aspects such as context modeling,
or service messaging etc. and they aim at machine
readability. However, RDFa [126], eRDF [128] and
Microformats [129], embedded semantics, enables
implicit annotation of information in web pages by using
class attributes of (X)HTML elements which both
provides human and machine readability of information.
Accordingly, four layers of abstraction for information
(including contextual information) can be identified (see
Fig. 9) which is adopted from three layer of abstraction
proposed by [34]: (1) storage layer, (2) exchange layer,
(3) conceptual layer, and (4) representation layer.
Representation layer, particularly embedded semantics,
constitutes the missing link in current approaches.

Figure 9. Four layers of abstraction for contextual information and
information itself.: Storage Layer, Exchange Layer, Conceptual Layer,
and Representation Layer.

With respect to the partial context model depicted in
Fig. 10 (b), such approach particularly focuses on the
information which is part of the digital environment
together with the applications. This approach is also in
line with the idea we mentioned in section III; context for
information (i.e. information as an independent entity).
Annotating web documents by contextual information or
structuring commonly published information chunks by
using proper and standard meta-data elements and
vocabularies will enable context aware applications to
filter, search and recommend and present these
information pieces to users depending on the match
between user context and information characteristics (i.e.
context). An example is learning objects [12]; each might
have different competence levels, media format etc. that
might interest devices with different capabilities or users
with different competence levels.

Structuring meaningful information chunks residing in
the web environment and annotating various documents
with their respective contextual information enables us to
identify and retrieve information of interest easily by
leaving out unnecessary content. Since information is
decoupled from presentation, such approach also enables
us to present retrieved information by making use of
abstract user interfaces and multimodality.

Representation Layer (e.g. HTML,
RDFa, eRDF, Microformats)

Conceptual Layer (e.g. OWL,
RDF, UML etc.)

Exchange Layer (e.g. XML, JSON.
CVS etc.)

Storage Layer (e.g. tupples)

1008 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

Figure 10. (a) Top level view of pervasive computing environments and World Wide Web, (b) partial view of our generic conceptualization.

VIII. CONCLUSIONS

Available research on context-aware pervasive
computing lacks of a general understanding and a
concrete methodology although required knowledge and
vision are already distributed over respective literature.
Particularly software engineering requires to be revised in
order to cope with complexity which is introduced by
pervasive computing. Proper understanding of context
and its relation with adaptivity is of crucial in order to
construct a new understanding for context-aware software
development for pervasive computing environments.
Role of the user in such environments need to be clearly
understood in order to decide on right level of user
control and automatic system behavior as well as for
involving users for the mediation purposes. Moreover,
pervasive computing expands the physical infrastructure
of the digital environment which requires WWW to be
properly coupled with such physical infrastructure as an
ultimate information source.

Accordingly we first introduced our general
understanding and methodology both in generic and
domain specific sense (i.e. e-learning). Through this
paper, we spend an effort towards integrating, and
extending available theory and basic practice into a
common understanding and into a conceptual framework
which will lead us during both our long term and short
term research. We elaborated on context and adaptivity
by creating links with the application development issues.
We referred a combined use of ontology driven and
model driven approaches both at run time and
development time where current practice is only limited
with run-time use of ontologies. Such combined approach
which is based on increasing level of abstraction might
greatly facilitate rapid and sustainable application
development. We further pointed out the semantic web
approaches and web itself within the perspective of
context-aware pervasive computing and indentified
comparatively important challenges.

Our future work will be more focused on specifics of
anywhere and anytime adaptive e-learning environments
in compliance with general understanding and framework
introduced in this paper. Consecutive complementary
studies are expected to complete theoretical and technical
framework constructed in this paper, that is, first two
levels of our research pie depicted in Fig. 1. Further work
will be based on specifics of adaptivity and context for e-
learning domain which is indeed uLearning (i.e.

ubiquitous learning) for our case. Our basic steps, more
practically, will involve development of a generic and
domain specific ontology for e-learning, and setting up
required infrastructures and software components in
order to make use of ontological reasoning and web
information in such pervasive learning environments.

ACKNOWLEDGMENT

This paper is based on research funded by the
Industrial Research Fund (IOF) and conducted within the
IOF Knowledge platform “Harnessing collective
intelligence in order to make e-learning environments
adaptive” (IOF KP/07/006).

REFERENCES

[1] M. Weiser, “The computer for the 21st century”, Scientific
American, pp. 94-98, 1991.

