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Abstract. The near future envisions a pervasive heterogeneous
computing infrastructure that makes it possible for mobile users to run
software services on a variety of devices, from networks of devices to
stand-alone wireless resource-constrained ones. To ensure that users meet
their non-functional requirements by experiencing the best Quality of
Service according to their needs and specific contexts of use, services
need to be context-aware and adaptable. The development and the ex-
ecution of such services is a big challenge and it is far to be solved. In
this paper we present our experience in this direction by describing our
approach to context-aware adaptive services within the IST PLASTIC
project. The approach makes use of Chameleon, a formal framework
for adaptive Java applications.

1 Introduction

Pervasive computing is an emerging paradigm that is rapidly changing the ways
we use technologies to perform everyday tasks. The wide spread of small com-
puting devices and the introduction of new communication infrastructures make
it possible for mobile users to run software services on a variety of devices
from networks of devices to stand-alone wireless resource-constrained ones. B3G
networks [30] have gained importance as an effective way to realize pervasive
computing by offering broad connectivity through various network technologies
pursuing the convergence of wireless telecommunication and IP networks (e.g.,
UMTS, WiFi and Bluetooth).

Ubiquitous networking empowered by B3G networks makes it possible for mo-
bile users to access networked software services across heterogeneous infrastruc-
tures through resource-constrained devices characterized by their heterogeneity

and limitedness. Software applications running over this kind of infrastructure
must cope with resource scarcity and with the inherent faulty and heterogeneous
nature of this environment [9]. Indeed to ensure that users meet their non-functional
requirements by experiencing the best Quality of Service (QoS) according to their
needs and specific contexts of use, services need to be context-aware and adapt-
able. The development and the execution of such services is a big challenge for the
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research community and it far to be solved. This paper describes our experience
in this direction and, by extending our preliminary work in [17], presents our ap-
proach to context-aware adaptive services within the IST PLASTIC project [21].
The approach makes use of Chameleon, a formal framework for adaptive Java
applications [7]. The goal of the PLASTIC project is the rapid and easy devel-
opment, deployment and execution of adaptable services for B3G networks [30].
PLASTIC builds on Web Services (WS) and component-based technologies, and
introduces the notion of requested Service Level Specification (SLS) and offered

SLS to deal with the non-functional dimensions - i.e., QoS - that will be used to
establish the Service Level Agreement (SLA) between the service consumer and
the service provider. Services are implemented as adaptable components and are
deployed on heterogeneous resource-constrained mobile devices. The new contri-
bution of this paper is to describe the two types of adaptation supported by a
PLASTIC service, namely adaptation driven by the (requested) SLS and adap-
tation with respect to the characteristic of the execution context. We name these
two types of adaptation SLS-based adaptation and context-aware adaptation, re-
spectively. Service adaptability is achieved via a development paradigm based on
SLS and resource-aware programming supported by Chameleon that takes into
account the characteristics of the hosting environment like resource availability,
network conditions, and the SLSs.

The paper is organized as follows: Section 2 defines the two dimensions of the
PLASTIC adaptation and Section 3 briefly describes the PLASTIC development
environment. Section 4 introduces the Chameleon framework and describes
how it has been used for implementing the PLASTIC Service-oriented Interac-
tion Pattern. Section 5 describes the actual implementation of Chameleon by
showing how the approach has been applied to the PLASTIC e-Health Remote
Diagnosis case study. Related work is discussed in Section 6. Concluding remarks
and future directions are given in Section 7.

2 PLASTIC Adaptation(s)

In this section we define the two dimensions of adaptation supported by a PLAS-
TIC service.

The first kind of adaptation we consider is SLS-based adaptation. For this
adaptation the context of interest is represented by the preferences expressed by
the user in the requested SLS and by the provider in the offered SLS. The SLS
represents the non-functional characteristics of the service. It is coupled with the
service interface and it is used to establish the SLA between a user requesting
the service and a provider of the service. The SLA defines the conditions on the
QoS accepted by both the service consumer and the service provider. Adaptation
in PLASTIC is used by the service provider to exhibit a service with different
SLS. The exposed service is actually a generic one that at “matching time” is
adapted with respect to the requested SLS and the available execution context.

