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Abstract

Activity recognition in video has recently benefited from

the use of the context e.g., inter-relationships among the

activities and objects. However, these approaches require

data to be labeled and entirely available at the outset. In

contrast, we formulate a continuous learning framework

for context aware activity recognition from unlabeled video

data which has two distinct advantages over most existing

methods. First, we propose a novel active learning tech-

nique which not only exploits the informativeness of the in-

dividual activity instances but also utilizes their contextual

information during the query selection process; this leads to

significant reduction in expensive manual annotation effort.

Second, the learned models can be adapted online as more

data is available. We formulate a conditional random field

(CRF) model that encodes the context and devise an infor-

mation theoretic approach that utilizes entropy and mutual

information of the nodes to compute the set of most informa-

tive query instances, which need to be labeled by a human.

These labels are combined with graphical inference tech-

niques for incrementally updating the model as new videos

come in. Experiments on four challenging datasets demon-

strate that our framework achieves superior performance

with significantly less amount of manual labeling.

1. Introduction

Enormous amount of visual data is being generated con-

tinuously from various sources. Learning from these visual

data, e.g., learning activity models, should be a continuous

process so that the models can be improved with new video

observations and adapted to the changes in dynamic envi-

ronment. However, learning needs labeled data and labeling

these large corpus of videos requires expensive and tedious

human labor. Continuous manual labeling of these incom-
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Figure 1. A sequence of a video stream [1] shows three new un-

labeled activities - person getting out of a car (A1) at T + 0s,

person opening a car trunk (A2) at T + 7s, and person carrying

an object (A3) at T + 12s. These activities are spatio-temporally

correlated (termed as context). Conventional approaches to active

learning for activity recognition do not exploit these relationships

in order to select the most informative instances. However, our ap-

proach exploits context and actively selects instances (in this case

A2) that provide maximum information about other neighbors.

ing videos in order to train the recognition models is infea-

sible. Active learning can be used to achieve an effective

solution to this problem, since it is a powerful tool for train-

ing classifiers from unlabeled data sources with a reduced

labeling cost and without compromising performance.

Recent successes in visual recognition take advantage

of the fact that, in nature, objects and events tend to co-

exist with each other in a particular configuration, which

is often termed as context [2]. Similarly, human activi-

ties in reality are inter-related and their surroundings can

provide significant visual clue for their recognition (Fig-

ure 1). Several research works [3–7] considered the use

of context from different perspectives to recognize human

activities and showed significant performance improvement

over the approaches that do not use context. However, these

approaches are batch methods that require large amount of

manually labeled data and are not able to continuously up-

date their models. Even though few research works such

as [8–10] learn human activity models incrementally from

streaming videos, they do not utilize contextual information

for more efficient recognition. In this work, we formulate

a continuous learning framework for context aware activ-

ity recognition models that leverages upon a novel active

learning technique in order to reduce the required human

annotation effort.
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Figure 2. Our proposed framework for learning activity models continuously. Please see the text in Section 1.1 for details.

Active learning has become an important tool for select-

ing the most informative queries from a large volume of un-

labeled data to be labeled by a human annotator, which are

then used for training classifiers. During query selection,

most of the approaches [11] only exploit informativeness,

expected error reduction (EER), etc. of individual data in-

stances in a batch or in an online manner assuming that there

are no inter-relationships among them. As stated earlier, ac-

tivities and objects in video show strong inter-relationship,

which are generally encoded using graphical models. It

would be beneficial to exploit these relationships (i.e., con-

text) during the most informative query selection process

as illustrated in Figure 1. Few works, such as [12], exploit

link-based dependencies of the networked data, while [13]

utilizes the inter-relationship of the data instances in feature

space for active learning. Some works [14] perform query

selection on CRF model for structured prediction in natural

language processing by utilizing only the co-occurrence re-

lationships that exist among the tokens in a sentence, while

activities in a video sequence additionally exhibit spatial

and temporal relationships as well as interactions with other

objects. Hence, it would be a significant contribution to de-

velop a new active learning technique for such applications.

1.1. Main Contributions and Overview

In this work, we propose a novel framework that ex-

ploits contextual information which are encoded using a

CRF in order to learn activities continuously from videos.

The main contribution of this work is twofold -

1. A new query selection strategy on a CRF graphical

model for inter-related data instances by utilizing en-

tropy and mutual information of the nodes.

2. Continuous learning of both the appearance and the

context models simultaneously as new video observa-

tions come in so that the models can be adaptive to the

changes in dynamic environment.

In order to achieve these goals, we show how to automati-

cally construct a CRF online that can take care of any num-

ber and types of context features. Detailed overview of our

proposed framework is illustrated in Figure 2.