[2] M. Weiser, “Some computer science issues in ubiquitous
computing”, Communications of the ACM 36, pp. 7:75-85,
1993.

[3] M. Satyanarayanan, “Pervasive computing: vision and
challenges”, Personal Communications IEEE, Vol. 8, Issue
4, pp. 10-17, 2003.

[4] M. Bick, T. F. Kummer, “Ambient Intelligence and
Ubiquitous Computing”, In Handbook on Information
Technologies for Education and Training, Ed. Bernurs, P.,
Blazewicz J., Schmidt, G., Shaw, M., Springer Verlag,
2008.

[5] B. Schilit, N. Adams, R. Want, “Context Aware
Computing Applications”, Proceedings of Mobile
Computing Systems and Applications, pp. 85-90, 1994.

[6] MASIE Center e-Learning Consortium, “Making Sense of
E-learning Standards and Specifications: A decision
Makers Guide to their Adoption”, 2n Edition, The MAISE
Center, November 2003.

[7] T. Mayes, S. de Freitas, “Review of E-Learning Theories,
Frameworks and Models,” JISC E-Learning Models Study
Report, Joint Information Systems Committee,
www.jisc.ac.uk/elp_outcomes.html, 2004.

[8] S. Kuru, M. Nawojczyk, K. Niglas, E. Butkeviciene, A.
Soylu, "Facilitating Cross-border Self-directed
Collaborative Learning: The iCamp Case", EDEN 2007
Annual Conference, Naples, Italy, June 2007.

[9] B. Kieslinger, S. Fiedler, F. Wild, S. Sobernig, “iCamp:
The Educational Web for Higher Education in an Enlarged
Europe”, eChallenges e-2006, Barcelona, Spain, pp. 25-27,
2006.

[10] V. Wade, H. Ashman, “Evolving the Infrastructure for
Technology-Enhanced Distance Learning”, Internet
Computing, IEEE, Volume 11, Issue 3, pp. 16-18, 2007.

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 1009

© 2009 ACADEMY PUBLISHER

[11] T. Klobucar, “iCamp Space - an environment for self-
directed learning, collaboration and social networking.”,
WSEAS Transactions on information science and
applications, vol. 5, no. 10, pp. 1470-1479, 2008.

[12] A. Soylu, S. Kuru, F. Wild, F. Mödrichter, “e-Learning
and Microformats: a Learning Object Harvesting Model
and a Sample Application”, Proceedings of Mupple’08
Workshop, Maastricht, Netherlands, pp. 57-65, 2008.

[13] S. Thomas, “Pervasive, persuasive eLearning: modeling
the pervasive learning space”, 1st IEEE International
Workshop on Pervasive eLearning (PerEL’05), pp. 332-
336, 2005.

[14] V. Jones,and J. H. Jo, “Ubiquitous learning environment:
An adaptive teaching system using ubiquitous
technology.”, In R. Atkinson, C. McBeath, D. Jonas-
Dwyer and R. Phillips (eds.), Beyond the comfort zone:
Proceedings of the 21st ASCILITE Conference, pp. 468-
474, 2004.

[15] A. Syvanen, R. Beale, M. Sharples, M. Ahonen, P.
Lonsdale, “Supporting Pervasive Learning Environments:
Adaptability and Context Awareness in Mobile Learning.”,
International Workshop on Wireless and Mobile
Technologies in Education, pp. 251-253, 2005.

[16] P. Brusilovsky, A. Kobsa, W. Nejdl (Eds.), The Adaptive
Web, Lecture Notes in Computer Science, Springer-Verlag,
Berlin, Germany, 2007.

[17] B. Schilit, M. Theimer, “Disseminating active map
information to mobile hosts”, IEEE Network, 8(5), pp. 22-
32, 1994.

[18] N. Ryan, J. Pascoe, D. Morse, “Enhanced reality
fieldwork: the context-aware archaeological assistant”, V.
Gaffney, M. V. Leusen, S. Exxon (eds.), Computer
applications in Archaeology, 1997.

[19] A. K. Dey, “Context-aware computing: the cyberdesk
project”, AAAI 1998 Spring Symposium on Intelligent
Environments, Tech. Report SS-98-02, pp. 51-54, 1998.

[20] D. Franklin, J. Flaschbart, “All gadget and no
representation makes Jack a dull environment”, AAAI 1998
Spring Symposium on Intelligent Environments, Technical
Report SS-98-02, 1998, pp. 155-160.