The second type of adaptation is context-aware adaptation. For this adapta-
tion the context of interest is represented by the provider, network and consumer
contexts which represent the environment in which a service is provisioned and
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consumed. PLASTIC applications are deployed over heterogeneous, resource-
constrained devices, thus the provider and consumer contexts are their respective
device resource characteristics - e.g., screen resolution, CPU frequency, memory
size, available radio interfaces, networks in reach. The B3G network context
identifies the characteristics of the (multiple) network(s) between consumer and
provider such as number and type of networks, number of active users, number
of available services, security, transmission protocol, access policy, etc. The net-
work context impacts on the network QoS in terms of bitrate, transfer delay,
packet-loss, network coverage, price and energy consumption for using a given
network. Adaptation in this case is practiced by the service programmer who
can produce a generic service that can be customized with respect to the actual
resource characteristics of the execution context so that its execution can be
correctly supported.

In PLASTIC adaptation is restricted at discovery time, that is at the moment
in which the service execution context and the user QoS preferences (requested
SLS) are known, and a SLA can be put in place. The advantage of this approach
to adaptation is that it is cost effective since it is a compromise between static and
fully dynamic adaptation. The limit is that unpredictable changes of contexts
might invalidate the SLA and thus make the service unusable. However in highly
heterogeneous and autonomous infrastructures like B3G, QoS attributes cannot
be (a priori) guaranteed. Thus SLA violations can occur and must be monitored
and detected. Indeed, in [17] we present a first attempt to tackle this problem by
monitoring service execution to detect possible SLA violations. Upon violation
either (i) the service can be adapted to the new context so that it can continue
respecting the agreed SLA or (ii) a re-negotiation of the SLA can happen which
can in turn drive a new adaptation.

3 PLASTIC Development Environment

In this section we briefly describe the PLASTIC development environment from
the perspective of a service developer. PLASTIC provides a set of tools1 that
are all based on the PLASTIC Service Conceptual Model2 and support the ser-
vice life cycle, from design to implementation to validation to execution. The
conceptual model formalizes all the concepts needed for developing B3G service-
oriented applications. The overall approach is model driven, starting from the
conceptual model till the execution service model used to monitor the service.

With reference to Figure 1, the PLASTIC conceptual model has been con-
cretely implemented as a UML2 profile and, by means of the PLASTIC devel-
opment environment tools, the functional behavior of the service and its non-
functional characteristics can be modeled. Then, non functional analysis and
development activities are iteratively performed [10]. The analysis aims at com-
puting QoS indices of the service at different levels of detail, from early design

1 Available at http://gforge.inria.fr/projects/plastic-dvp/
2 The Formal description of the PLASTIC conceptual model and of its relationship

with the PLASTIC platform toolset is available at http://www.ist-plastic.org/
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to implementation to publication, to support designers and programmers in the
development of services that satisfy the specified QoSs, i.e., SLSs. In PLASTIC,
among QoS measures, we only consider performance and reliability. The princi-
pal performance indices are utilization and throughput of (logical and physical)
resources, as well as response time for a given task. The considered reliability
measures are, instead, probability of failure on demand and mean time to failure.
Discrete set of values - e.g., high, medium, low - are used to identify ranges.

The analysis and validation activities rely on artifacts produced from the
PLASTIC service model through different model transformations. For instance,
the service model editor [8] and the SLA editor, that are part of the PLASTIC
platform toolset, are integrated through a model-to-code transformation. Once
the service model has been specified, a model-to-code transformation can be
performed in order to translate the parts of the service model that are needed
for specifying the agreement (e.g., involved parties, other services, operations,
etc.) into a HUTN file (i.e., a human-usable textual notation for SLA) which the
SLA editor is capable to import. The SLS attached to the published service and
the SLA are formally specified by using the language SLAng [16].

Fig. 1. Development Environment

After the service has been im-
plemented, the PLASTIC validation
framework enables the off-line, prior
to the service publication, and on-
line, after the service publication, val-
idation of the services with respect
to functional - through test mod-
els such as Symbolic State Machines
(SSMs) or based on BPEL processes
- and non-functional properties [12].
This means that through validation
it is possible to assess whether the
service exhibits the given SLS. On-
line validation concerns the “check-
ing” activities that are performed af-
ter service deployment such as SLA

monitoring [23].
For the purposes of this work, hereafter we will concentrate on how PLASTIC

services are implemented and how the two types of adaptation, namely, SLS-

based adaptation and context-aware adaptation, are supported.

4 PLASTIC Services Deployment and Access

PLASTIC services are implemented by using the Chameleon Programming

Model (presented in Section 5) that, extending the Java language, permits de-
velopers to implement services in terms of generic code. Such a generic code,
opportunely preprocessed, generates a set of different application alternatives,
i.e., different standard Java components that represent different ways of
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implementing a provider/consumer application. Therefore, an adaptable soft-
ware service might be implemented as and consumed by different application
alternatives (i.e., different adaptations). Each alternative is characterized by (i)
the resources it demands to be correctly executed (i.e., Resource Demand) and
(ii) the so called Code-embedded SLSs. The latter are QoS indices retrieved by
the non-functional analysis. They are specified by the developers at generic code
level through annotations attached to methods and are then automatically “in-
jected” into the application alternatives by Chameleon. As it will be clear in
Section 5, code-embedded SLSs contribute to determine the final SLSs offered
by the different alternatives.