Our framework has two phases: initial learning phase

and incremental learning phase. During the initial learning

phase, with a small amount of annotated videos in hand,

we learn a baseline activity classifier and spatio-temporal

contextual relationships. During the incremental learning

phase, given a set of newly arrived unlabeled activities, we

construct a CRF with two types of nodes - activity nodes

and context nodes. Probabilities from the baseline classi-

fier are used as the activity node potentials and the object

detectors are used to compute context features that are used

as the context node potentials. Spatio-temporal contextual

relationships are used as the edge potentials. We perform

inference on the CRF in order to obtain the marginal prob-

abilities of the activity nodes.

Our active learning system consists of a strong and a

weak teacher. We use information theoretic criteria - en-

tropy and mutual information of the activity nodes for se-

lecting the most informative instances to be labeled by a

human annotator, which we refer to as the strong teacher.

We condition on these newly labeled nodes and run infer-

ence again. We retain the highly confident labels obtained

from the inference, which we refer to as the weak teacher.

Newly labeled examples are stored in a buffer to be used in

the next step of incremental update of the baseline classi-

fiers and the contextual relationships.

2. Relation to Existing Works

Our work involves following areas of interest - human

activity recognition, active learning, and continuous learn-

ing. We will review some relevant papers from these areas.

Activity recognition. Visual feature based activity

recognition approaches can be classified into three broad

categories such as interest point based low-level local fea-

tures, human track and pose based mid-level features, and

semantic attribute based high-level features based methods.

Survey article [15] contains more detailed review on feature

based activity recognition. Recently, context has been suc-

cessfully used for activity recognition. Definition of context

may vary based on the problem of interest. For example, [3]

used object and human pose as the context for the activity

recognition from single images. Collective or group activ-

ities was recognized in [5] and [6] using the context in the

group. Spatio-temporal contexts among the activities and

the surrounding objects were used in [7]. Graphical mod-

els was used to predict human activities in [4]. However, as

mentioned in Section 1, these approaches are not capable of

learning activity models continuously from unlabeled data.

Active learning. It has been successfully applied to

many computer vision problems including tracking [16],

object detection [17], image [18] and video segmentation

[19], and activity recognition [20]. It has also been used

on CRF for structured prediction in natural language pro-

cessing[14,21,22]. They use information theoretic criteria

such as entropy of the individual nodes for query selection.

4544



We additionally use mutual information because different

activities in video are related to each other. It captures the

entropy in each activity but subtracts out the conditional en-

tropy of that activity when some other related activities are

known. This criteria enables our framework to select the

most informative queries from a set of unlabeled data repre-

sented by a CRF. Experiment results in Figure 5(column-3)

validate our claim that using only entropy is not enough to

capture the contextual relationships in videos.

Continuous learning. Among several schemes on con-

tinuous learning from streaming data, ensemble of classi-

fiers [23] based methods are most common, where new

weak classifiers are trained with the newly available data

and then, added to the ensemble. A few methods can be

found that learn activity models incrementally. The fea-

ture tree based method proposed in [8] grows in size with

new training data. The method proposed in [9] uses hu-

man tracks and snippets, and the method proposed in [10] is

based on active learning and boosted SVM classifiers. How-

ever, these methods do not exploit context, which has the

ability to enhance the recognition performance.

3. Modeling Contextual Relationships

Prerequisite. We have a set of activities A = {ai} seg-

mented from the video stream. Let {xi} be the visual fea-

tures extracted from these activity segments. Additionally,

we have a baseline activity recognition model P and a set

of object detectors D. We aim to formulate a generalized

model that does not depend on any particular choice of fea-

ture extraction and classification algorithms in order to per-

form above mentioned tasks. In Section 5, we describe the

specific choices we made during our experiments.

Overview. We model the inter-relationships among the

activities and the object attributes using a CRF graphical

model as shown in Figure 3. It is an undirected graph

G = (V,E) with a set of nodes V = {A,C,X,Z}, and

a set of edges E = {A−A,A−C,A−X,C −Z}. A are

the activity nodes, C are the context features, and X and

Z are the observed visual features for the activities and the

objects respectively. In Figure 3, P represents the activity

classifier and D stands for the object detectors. They are

used to compute the prior node potentials and to construct

the context features respectively. We are interested in com-

puting the posterior of theA nodes. Red edges among theA
and C nodes represent spatio-temporal relationship among

them. The connections between A and C nodes are fixed

but we automatically determine the connectivity among the

A nodes along with their potentials. The overall potential

function (Φ) of the CRF is shown in Equation 1, where φs

and ψs are node and edge potentials. We define the potential

functions as follows.

Activity node potential, φ(ai, xi). These potentials cor-

respond to theA nodes of the CRF. They describe the inher-
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Figure 3. Illustrative example of a CRF for encoding the contextual

information. Please see the text in Section 3 for details.