[21] T. Rodden, K. Cheverst, K. Davies, A. Dix, “Exploiting
context in HCI design for mobile systems”, Proceedings of
Workshop on Human Computer Interaction with Mobile
Devices, 1998.

[22] R. Hull, P. Neaves, J. Bedford-Roberts, “Towards situated
computing”, Proceedings of 1st International Symposium
on Wearable Computers, pp. 146-153, 1997.

[23] A. K. Dey, G. D. Abowd, “Towards a better understanding
of context and context-awareness”, Technical Report GIT-
GVU-99-22, Georgia Institute of Technology, College of
Computing, 1999.

[24] S. Greenberg, “Context as a dynamic construct”, Human-
Computer Interaction, pp. 16:257-268, 2001.

[25] A. K. Dey, “Understanding and using context”, Personal
and Ubiquitous Computing, Special issue on Situated
Interaction and Ubiquitous Computing 5, 1, 2001.

[26] D. Chalmers, N. Dulay, M. Sloman, “Towards reasoning
about context in the presence of uncertainity”, Proceedings
of Workshop on Advanced Context Modeling Reasoning
and Management (UbiComp'04), 2004.

[27] A. K. Dey, J. Mankoff, D. Gregory, “Distributed mediation
of ambiguous context in aware environments”, Abowd and
Scott Carter Proceedings, Proceedings of UIST 2002, 2002.

[28] T. Winograd, “Architectures for Context,” Human-
Computer Interaction, Vol. 16, No. 2, 3 & 4, pp. 401-419,
2001.

[29] D. Preuveneers, Y. Berbers, “Towards context-aware and
resource-driven self-adaptation for mobile handheld
applications”, Proceedings of ACM Symposium on Applied
Computing, Seoul, Korea, 2007.

[30] D. Preuveneers, Y. Berbers, “Encoding Semantic
Awareness in Resource Constrained Devices”, IEEE
Intelligent Systems, 23:2, 2008, pp 26-33.

[31] D. Salber, A. K. Dey, G. D. Abowd, “The Context Toolkit:
aiding the development of context-enabled applications”,
Proceedings of Human Factors in Computing Systems
(CHI '99), Pittsburgh, PA, pp. 434-441, 1999.

[32] P. Dourish, “What we talk about when we talk about
context”, Personal and Ubiquitous Computing, 8(1),pp.
19-30, 2004.

[33] K. Henricksen, J. Indulska, A. Rakotonirainy, “Modeling
Context Information in Pervasive Computing Systems”,
Proceedings of First International Conference on
Pervasive Computing (Pervasive 2002), pp. 79-117, 2002.

[34] R. Reichle, M. Wagner, M. U. Khan, K. Geihs, L. Lorenzo,
M. Valla, C. Fra, N. Paspallis, G. A. Papadopoulos, “A
comprehensive context modeling framework for pervasive
computing systems”, Proceedings of 8th IFIP
International Conference on Distributed Applications and
Interoperable Systems, Oslo, Norway, 2008.

[35] T. Erickson, “Some problems with the notion of
contextaware computing”, Communications of the ACM,
45(2), pp. 102-104, 2002.

[36] T. Strang, C. Linnhoff-popien, “A context modeling
survey”, Proceedings of Advanced Context Modelling,
Reasoning and Management (Ubicomp2004), Nottingham,
UK, 2004.

[37] W. Du, L. Wang, “Context-aware application
programming for mobile devices”, Proceedings of
C3S2E'2008, pp.215-227, 2008.

[38] X. Ying, X. Fu-yuan, “Research on context modeling
based on ontology”, Proceedings of CIMCA-IAWTIC’06,
2006.

[39] G. Chen, D. Kotz, “A Survey of Context-Aware Mobile
Computing Research”, Technical Report, TR2000-381,
Dartmouth, 2000.

[40] L. Han, S. Jyri, J. Ma, K. Yu, “Research on Context-aware
Mobile Computing”, Proceedings of Advanced Information
Networking Applications Workshops, pp 24-30, 2008.

[41] A. Dix, T. Rodden, N. Davies, J. Trevor, A. Friday, K.
Palfreyman, “Exploiting space and location as a design
framework for interactive mobile systems”, ACM
Transactions on Human Computer Interaction, 2000.

[42] M. Strimpakou, I. Roussaki, C. Pils, M. Angermann, P.
Robertson, M. Anagnostu, “Context Modelling and
Management in Ambient-aware Pervasive Environments”,
Proceedings of Int. Workshop on Location and Context-
Awareness (LoCA2005), Oberpfaffenhofen, Germany, May
2005.