In the remainder of this section we describe how adaptive PLASTIC services
are published, discovered and accessed (Section 4.1), and how both provider-
and consumer-side application alternatives (stored in the Applications Registry)
can be over-the-air delivered and deployed on devices (Section 4.2).

4.1 The PLASTIC Service-Oriented Interaction Pattern

The PLASTIC Service-oriented Interaction Pattern for provision and consump-
tion of adaptive services (Figure 2) involves the following steps.

Fig. 2. PLASTIC Interaction Pattern

The service provider publishes
into the PLASTIC Registry the
service description in terms of
both functional specifications and
associated offered SLSs (1).
Specifically, a provider can pub-
lish a service with different SLSs,
each one associated to a differ-
ent provider-side application al-
ternative that represents a way of
adapting the service. The service
consumer queries the PLASTIC
registry for a service functional-
ity, additionally specifying the re-
quested SLS (2). The PLASTIC
registry searches for service descriptions that satisfy the consumer request. If
suitable service descriptions are present in the service registry, the service con-
sumer can choose one of them on the base of their offered SLSs. After the service
consumer accepts an offered SLS, the registry returns the actual reference to the
provider-side application alternative that implements the (adapted) service with
the accepted SLS (3.a). Thus, the SLA can be established and the service con-
sumption can take place (4). If no suitable published service is able to directly
and fully satisfy the requested SLS, negotiation is necessary (3.b). The negotia-
tion phase starts by offering a set of alternative SLSs. The consumer can accept
one of the proposed SLSs, or perform an “adjusted” request by reiterating the
process till an SLA is possibly reached. In Figure 2 the box SLA labeling the
provider and the consumer represents the agreement reached by both of them.
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4.2 Over-the-Air Application Alternatives Delivery and

Deployment

With reference to Figure 3, we call PLASTIC-enabled devices the devices de-
ploying and running the Chameleon Client component and the PLASTIC

B3G Middleware [13] that together are able to retrieve contextual information.
A PLASTIC-enabled device provides a declarative description of the execution
context in terms of the resources it supplies (i.e., Resource Supply) and a descrip-
tion of the impact that computational elements (i.e., code instructions) have on
the resources (i.e., Resource Consumption Profile). PLASTIC-enabled devices
can host both service consumers and service providers.

Fig. 3. Chameleon Client-Server

Indeed, the Chameleon Client

component can interact with the
Chameleon Server component in or-
der to dynamically download (from
the Chameleon Applications Reg-

istry), deploy and run (i) provider-
side application alternatives, e.g., a
.war file for a web application to be
exposed as service and, if needed, (ii)
ad-hoc consumer-side application al-
ternatives, e.g., a .jar and a .jad files
for a midlet to be used for consuming
a service. Note that, the Chameleon

client is a lightweight component that
effortlessly runs on limited devices;
the Chameleon server runs on a

back-end server which does not suffer resource limitations.

Fig. 4. Application Alternatives Delivery

By referring to Figure 4, (i)
a provider that wants to of-
fer a service S can connect di-
rectly to the Chameleon ap-
plication registry and search
for an application among a
set of already implemented
application alternatives to be
exposed as service S. The
choice is based on the func-
tional description of S and the
code-embedded SLSs restrict-
ing to those alternatives that
are compatible (i.e., will run
safely) with respect to the ex-
ecution context (i.e., resource
supply and resource consumption profile). The chosen alternative will be au-
tomatically delivered and deployed via the Over-The-Air (OTA) provisioning
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technique [2] on the provider device. Note that, the process can be used for de-
livering and deploying more than one alternative A1, . . . , An for S. Then, the
functional description of S will be published into the PLASTIC registry along
with the final offered SLSs defined on the base of the code-embedded SLSs, as-
sociated to A1, . . . , An, possibly refined by the provider through the SLA editor
(see Section 3).

(ii) Differently, if to consume the service S an ad-hoc client application needs
to be deployed on the consumer device, the final offered SLSs published by the
provider will be defined on the base of the code-embedded SLSs associated to
all the chosen provider application alternatives A1, . . . , An combined with the
code-embedded SLSs associated to all the consumer application alternatives of
S. In this case, upon the consumer request, the PLASTIC registry relies on the
Chameleon application registry to search for a set of compatible consumer-side
application alternatives C1, . . . , Cm that are able to safely run on the consumer
device and properly interact with the service S (i.e., A1, . . . , An). The delivered
consumer application alternative will depend on the SLS chosen among the only
offered SLSs related to C1, . . . , Cm.