Φ =
∏

ai∈A,ci∈C
xi∈X,zi∈Z

φ(ai, xi)φ(ci, zi)
∏

ai,aj∈A
ci∈C

ψ(ai, aj)ψ(ai, ci)

(1)

φ(ai, xi) = p(ai|xi,P) (2)

φ(ci, zi) = φ(c1i , zi)⊙ φ(c
2
i , zi) (3)

φ(c1i , zi) = p(c1i |zi,D) (4)

φ(c2i , zi) = bin(c2i ) N (c2i , µc2 , σc2) (5)

ψ(ai, aj) = Fa(ai, aj) N (‖tai
− taj

‖2, µt, σt)

N (‖sai
− saj

‖2, µs, σs) (6)

ψ(ai, ci) = ψ(ai, c
1
i )⊗ ψ(ai, c

2
i ) (7)

ψ(ai, c
1
i ) = Fc1(ai, c

1
i ) N (‖sai

− sc1
i
‖2, µc1 , σc1) (8)

ψ(ai, c
2
i ) =

∑

a∈A

bin(c2i )I(a = ai)
T N (c2i , µc2 , σc2) (9)

ent characteristics of the activities through low level motion

features. We extract low level features xi from the activity

segments ai and train a baseline classifier P . Classification

score of a candidate activity segments ai generated byP are

then used as the node potential as defined in Equation 2.

Context node potential, φ(ci, zi). These potentials cor-

respond to the C nodes of the CRF, which are scene level

features and object attributes related to the activity of inter-

est. They are not low level motion features but may provide

important and distinctive visual clues. For example, pres-

ence of a car may distinguish unloading a vehicle activity

from entering a facility activity. In this work, we employ a

semi-automatic technique to learn these contexts by apply-

ing a number of detectors on the image observation Z in the

activity segment. Number and type of these context features

may vary for different applications. For example, we use

two context features in an application - objects (φ(c1i , zi))
and person (φ(c2i , zi)) attributes as defined in Equations 4

and 5, where c1i is the object class vector, c2i = ‖L1 − L2‖
is the distance covered by a person in the activity region,

bin(·) is a binning function as in [24], and µc2 and σc2 are

the mean and variance of the covered distances. We con-

catenate them in order to compute the context nodes poten-

tial (Equation 3 - ⊙ is the concatenation operation).

Activity-Activity edge potential, ψ(ai, aj). This poten-

tial models the connectivity among the activities in A. We
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assume that activities which are within a spatio-temporal

distance are related to each other. This potential has three

components - association, spatial, and temporal compo-

nents. The association component is the co-occurrence fre-

quencies of the activities. The spatial (temporal) component

models the probability of an activity belonging to a par-

ticular category given its spatial (temporal) distance from

its neighbors. ψ(ai, aj) is defined in Equation 6, where

ai, aj ∈ A, Fa(ai, aj) is the co-occurrence frequency

between the activities ai and aj , sai
, saj

, tai
, and taj

are

the spatial and temporal locations of the activities, and

µt, σt, µs, and σs are the parameters of the Gaussian dis-

tribution of relative spatial and temporal positions of the ac-

tivities, given their categories.

Activity-Context edge potential, ψ(ai, ci). This poten-

tial function models the relationship among the activities

and the context features. It corresponds to A − C edges in

the CRF. This potential is defined in Equation 7-9. ψ(ai, c
1
i )

models the relationship between the activity and the object

attribute and ψ(ai, c
2
i ) models the relationship between the

activity and the person attribute. Operator ⊗ performs hor-

izontal concatenation of matrices.

Structure Learning. We assume the connection be-

tween A and C if the involved person or the objects are

detected by the detector D. However, we learn the A − A
connections in an online manner because it is hard to pre-

dict the number of activities and they might not be related

to each other. A recent approach for learning the structure

is hill climbing structure search [3], which are not designed

for continuous learning. In this work, we utilize an adaptive

threshold based approach in order to determine the connec-

tions among the nodes in A. At first, we assume all the

nodes in A are connected to each other. Then we apply two

thresholds - spatial and temporal - on the links. We keep the

links whose spatial and temporal distances are below these

thresholds, otherwise we delete the links. We learn these

two thresholds using a max-margin learning framework.

Suppose, we have a set of training activities

{(ai, tai
, sai

) : i = 1 . . .m} and we know the pair-

wise relatedness of these activities. The goal is to learn

a function fr(d) = wT d, that satisfies the constraints in

Equation 10, where dij = [abs(ti − tj), ‖si − sj‖].

fr(dij) = +1, ∀ related ai and aj , (10)

fr(dij) = −1, otherwise.

We can formulate this problem as a traditional max-

margin learning problem [3]. Solution to this problem will

provide us a function to determine the existence of link be-

tween two unknown activities.