[43] J. Pascoe, “Adding generic contextual capabilities to
wearable computers”, Proceedings of 2nd International
Symposium on Wearable Computers, pp. 92-99, 1998.

[44] J. Mäntyjärvi, U. Tuomela, I. Kansala, J. Hakkila,
“Context-studio–tool for personalizing context-aware
applications in mobile terminals”, Proceedings of
Australasian Computer Human Interaction Conference,
Addison-Wesley Longman, pp. 64-73, 2003.

[45] P. Korpipää, J. Hakkila, J. Kela, S. Ronkainen, I. Kansala,
“Utilizing context ontology in mobile device application
personalization”, Proceedings of Mobile and Ubiquitous
Multimedia, ACM Press, pp. 133-140, 2004.

[46] J. Coutaz, J. Crowley, S. Dobson, D. Garlan, "Context is
Key", Communications of the ACM, 48(3), March 2005.

1010 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

[47] C. Räck, S. Arbanowski, S. Steglich, “Context-aware,
ontology-based recommendations.”, Proceedings of
SAINTW’06, 2006.

[48] Y. Bai, J. Yang, Y. Qiu, “OntoCBR: Ontology-based CBR
in Context-aware Applications”, Proceedings of MUE
2008, Korea, 2008.

[49] G. Kappel, B. Pröll, W. Retschitzegger, W. Schwinger T.
Hofer, “Modeling Ubiquitous Web Applications – A
Comparison of Approaches”, Proceedings of the Int. Conf.
on Information Integration and Web-based Applications
and Services (iiWAS), Austria, Sept. 2001.

[50] M. Khedr, A. Karmouch, ‘Negotiating context information
in context aware systems’, IEEE Intelligent Systems
Magazine, 19(6), pp. 21–29, 2004.

[51] T. Chaari, D. Ejigu, F. Laforest, M. Scuturici, “Modeling
and Using Context in Adapting Applications to Pervasive
Environments”, Proceedings of the IEEE International
Conference on Pervasive Services (ICPS'06), pp. 111-120,
Lyon, France, June 2006.

[52] J. Indulska, P. Sutton, “Location management in pervasive
systems”, Proceedings of the Australasian Information
Security Workshop (CRPITS ’03), pp. 143–151, 2003.

[53] H. Chen, T. Finin, A. Joshi, “An ontology for context-
aware pervasive computing environments”, Special Issue
on Ontologies for Distributed Systems, Knowledge
Engineering Review, 18(3), pp.197-207, 2004.

[54] P. Korpipää, J. Mäntyjärvi, J. Kela, H. Keränen, E. J.
Malm, “Managing context information in mobile devices”,
IEEE Pervasive Computing, pp.42-51, 2003.

[55] A. Padovitz, W. S. Loke, A. Zaslavsky, “Multiple agent
perspective in reasoning about situations for context-aware
pervasive computing systems”, IEEE Transactions on
Systems, Man, and Cybernetics, Vol. 38, No. 4, 2008.

[56] F. Perich, A. Joshi, T. Finin, and Y. Yesha, “On Data
Management in Pervasive Computing Environments”,
IEEE Transactions on Knowledge and Data Engineering,
October 2003.

[57] J. Bardram, “The Java Context-Awareness Framework
(JCAF) – A service infrastructure and programming
framework for context-aware applications.”, Pervasive,
98–115, 2004.

[58] T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger, J.
Altmann, “Context-awareness on mo-bile devices – the
hydrogen approach.”, Proceedings of the 36th Annual
Hawaii International Conference on System Sciences, pp.
292–302, 2002.

[59] J. Q. Quyang, Ding B., M. W. Huai, X. S. Dian,
“Componenet Based Context Model”, Proceedings of The
Ninth Intl. Web-Age Information Management (WAIM’08),
pp. 569-574, July 2008.

[60] A. Devaraju, S. Hoh, “Ontology based Context Modeling
for User-Centered Context-aware Services Platform”,
Proceedings of Intl. Symposium on Information
Technology (ITSim 2008), pp. 1-7, August 2008.

[61] D. Nicklas, M. Grossmann, J. Minguez, M. Wieland,
“Adding High-level Reasoning to Efficient Low-level
Context Management: A Hybrid Approach”, Proceedings
of Sixth Annual IEEE Intl. Conf. On Pervasive Computing
and Communications (PerCom 2008), pp. 447-452, March
2008.