5 Chameleon-Based PLASTIC Services Implementation

In this section we present the Chameleon framework and show how it sup-
ports the implementation of PLASTIC adaptive services and their provision
and consumption. For more detailed presentations of the formalisms and defi-
nitions underlying the framework please refer to [6,7] (and references therein).
The Chameleon framework has been implemented [7] on the Java platform and
it exploits XML-based technologies for data exchange. The framework will be
presented by means of the PLASTIC e-Health Remote Diagnosis case study.

The e-Health service allows to establish a link between patients and assistants
providing support for video conferences, medical agenda management, alarm
generation and management, remote diagnosis (RD), etc. Both professionals and
patients are considered to be nomadic and can move with their mobile devices
e.g., move from outdoor to their office/home. Therefore, mobility becomes a
key issue and services need to be adapted, both to the heterogeneous networks
capabilities and to the terminals that could be used by professionals and patients.

For the purposes of this paper, we focus on the RD functionality. When an
alarm is generated on the patient side due to some event like patient inactivity,
dangerous vital parameters or help request, the e-Health system contacts one or
more doctors to perform a diagnosis. On the doctor side the diagnosis process
is supported by an RD consumer application that, connecting to an RD service
provider installed on the patient side, allows the doctor to check the patient
camera and monitor vital parameters, e.g., blood pressure, temperature, heart
rate. The whole service is adapted according to both the patient (the provider)
and doctor (the consumer) context.

◮ Programming Model. Referring to right-hand side of Figure 5, the De-

velopment Environment (DE) is based on a Programming Model that provides
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Fig. 5. Chameleon Framework

developers with a set of ad-hoc extensions to Java for easily specifying services
code in a flexible and declarative way. As already mentioned, services code is a
generic code that consists of two parts: the core and the adaptable code - see in
Figure 5 the screen-shoot of our DE implemented as an Eclipse plugin [7]. The
core code is the frozen portion of the application and represents its invariant
semantics. The adaptable one represents the degree of variability that makes the
code capable to adapt. The generic code is preprocessed by the Chameleon

Preprocessor (1), also part of the DE, and a set of different standard Java ap-
plication alternatives is automatically derived and stored into the Application

Registry (2).
Figure 6 represents an excerpt of a generic code, as part of the RD

consumer MIDlet, written by the developer according to the Chameleon pro-
gramming model. The core code is a standard code and, hence, can be speci-
fied through standard Java classes; the adaptable code is an “extended” code
and is specified through Adaptable Classes that declare one or more Adaptable

Methods. Methods are the smallest building blocks that constitute the entry-
points for a behavior that can be adapted. Alternative Classes define how one
or more adaptable methods can actually be adapted. For instance, the adapt-
able class RemoteDiagnosis declares three adaptable methods (see the keyword
adaptable): visualCheck, vitalParameters and connect. The implementation of
these adaptable methods is defined by two alternative classes (see the keywords
alternative and adapts): HighSupportRD and LowSupportRD. Such a generic
code will be preprocessed by the Chameleon Preprocessor and the two stan-
dard Java application alternatives described in Table 1 will be derived by suit-
ably combining the adaptable methods implementations specified by the various
alternatives.

The programming model also allows for specifying additional information by
using Annotations. Annotations are specified at the generic code level and permit
to specify resource demand (Resource Annotation), code-embedded SLS (SLS

Annotation), upper bound on the number of loop iterations (Loop Annotation)
and recursive method calls (Call Annotation).
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adap tab l e p ub l i c c l a s s RemoteDiagnos i s extends MIDlet {
. . .
adap tab l e vo id connect ( ) ;
adap tab l e vo id v i s u a l Ch e ck ( ) ;
adap tab l e vo id v i t a l P a r am e t e r s ( ) ;
. . .

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

a l t e r n a t i v e c l a s s HighSupportRD adapts RemoteDiagnos i s {
p r i v a t e vo id connect ( ) { . . .