Inference. In order to compute the posterior prob-

abilities of the A nodes, we choose belief propagation

(BP) message passing algorithm. BP does not provide

guarantee to convergence to true marginals for a graph with

loops but it has proven excellent empirical performance

[25]. Its local message passing is consistent with the

contextual relationship we model among the nodes. At

each iteration, belief of the nodes are updated based on

the messages received from their neighbors. Consider a

node ai ∈ V with a neighborhood N(ai). The message

sent by ai to its neighbors can be written as, mai,aj
(aj) =

α
∫
ai
ψ(ai, aj)φ(ai, xi)

∏
ak∈N(ai)

mak,ai
(ai)dai. The

marginal distribution of each node ai is estimated as,

p′(ai) = αφ(ai, xi)
∏

aj∈N(ai)
maj ,ai

(ai). The class label

with the highest marginal probability is the predicted class

label. We use the publicly available tool [26] to compute

the parameters of the CRF and to perform the inference.

4. Context Aware Active Learning

Inference on the CRF G = (V,E) provides the marginal

probabilities and pairwise marginal joint distribution of the

nodes correspond to the edges. In this section, we use these

probabilities to select the most informative set S∗ ∈ V .

Suppose, we have a set of labeled data instances L with

c number of classes. We learn a baseline classifier P and

a context model C with these labeled data L. Now, we re-

ceive a set of unlabeled activity instances U = {ai} with

low level visual features {xi} from the video stream. We

then construct a CRF G with the activities in U using P and

C as discussed in Section 3. Inference on G gives us a prob-

ability distribution PG(ai) for an unlabeled activity ai. Our

goal is to use U to improve the model P and C with least

amount of manual labeling.

To begin with, let us assume that no inter-relationships

exist among the data instances in U . At first, we apply the

current model PG on the instances of U to obtain a class

probability distribution PG(ai) for each instance. We se-

lect the most informative subset S from the instances in U .

An instance is considered informative if the current model

PG is uncertain about it. We measure the uncertainty using

entropy. This can be formulated using Equation 11, where

H(S) is the sum of entropies of the nodes in S .

S∗ = argmax
S⊂U

H(S) (11)

H(S) =
∑

ai∈S

H(ai) =
∑

ai∈S

c∑

j=1

PG(ai = j) log
1

PG(ai = j)

However, in many applications, data instances are inter-

related, which can be modeled by a CRF as shown in Fig-

ure 3. Related instances are connected by edges, where

probability distribution of one instance can influence other

neighboring instances. In order to perform active learning

on such models, we also have to acknowledge these influ-

ences. Intensity of these influences can be computed by

mutual informationM. The basic intuition is that if two in-

stances are connected and can heavily influence each other,

we can select only one of them for manual labeling. After
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getting the label, if we perform inference again on the CRF

with conditioning on the newly labeled nodes, neighboring

instances will have the chance to receive the correct label

with much higher probabilities. Mathematically speaking,

we select a set S∗ that maximizes the entropy of the indi-

vidual instances but minimizes the pairwise mutual infor-

mation in the set (M(S)) . We also want to select nodes

which have more connections with other nodes since they

can influence more nodes once they have the correct labels.

The overall optimization problem for selecting the activities

to be labeled can be formulated using Equation 12, where

Deg(S) is the sum of the degrees of the nodes in S .

S∗ = argmax
S⊂U

[H(S)−M(S) + βDeg(S)] (12)

M(S) =
∑

ai,aj∈S

M(ai, aj) =
∑

ai,aj∈S

∑

i,j∈c

PG(ai = i, aj = j) log
PG(ai = i, aj = j)

PG(ai = i)PG(aj = j)

The above-mentioned optimization problem will select a

subset S∗ that will contain instances with higher entropies

and lower pairwise mutual information. However, it is a

subset selection problem and NP-hard. We provide a greedy

solution to this problem in Algorithm 1 in order to obtain

the set S∗, where we set β to 1.

Algorithm 1 Greedy Query Selection (Equation 12)

Input: CRF graph G = (V,E), |V | = N
Node probabilities: N × c
Edge probabilities: N ×N × c

Output: S ⊂ V , |S| = K
Compute entropies of the nodes,H : N × 1
Compute pairwise mutual information,M : N ×N
while |S| < K do

v1 = argmax
v∈V

[H(v) + βDeg(v)];

S ← S ∪ v1; V ← V − v1
v2 = argmin

v∈Neigh(v1)

M(v1, v); S ← S∪v2; V ← V −v2

end while

We ask a human annotator (strong teacher) to label the

instances in S∗. We then perform inference on G again by

conditioning on the nodes ai ∈ S
∗. It provides more ac-

curate labels to the neighbors of ai ∈ S
∗. Now, for an

instance aj ∈ U − S
∗, if one of the classes has probability

greater than δ (say δ = 0.9), we assume that current model

PG is highly confident about this instance. We retain this

instance along with its label obtained from the inference for

incremental training. We refer to this as the weak teacher.