[62] T. Gu, H. K. Pung, D. Q. Zhang, “A Service-Oriented
Middleware for Building Context-Aware Services”,
Journal of Network and Computer Applications, pp. 1-18,
2005.

[63] D. R. de Almeida, C. de Souza Baptista, F. G. de Andrade,
“Using Ontologies in Context-Aware Applications”,

Proceedings of 17th Int. Conf. On Database and Expert
Systems Applications (DEXA’06), pp. 349-353, 2006.

[64] O. Brdiczka, P. Reignier, J. L. Crowley, “Automatic
Development of an Abstract Context Model for an
Intelligent Environment”, Proceedings of Third IEEE Intl.
Conf. on Pervasive Computing and Communications
Workshops (PerCom 2005 Workshops), pp. 35-39, March
2005.

[65] G. Wang, J. Jiang, M. Shi, “Modeling Contexts in
Collaborative Environment: A New Approach”, Computer
Supported Cooperative Work in Design III, Lecture Notes
in Computer Science, Vol. 4402, Springer-Verlag, pp. 23-
32, 2007.

[66] H. Q. Ngo, A. Shehzad, S. L. Kiani, M. Riaz, S. Y. Lee,
“Developing Context-Aware Ubiquitous Computing
Systems with a Unified Middleware Framework.”,
Proceedings of Embedded and Ubiquitous Computing
(EUC 2004), LNCS Volume 3207, Springer-Verlag, pp.
672 – 681, 2004.

[67] O. Cakmakci, J. Coutaz, K. Van Laerhoven, H. W.
Gellersen, “Context Awareness in Systems with Limited
Resources”, Proceedings of the Third workshop on
Artificial Intelligence in Mobile Systems (AIMS), pp. 21-
29, Lyon, France, 2002.

[68] R. Studer, V. R. Benjamins, D. Fensel, “Knowledge
Engineering: Principles and Methods”, IEEE Transactions
on Data and Knowledge Engineering, 25(1-2), pp. 161-
197, 1998.

[69] X. H. Wang, Q. D. Zhang, T. Gu, H. K. Pung, “Ontology
Based Context Modeling and Reasoning using OWL”,
Proceedings of Intl. Conf. Pervasive Computing and
Communications (PerCom 2004), Orlando, FL, USA,
2004.

[70] A. Held, “Modeling of Context Information for Pervasive
Computing Applications”, Proceedings of SCI2002,
Orlando, Florida, 2002.

[71] A. Gómez-Pérez, M. Fernández-López, O. Corcho,
Ontological Engineering, Springer-Verlag, 2003.

[72] M. Dean, G. Schreiber, “OWL Web Ontology Language
Reference”, http://www.w3.org/TR/owl-ref/, 2004.

[73] X. Lin, S. Li, Z. Yang, W. Shi, “Application Oriented
Context-Modeling and Reasoning in Pervasive
Computing”, Proceedings of The Fifth International
Conference on Computer and Information Technology,
2005.

[74] E. Knutov, P. De Bra, M. Pechenizkiy, “AH 12 years later:
a comprehensive survey of adaptive hypermedia methods
and techniques”, New Review of Hypermedia and
Multimedia, Vol. 15, No. 1, pp. 5-38(34), 2009.

[75] J. Mankoff, D. A. Gregory, S. E. Hudson, “OOPS: A
toolkit supporting mediation techniques for resolving
ambiguity in recognition-based interfaces”, Computers and
Graphics, 24(6), pp. 819-834, 2000.

[76] A. K. Dey, R. Hamid, C. Beckmann, I. Li , D. Hsu,
“aCAPpella: programming by demonstration of context-
aware applications”, Proceedings of Human Factors in
Computing Systems (CHI 04), pp. 33-40, 2004.

[77] N. Hönle, Nicklas, U. P. Käppeler, T. Schwarz, M.
Grossmann, “Benefits of integrating meta data into a
context model”, Proceedings of the Third IEEE
Conference on Pervasive Computing and Communications
Workshops – Workshop on Context Modeling and
Reasoning (CoMoRea), Kauai Island, Hawaii, USA, 2005.

[78] B. A. Truong, Y. K. Lee, S. Y. Lee, “Modeling and
Reasoning about Uncertainty in Context-Aware Systems”,
IEEE International Conference on e-Business Engineering,
pp. 102-109, 2005.

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 1011

© 2009 ACADEMY PUBLISHER

[79] T. Buchholz, A. Küpper, M. Schiffers, “Quality of context:
What it is and why we need it”, Proceedings of 10th
International Workshop of the HP OpenView University
Association (HPOVUA2003), Geneva, Switzerland, 2003.

[80] Y. Bu, J. Li, S. Chen, X. Tao, J. Lu, “An enhanced
ontology based context model and fusion mechanism”,
Proceedings of IFIP 2005 International Conference on
Embedded and Ubiquitous Computing (EUC2005),
Nagasaki, Japan, LNCS Volume 3824, Springer-Verlag,
pp. 920–929, 2005.

[81] A. Schmidt, “Ontology-based user context management:
The challenges of dynamics and imperfection”,
Proceedings of ODBASE 2006, On the Move Federated
Conferences (OTM), Montpellier, France. LNCS, Springer,
2006.

[82] D. Ejigu, M. Scuturici, L. Brunie, “Semantic Approach to
Context Management and Reasoning in Ubiquitous
Context-Aware Systems”, Digital Information
Management, 2007.

[83] G. Specht, T. Weithoner, “Context-aware processing of
ontologies in mobile environments”, Proceedings of the
7th International Conference on Mobile Data
Management, Washington, DC, USA, p. 86, IEEE
Computer Society, 2006.

[84] A. Agostini, C. Bettini, D. Riboni, “A performance
evaluation of ontology-based context reasoning,”
Proceedings of the 5th Annual IEEE International
Conference on Pervasive Computing and Communications
Workshops (PerCom’07), pp. 3–8,White Plains, NY, USA,
March 2007.

[85] S. B. Mokhtar, D. Preuveneers, N. Georgantas, V. Issarny,
Y. Berbers, “EASY: Efficient SemAntic Service
DiscoverY in Pervasive Computing Environments with
QoS and Context Support”, Journal Of System and
Software, 81, pp. 785-808, 2008.

[86] J. Berri, R. Benlamri, Y. Atif, “Ontology Based
Framework for Context-aware Mobile Learning”,
Proceedings of IWCMC’06, Vancouver, Canada, 2006.

[87] A. L. Rector, “Modularisation of domain ontologies
implemented in description logics and related formalisms
including OWL”, Proceedings of Second International
Conference on Knowledge Capture (K-CAP), Sanibel
Island, FL, 2003.

[88] D. Ejigu, M. Scuturici, L. Brunie, “An Ontology-Based
Approach to Context Modeling and Reasoning in
Pervasive Computing”, Proceedings of CoMoRea
Workshop of the IEEE International Conference
(PerCom'07), New York, USA, 2007.

[89] A. Y. Turhan, T. Springer, M. Berger, “Pushing doors for
modelling contexts with owl dl a case study”, Proceedings
of the Fourth IEEE Intl. Conf. on Pervasive Computing
and Communications, Workshop on Context Modelling and
Reasoning (CoMoRea’06), pp. 13–17, 2006.

[90] G. Biegel, V. Cahill, “A framework for developing mobile,
context-aware applications”, Proceedings of the 2nd IEEE
Conference on Pervasive Computing and Communication,
2004.

[91] O. Kwon, J. Sim, M. Lee, “OWL-DL Based Ontology
Inference Engine Assessment for Context-Aware
Services”, Agent and Multi-Agent Systems: Technologies
and Applications, Lecture Notes in Computer Science, Vol.
44-96, Spriger-Verlag, pp. 338-347, 2007.

[92] I. Roussaki, M. Strimpakou, N. Kalatzis, M. Anagnostou,
C. Pils, “Hybrid context modeling: A location-based
scheme using ontologies”, Proceedings of 4th IEEE Conf.
on Pervasive Computing and Communications Workshops,
pp. 2–7, 2006.

[93] G. Judd, P. Steenkiste, “Providing contextual information
to pervasive computing applications”, Proceedings of 1st
IEEE Conference on Pervasive Computing and
Communica-tions (PerCom), pp. 133-142, March 2003.

[94] B. Simon, D. Massart, V. F. Assche, S. Ternier, E. Duval,
S. Branter, D. Olmedilla, Z. Miklos, “A Simple Query
Interface for Interoperable Learning Resources”,
Proceedings of 1st Workshop on Interoperability of Web-
based Educational Systems, Chiba, Japan, 2005.

[95] K. Henricksen, J. Indulska, “A Software Engineering
Framework for Context-Aware Pervasive Computing”,
Proceedings of Second IEEE International Conference on
Pervasive Computing and Communications, IEEE
Computer Society, pp. 77–86, 2004.