Number of instances obtained from the weak teacher actu-

ally depends on the value of δ, which we set large for safety

so that miss-classified instances are less likely to be used in

incremental training. An illustrative example of our active

learning system is shown in Figure 4.
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Figure 4. Inference on the CRF (top) gives us marginal probability

distribution of the nodes and edges. We use these distributions to

compute entropy and mutual information. Relative mutual infor-

mation is shown by the thickness of the edges, whereas entropy

of the nodes are plotted below the top CRF. Algorithm 1 exploits

entropy and mutual information criteria in order to select the most

informative nodes (3, 4, and 6). We condition upon these nodes

(filled) and perform inference again, which provides us more ac-

curate recognition and a system with lower entropy (bottom plot).

4.1. Incremental Updates

We have two models to update - appearance model and

context model. These models are responsible for the node

and edge potentials of the CRF respectively.

Updating appearance model. We use a multino-

mial logistic regression model as the baseline activity

classifier. In this model, the probability of label yi

of xi belongs to class j is written as p(j|xi; θ) =
exp(θTj xi)/

∑c

l=1 exp(θ
T
l xi), where, j ∈ {1, . . . , c} is the

set of class labels, θTj is the weight vector corresponds

to class j, and the superscript T denotes transpose oper-

ation. The cost function is given by, argminθ J(θ) =
− 1

m

∑m

i=1

∑c

j=1 1{yi = j} log p (yi = j|xi; θ) . This is a

convex optimization problem and we solve this using gradi-

ent descent method, which provides a globally optimal so-

lution. The gradient equation can be written as,∇θjJ(θ) =
− 1

m

∑m

i=1 [xi (1{yi = j} − p(yi = j|xi; θ))].
For updating this model, we obtain the newly labeled in-

stances from the active learner and store them in a buffer.

When the buffer is full, we use all of these instances to com-

pute the change of gradient∇θjJ(θ) of the model. Then we

update the model parameters using gradient descent as fol-

lows, θt+1
j = θtj −α∇θt

j
J(θ), where, α is the learning rate.

This technique is known as the mini-batch training in lit-

erature [27], where model parameter changes are accumu-

lated over some number of instances before actually updat-

ing the parameters. We use [28] for incrementally training

the SVM when we use it as the baseline classifier.

Updating context model. Updating the context model is

actually recomputing the parameters of the Equations 5, 6,
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8, and 9. The parameters are mainly co-occurrence frequen-

cies and means and variances of the Gaussian distributions.

The parameters of the Gaussians can be updated using the

method in [29], wheres the co-occurance frequency matri-

ces can be updated as follows, Fij = Fij + sum([(L =
i).(L = j)T ]. ∗ Adj), where, i, j ∈ {1, . . . , c}, L is the set

of labels of the instances in U obtained after the inference,

Adj is the adjacency matrix of the CRF G of size |L| × |L|,
sum(.) is the sum of the elements in the matrix, and .∗ is the

element wise matrix multiplication.

5. Experiments

We conduct experiments on four challenging datasets -

VIRAT [1], UCLA-Office [30], MPII-Cooking [31], and

UCF50 [32] - to evaluate the performance of our proposed

continuous learning framework. Detailed description of

these datasets are available in the supplementary material.

Experiment setup. We conduct five fold cross valida-

tion on each of the datasets. Four folds are used as the

training and remaining one is used as the testing set. We

divide the training set into five or six batches. First batch

is used to train prior appearance and context models. Rest

of the batches are used to update the models sequentially.

Instances in the first batch are manually labeled, whereas

we perform active learning on other batches and use the ob-

tained labels for incremental training of the models. Af-

ter finishing incremental training with a batch of data, we

evaluate the resultant models on the testing set and report

these results as shown in Figure 5. Each row corresponds to

one dataset and each column corresponds to one experiment

scenario, which we describe below.

Activity segmentation. For VIRAT and UCLA-Office,

we use an adaptive background subtraction algorithm to

identify motion regions. We detect moving persons around

these motion regions using [33] and use them to initialize a

tracking method in order to obtain local trajectories of the

moving persons. We collect STIP features [34] from these

local trajectories and use them as the model observation in

the method proposed in [35] to identify candidate activity

segments from these motion regions. Activities are already

segmented in UCF50, whereas for MPII-Cooking we use

the segmentation provided with the dataset.

Appearance feature. We extract STIP [34] features

from the activity segments. We use a spatio-temporal pyra-

mid and average pooling based technique similar to [36]

to compute an uniform representation using these STIP fea-

tures. For MPII-Cooking dataset, we use bag-of-word based

MBH [37] feature that comes with the dataset.

Context features. Number of context features and their

types may vary based on the datasets. Our generalized CRF

formulation can take care of any number and type of context

features. We use co-occurrence frequency of the activities

and the objects, their relative spatial and temporal distances,

movement of the objects and persons in the activity region,

etc. as the context feature. Some of the features were de-

scribed in Section 3. Context features naturally exist in VI-

RAT, UCLA-Office, and MPII-Cooking datasets, whereas

for UCF50 we improvise a context feature by assuming that

similar types of activities tend to co-occur in the nearby spa-

tial vicinity. Dataset specific detailed description of these

features can be found in the supplementary material.