[96] C. S. Hong, H. Kim, H. S. Kim, H. C. Lee, “An Approach
for Configuring Ontology-based Application Context
Model,” Proceedings of IEEE International Conference on
Pervasive Services, Lyon, France, 2006.

[97] S. Helal, "Programming pervasive spaces," IEEE
Pervasive Computing, Vol. 4, No. 1, pp. 84-87, 2005.

[98] M. Khedr, A. Karmouch “ACAI: Agent-Based Context-
aware Infrastructure for Spontaneous Applications”,
Journal of Network and Computer Applications, 28(1), pp.
19-44, 2005.

[99] H. Chen, T. Finin, A. Joshi, and L. Kagal, “Intelligent
Agents Meet the Semantic Web in Smart Spaces”, IEEE
Internet Computing, 8(6), pp. 69-79, 2004.

[100] C. Atkinson, T. Kühne, "Model-Driven Development:
A Metamodeling Foundation", IEEE Software, September
2003.

[101] S. J. Mellor, A. N. Clark, and T. Futagami, “Model-
driven development: Guest editor’s introduction”, IEEE
Software, 20(5), 2003.

[102] G. Banavar, J. Beck, E. Gluzberg, J. Munson, J.
Sussman, D. Zukowski, “Challenges: an application model
for pervasive computing”, Proceedings of 6th ACM
MobiCom, Boston, MA, USA, 2000.

[103] T. O. Meservy, K. D. Fenstermacher, “Transforming
software development: An MDA road map”, IEEE
Computer, 38(9) , pp. 52–58, 2005.

[104] A. Ranganathan, R. E. McGrath, R. H. Campbell, M.
D. Mickunas, “Ontologies in a pervasive computing
environment”, Proceedings of the Workshop on Ontologies
and Distributed Systems (part of the 18th International
Joint Conference on Artificial Intelligence (IJCAI 2003),
Acapulco, Mexico, August 2003.

[105] B. Selic, “The Pragmatics of Model-Driven
Development”, IEEE Software, 19–25. Special Issue on
Model-Driven Development, 2003.

[106] M. H. Coen, “Design principles for intelligent
environments”, Proceedings of AAAI/IAAI 1998, pp. 547–
554, 1998.

[107] T. Kindberg and J. Barton, “A web-based nomadic
computing system”, Computer Networks, 35(4), pp. 443–
456, 2001.

[108] H. Chen, T. Finin, A. Joshi, “The SOUPA ontology
for pervasive computing”, Ontologies for agents: Theory
and experiences, Whitestein series in software agent
technologies, Springer, 2005.

[109] M. Gruninger, J. Lee, “Ontology Applications and
Design”, Communications of the ACM, 45(2), pp. 39–41,
2002.

[110] M. Uschold, M. Gruninger, “Ontologies: Principles,
Methods and Applications”, Knowledge Engineering
Review, 11(2), pp. 93–15, 1996.

[111] M. Uschold, R. Jasper, “A Framework for
Understanding and Classifying Ontology Applications”,

1012 JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

Proceedings of IJCAI Workshop on Ontologies and
Problem-Solving Methods, August 1999.

[112] N. Guarino, “Formal Ontology in Information
Systems”, Proceedings of FOIS’98, Trento, Italy, IOS
Press, Amsterdam, 1998.

[113] N. M. Goldman, “Ontology-oriented programming:
static typing for the inconsistent programmer”,
Proceedings of International Semantic Web Conference
(ISWC’2003), LNCS Vol. 2870, Sprinter-Verlag, Berlin,
pp. 850–865, 2003.

[114] F. Ruiz, and J. R. Hilera, “Using Ontologies in
Software Engineering and Technology”, Ontologies for
Software Engineering and Software Technology, C. Calero,
F. Ruiz and M. Piattini (Eds.), Springer Berlin Heidelberg,
2006.

[115] D. S. Frankel, “An MDA Manifesto”, MDA Journal,
2004.

[116] C. Anagnostopoulos, A. Tsounis, S.
Hadjiefthymiades, “Context management in pervasive
computing environments”, Proceedings of Intl. Conf. on
Pervasive Services (ICPS '05), 2005.

[117] A. Soylu, P. De Causmaecker, “Merging Model
Driven and Ontology Driven System Development
Approaches: Pervasive Computing Perspective”,
Proceedings of 24th International Symposium on Computer
and Information Sciences (ISCIS’09), Guzelyurt, Northern
Cyprus, 2009.