Baseline Classifier. We use multinomial logistic regres-

sion or softmax as the baseline classifier for VIRAT, UCLA-

Office, and UCF50 datasets, whereas we use linear SVM for

the MPII-Cooking dataset.

Result Analysis. We conduct four different experiments

for each dataset - 1) comparison with other batch and in-

cremental methods against three different variants (based

on the use of context) of our approach, 2) performance

evaluation of the four variants (based on the use of strong

and weak teachers) of our proposed active learning system,

3) comparison against other state-of-the-art active learning

techniques, and 4) the accuracy vs. the percentage of man-

ual labeling plot. We show these plots in the first, second,

third, and fourth column of Figure 5 respectively. We ana-

lyze these plots in the subsequent paragraphs.

Comparison with state-of-the-arts. Plots in Figure 5(a,

e, i, m) illustrate the comparisons of our three test cases -

no context, A-A context, and A-A-C context against state-

of-the-art batch and incremental methods for four datasets.

The definitions of these test cases are as follows. No

context means we apply the appearance model P inde-

pendently on the activity segments without exploiting any

spatio-temporal contextual information. A-A context means

we only utilize the inter-relationship among the activities,

which are only the A nodes and corresponding red edges in

Figure 3. A-A-C context means we exploit the object and

person attribute context along with the A-A context. In all

these three test cases, we use active learning with both of

the weak and the strong teachers. We apply several object

detectors based on HOG features and SVM in order to con-

struct the A-C part of the A-A-C context for VIRAT and

UCLA-Office datasets. These datasets have five and four

different object classes respectively. We directly use the

context features provided with the MPII-Cooking dataset.

However, we do not use A-C context for UCF50, where

each activity is associated with a specific object like food-

ball, piano, etc. Use of A-C context would have been pro-

duced better results from a over-fitted model that would not

reflect the true contribution of this work.

We compare the results on the VIRAT dataset against

structural SVM (SSVM) [7], sum product network (SPN)

[38], and incremental activity modeling (IAM) [10]. We

compare the results on UCLA office dataset against stochas-

tic context sensitive grammar (STSG) [30], and SVM based

bag-of-word. We compare the results on MPII-Cooking and
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Figure 5. Plots (a, e, i, and m) show the performance comparisons of our frameworks against state-of-the-art methods on VIRAT, UCLA-

Office, MPII-Cooking, and UCF50 datasets respectively. Plots (b, f, j, and n) show the performances of weak and strong teachers. Plots

(c, g, k, and o) show the performance comparisons of our proposed active learning system (CAAL) against state-of-the-art active learning

and semi-supervised methods. Plots (d, h, l, and p) show accuracy vs. percentage of manual labeling for our methods and batch methods.

Please see the text for the explanation of the plots. For clarity, please see on a color monitor. The plots can be zoomed in.

UCF50 datasets against MPII [31] and action bank [39] re-

spectively. Since these are the batch methods, we report

only the final performances of these methods when they

finish using all the training instances. Hence, plots of ac-

curacies of these methods are horizontal straight lines.

Followings are the analysis of the plots - i) All of the four

plots for four different datasets show similar asymptotic

characteristics. Performance improves with new batches of

training instances. ii) Performance improves when we use

more contextual information. A-A-C performs better than

A-A. A-A performs better than no context. iii) Our meth-

ods outperform other state-of-the-art batch and incremental

method with far less amount of manually labeled data. In

these plots our method uses around forty to fifty percent

manually labeled data depending on the datasets, whereas

all other methods use all the instances to train their models

except IAM. IAM does not report amount of manual label-

ing for VIRAT. iv) Our no context and A-A test cases also

outperform other methods that do not use context features.

Performances of four variants. Plots in Figure 5(b, f, j,

n) illustrate the comparisons among the four test cases based

on the use of weak and strong teachers. These test cases are

defined as follows. Weak teacher - for incremental train-

ing, we only use the highly confident labels provided by the

model after the inference. No manually labeled instances

are used in this test case. Strong teacher - we label a portion

of the incoming instances manually. This portion is deter-

mined by Algorithm 1. Strong+Weak teacher - we use both

of the above mentioned teachers. All instances - we label

all the incoming instances manually and use all of them to

incrementally update the models.