[118] N. F. Noy, D. L. McGuinness, “Ontology
development 101: A guide to creating your first ontology”,
Technical Report SMI-2001-0880, Stanford Medical
Informatics, 2001.

[119] A. Eberhart, “Automatic Generation of Java/SQL
based Inference Engines from RDF Schema and RuleML”,
Proceedings of the First International Semantic Web
Conference (ISWC 2002), Chia, Sardinia, Italy, pp. 102--
116 , June 2002.

[120] A. Kalyanpur, D. Pastor, S. Battle, J. Padget.
“Automatic mapping of OWL ontologies into Java”,
Proceedings of the International Conference on Software
Engineering & Knowledge Engineering (SEKE), 2004.

[121] I. N. Athanasiadis, F. Villa, A. E. Rizzoli,
“Ontologies, JavaBeans and Relational Databases for
enabling semantic programming”, Proceedings of the 31th
IEEE Annual International Computer Software and
Applications Conference (COMPSAC), Vol 2, pp. 341-346,
2007.

[122] I. Astrova, N. Korda, A. Kalija, “Storing OWL
Ontologies in SQL Relational Databases”, International
Journal of Electrical, Computer and Systems Engineering,
Vol. 1, No. 4, 2007.

[123] A. Soylu, P. de Causmaecker, “Embedded Semantics
Empowering Context-Aware Pervasive Computing
Environments”, Symposia and Workshops on Ubiquitous,
Autonomic and Trusted Computing, Brisbane, Australia,
2009.

[124] P. Debaty, P. Goddi, A. Vorbau, “Integrating the
physical world with the web to enable context-enhanced
mobile services”, Mobile Networks Applications, Vol. 10,
No. 4, pp. 385-94, 2005.

[125] K. Sakamura, N. Koshizuka, “Ubiqutious computing
technologies for ubiqutious learning”, Proceedings of Intl.
Workshop on Wireless and Mobile Technologies on
Education, Japan, 2005.

[126] M. Wilson, B. Matthews, “The Semantic Web:
Prospect and Challenges”, Proceedings of Database and
Information Systems, 7th International Baltic Conferences,
pp. 26-29, 2006.

[127] B. Adida, M. Birbeck, “W3C RDFa Primer”,
Available at http://www.w3.org/TR/xhtmlrdfa-
primer/#id85078, 2008.

[128] Talis, “RDF in HTML: Embedded RDF”, Available at
http://research.talis.com/2005/erdf/wiki/Main/RdfInHtml
2006.

[129] J. Simpson, “Microformats vs. RDF: How
Microformats relate to the Semantic Web”, Available at
http://www.semanticfocus.com/blog/entry/title/microforma
ts-vs-rdfhowmicroformats-relate-to-the-semantic-web,
2007.

Ahmet Soylu is a PhD candidate in Katholieke

Universiteit Leuven, Belgium. He received his BS degree and
MSc degree in computer engineering and science from Ișık
University, Istanbul, Turkey in 2006 and 2008 respectively.

He worked as a full time Researcher in Informatics
Research and Development Centre of Ișık University during his
master studies. Currently he is a part of iTec and CODeS
research groups, Kortrijk, Belgium. His research interests
include, e-learning, pervasive and context-aware computing,
software engineering and database systems.

Patrick De Causmaecker received MSc degree in

mathematics from University of Ghent, Belgium in 1978. He
obtained his PhD degree in theoretical physics from Katholieke
Universiteit Leuven, Belgium in 1983. Later he received a MSc
degree in computer science from University of Ghent, Belgium
in 1987.

He is currently a Professor of Computer Science at the
Subfaculty of Sciences at Katholieke Universiteit Leuven,
Campus Kortrijk, Belgium. He is the head of the CODeS
Research group in the department of Computer Science and
coordinator of the iTec research group, Kortrijk, Belgium. His
current research interests include optimization, planning and
scheduling, distributed scheduling applications, agent
technologies, and pervasive computing.

Piet Desmet received MA degree in Romance Languages

and Literatures from the K.U. Leuven, Belgium in 1987. He
obtained his PhD on French linguistics from the K.U. Leuven,
Belgium in 1994.

He is full Professor of French and Applied Linguistics at the
Faculty of Arts at K.U. Leuven and its campus Kortrijk. He is
co-directing iTec research group (www.itec-research.eu). His
current research interests include computer-assisted language
learning, French language teaching, and educational technology.

JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER 2009 1013

© 2009 ACADEMY PUBLISHER