Followings are the analysis of the plots - i) Performance
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Figure 6. Evaluation of continuous learning on individual activities. Activity with green color means the ground truth class, whereas

activities with red color means false predictions. Grey bars represent probability scores. Here, we show the results obtained after the arrival

of batch 1, 3, and 5 data. In each of these examples, continuous learning helps to obtain the correct label with a higher probability even

though some of them were miss-classified initially. Best viewable in color.

of all of the test cases improves as more training instances

are seen except the weak teacher. ii) Strong+weak teacher

test case uses around forty percent of manually labeled in-

stances. However, its performance is very similar to all in-

stance test case that uses hundred percent manually labeled

instances. It proves the efficiency of our method for se-

lecting the most informative queries. iii) Performances of

Strong+weak teacher and strong teacher are almost over-

lapped. It means that weakly labeled instances don’t posses

useful information for training because they are already

confidently classified by the model. iv) Performance of

weak teacher is not as good as other because it does not

manually label the instances except in the first batch. Its

performance tends to diverge due to the fact that some of

the initial labels provided by the classifier are not correct.

Comparison with other active learning methods.

Plots in Figure 5(c, g, k, o). illustrate the comparisons of our

context aware active learning (CAAL) method against ran-

dom sampling and three other state-of-the-art active learn-

ing techniques such as IAM [10], Entropy [21], and ex-

pected change of gradients (ECG) [11]. IAM selects a

query by utilizing classifier’s decision ambiguity over an

unlabeled instance and takes advantages of both weak and

strong teachers. Entropy [21] selects a query if the clas-

sifier is highly uncertain about it based on entropy mea-

sure. ECG [11] considers an instance informative if it brings

significant change to the cost function. We obtained the

codes from the authors of IAM, while we implemented En-

tropy and ECG by ourselves. We follow the same conven-

tions and parameter setup for these experiments for ensur-

ing fairness. Our method outperforms other active learning

methods and random sampling for all datasets. This is be-

cause our method can utilize the interrelationships of the

instances. The margin of improvement is large for UCLA-

Office, MPII-Cooking, and UCF50 datasets. IAM performs

better than Random, Entropy, and ECG because it is bene-

fited from the weak teacher.

Accuracy vs. manual labeling. Plots in Figure 5(d, h,

l, p). illustrate the accuracy vs. the percentage of manual

labeling for four different test cases - no context + all man-

ual label (NC+All), no context + active learning (NC+AL),

A-A context + all manual label (AAC+All), and A-A con-

text + context aware active learning (AAC+CAAL). A-A

context and no context test cases have been defined above.

Additionally, no context and A-A context use strong+weak

teacher active learning. All of the reported accuracies in

this plot are after the final batch. All manual label test case

manually labels all the instances. It has only one accuracy -

the straight line in the plot. It is evident in the plot that A-

A-C begins to achieve accuracy similar to all instance test

case with only forty to fifty percent manually labeled data.

Performance of no context is worse than A-A-C.

We conducted experiments on challenging natural video

datasets where intra-class variance is very high. We achieve

performance similar to the state-of-the-art batch methods on

such challenging datasets by utilizing roughly forty to fifty

percent manually labeled data. It proves the robustness of

the framework for selecting the most informative queries.

Only UCF50 is the exception. For UCF50, there are short

clips, so context does not help much and that is the reason

we do not see a similar reduction in labeling effort. So the

main impact of our work is in natural videos, which have not

been pre-processed into short clips so that the relationships

between the activities can be exploited.

Figure 6 shows the incremental performance of our

framework on four individual activities from four datasets.

Due to space limitation in the main paper, we will provide

more results in the supplementary materials.

6. Conclusion

We presented a continuous learning framework for con-

text aware activity recognition. We formulated a new ac-

tive learning technique that utilize the contextual informa-

tion among the activities and objects. We utilized entropy

and mutual information of the nodes in active learning to

account for the inter-relationships between them. We also

showed how to incrementally update the models using the

newly labeled data. Finally, we presented experimental re-

sults to demonstrate the robustness of our method.

4550



References

[1] S. Oh, A. Hoogs, and et. al., “A large-scale benchmark dataset for

event recognition in surveillance video,” in CVPR, 2011. 1, 6

[2] A. Oliva and A. Torralba, “The role of context in object recognition,”

Trends in Cognitive Science, 2007. 1

[3] B. Yao and L. Fei-Fei, “Modeling mutual context of object and hu-

man pose in human-object interaction activities,” in CVPR, 2010. 1,

2, 4

[4] Z. Wang, Q. Shi, and C. Shen, “Bilinear programming for human

activity recognition with unknown mrf graphs,” in CVPR, 2013. 1, 2

[5] T. Lan, W. Yang, Y. Wang, and G. Mori, “Beyond actions: Discrim-

inative models for contextual group activities,” in NIPS, 2010. 1,

2

[6] W. Choi, K. Shahid, and S. Savarese, “Learning context for collective

activity recognition,” in CVPR, 2011. 1, 2

[7] Y. Zhu, N. M. Nayak, and A. K. Roy-Chowdhury, “Context-aware

modeling and recognition of activities in video,” in CVPR, 2013. 1,

2, 6

[8] K. Reddy, J. Liu, and M. Shah, “Incremental action recognition using

feature-tree,” in ICCV, 2009. 1, 3

[9] R. Minhas, A. Mohammed, and Q. Wu, “Incremental learning in hu-

man action recognition based on snippets,” IEEE TCSVT, 2012. 1,

3

[10] M. Hasan and A. Roy-Chowdhury, “Incremental activity modeling

and recognition in streaming videos,” in CVPR, 2014. 1, 3, 6, 8

[11] B. Settles, “Active learning,” Morgan & Claypool, 2012. 2, 8

[12] L. Shi, Y. Zhao, and J. Tang, “Batch mode active learning for net-

worked data,” ACM TIST, 2012. 2

[13] O. Mac Aodha, N. D. Campbell, J. Kautz, and G. J. Brostow, “Hierar-

chical subquery evaluation for active learning on a graph,” in CVPR,

2014. 2

[14] B. Settles and M. Craven, “An analysis of active learning strategies

for sequence labeling tasks,” in EMNLP, 2008. 2

[15] R. Poppe, “A survey on vision-based human action recognition,” Im-

age and Vision Computing, 2010. 2

[16] C. Vondrick and D. Ramanan, “Video annotation and tracking with

active learning,” in NIPS, 2011. 2

[17] S. Vijayanarasimhan and K. Grauman, “Large-scale live active learn-

ing: Training object detectors with crawled data and crowds,” Inter-

national Journal of Computer Vision, vol. 108, no. 1-2, pp. 97–114,

2014. 2

[18] D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen, “icoseg: Inter-

active co-segmentation with intelligent scribble guidance,” in CVPR,

2010. 2

[19] A. Fathi, M. F. Balcan, X. Ren, and J. M. Rehg, “Combining self

training and active learning for video segmentation,” in BMVC 2011,

2011. 2

[20] X. Liu and J. Zhang, “Active learning for human action recognition

with gaussian processes,” in ICIP, 2011. 2

[21] G. Druck, B. Settles, and A. McCallum, “Active learning by labeling

features,” in EMNLP, 2009. 2, 8

[22] C. T. Symons, N. F. Samatova, R. Krishnamurthy, B.-H. Park,

T. Umar, D. Buttler, T. Critchlow, and D. Hysom, “Multi-criterion

active learning in conditional random fields,” in ICTAI, 2006. 2

[23] H. He, S. Chen, K. Li, and X. Xu, “Incremental learning from stream

data,” IEEE TNN, 2011. 3

[24] D. Ramanan, “Learning to parse images of articulated objects,” in

NIPS, 2006. 3
[25] Y. Li and R. Nevatia, “Key object driven multi-category object recog-

nition, localization and tracking using spatio-temporal context.” in

ECCV, 2008. 4

[26] M. Schmidt. Ugm: Matlab code for undirected graphical models.

[Online]. Available: http://www.di.ens.fr/mschmidt/Software/UGM.

html 4

[27] W. S. Sarle. (2002) ftp://ftp.sas.com/pub/neural/faq2.html. 5

[28] G. C. Poggio, “Incremental and decremental support vector machine

learning,” in NIPS, 2001. 5

[29] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning

for robust visual tracking,” IJCV, 2008. 6

[30] M. Pei, Y. Jia, and S.-C. Zhu, “Parsing video events with goal infer-

ence and intent prediction,” in ICCV, 2011. 6

[31] M. Rohrbach, S. Amin, M. Andriluka, and B. Schiele, “A database

for fine grained activity detection of cooking activities,” in CVPR,

2012. 6, 7

[32] K. K. Reddy and M. Shah, “Recognizing 50 human action categories

of web videos,” MVAP, 2012. 6

[33] P. F. Felzenszwalb, R. B. Girshic, and D. McAllester. Discrimina-

tively trained deformable part models, release 4. [Online]. Available:

http://people.cs.uchicago.edu/pff/latent-release4/ 6

[34] I. Laptev, “On space-time interest points,” IJCV, 2005. 6

[35] R. Chaudhry, A. Ravichandran, G. Hager, and R. Vidal., “Histograms

of oriented optical flow and binet-cauchy kernels on nonlinear dy-

namical systems for the recognition of human actions,” in CVPR,

2009. 6

[36] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid

matching using sparse coding for image classification,” in CVPR,

2009. 6

[37] N. Dalal, B. Triggs, and C. Schmid, “Human detection using oriented

histograms of flow and appearance,” in ECCV, 2006. 6

[38] M. Amer and S. Todorovic, “Sum-product networks for modeling

activities with stochastic structure,” in CVPR, 2012. 6

[39] S. Sadanand and J. Corso, “Action bank: A high-level representation

of activity in video,” in CVPR, 2012. 7

4551

http://www.di.ens.fr/mschmidt/Software/UGM.html
http://www.di.ens.fr/mschmidt/Software/UGM.html
http://people.cs.uchicago.edu/ pff/latent-release4/