Annotat ion . SLSAnnotat ion ( ‘ ‘ Throughput ( h i gh ) ’ ’ ) ;
Annotat ion . r e s o u r c eAnno t a t i o n ( ‘ ‘ WiFi ( t r ue ) ’ ’ ) ;
QoSInfo . s e t B i t r a t e (HIGH ) ;
P l a s t i cM i dd l ewa r e . s e l e c tN e two r k ( Qos In f o ) ;

}
p r i v a t e vo id v i s u a l Ch e ck ( ) {/∗ shows v i d eo s t r eam ing from pa t i e n t ’ s cameras ∗/}
p r i v a t e vo id v i t a l P a r am e t e r s ( ) {/∗draws d iagrams o f v i t a l pa ramete r s ∗/}

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

a l t e r n a t i v e c l a s s LowSupportRD adapts RemoteDiagnos i s {
p r i v a t e vo id connect ( ) { . . .

Annotat ion . SLSAnnotat ion ( ‘ ‘ Throughput ( low ) ’ ’ ) ;
QoSInfo . s e t B i t r a t e (LOW) ;
P l a s t i cM i dd l ewa r e . s e l e c tN e two r k ( Qos In f o ) ;

}
p r i v a t e vo id v i s u a l Ch e ck ( ) {/∗ shows p a t i e n t ’ s camera images ∗/ }
p r i v a t e vo id v i t a l P a r am e t e r s ( ) {/∗ shows t e x t u a l data o f v i t a l pa ramete r s ∗/}

}
Fig. 6. An Adaptable MIDlet

Table 1. Remote Diagnosis Consumer Application Alternatives

Alter-
native

Features Resource Demand Code-embedded SLS

Cons 1 Shows patient’s camera images and textual data
of vital parameters

{Energy(200)} {Throughput(low)}

Cons 2 Shows video streaming and images from patient’s
cameras and draws diagrams of vital parameters

{WiFi(true),
Energy(400)}

{Throughput(high)}

pub l i c c l a s s Annota t i on {
pub l i c s t a t i c vo id r e s o u r c eAnno t a t i o n ( S t r i n g ann ){} ;
pub l i c s t a t i c vo id SLSAnnotat ion ( S t r i n g ann ){} ;
pub l i c s t a t i c vo id l o opAnnota t i on ( i n t n ){} ;
pub l i c s t a t i c vo id c a l l A n n o t a t i o n ( i n t n ){} ;

}

Fig. 7. Annotation Class

Annotations can be
specified by calls to
“do nothing” static
methods of the An-
notation class in Fig-
ure 7. For instance, in
Figure 6 the method calls Annotation.resourceAnnotation(“WiFi(true)”) and An-
notation.SLSAnnotation(“Throughput(high)”) are used to specify that the High-
SupportRD alternative class demands for a WiFi radio-interface on the consumer
device and provides a high quality remote diagnosis support. Note that, a high
throughput is related to the usage of the resource WiFi. These annotations will
contribute to determine the resource demand and the code-embedded SLSs, re-
spectively, of the derived alternatives. Indeed, the whole framework is based
on the Resource and SLS Models (see Figure 5) that, in particular, allow for
specifying conforming resource and SLS annotations, respectively.

◮ Resource and SLS Models. The resource model is a formal model that
allows the characterization of the resources needed to consume/provide a service
and it is at the base of context-aware adaptation. The SLS model is a model that
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permits developers to attach non-functional information at generic code level
through code-embedded SLSs and is used for SLS-based adaptation purposes
(see Section 4).

Resource Definition
def ineRES Energy as Natu ra l
def ineRES Bluetoo th as Boolean

SLS Definition
def ineSLS Throughput as { low , medium , h i gh}
def ineSLS Mob i l i t y
as{ low , medium , h i gh}

Fig. 8. Resource and SLS Definitions

A resource is modeled as a
typed identifier that can be as-
sociated to natural, boolean or
enumerated values. Natural val-
ues are used for consumable re-
sources whose availability varies
during execution (e.g., energy,
heap space). Boolean values de-
fine non-consumable resources that can be present or not (e.g., function li-
braries, network radio interfaces) and enumerated values define non-consumable
resources that provide a restricted set of admissible values (e.g. screen resolution,
network type). Figure 8 shows an example of some resource and SLS definitions
for the RD case study. Both the Resource Demand and the Resource Supply are
specified in terms of resource sets that couple resources to their values in the
form {res1(val1), ..., resn(valn)}. Table 1 also reports the resource demand and
the code-embedded SLS calculated by the analyzer (see below). For example,
the resource demand of the Cons 2 application alternative in Table 1, specifies
that, to run safely, the alternative will require a WiFi network readio-interface
(WiFi(true)) and a battery state-of-charge of the target consumer device at
least of 400 energy units (Energy(400)).

The SLS Model bases itself around the same formalisms as the resource model
and it is used for specifying SLSs. For example, the code-embedded SLS of
the Cons 2 alternative of Table 1, specifies that the alternative offers a high
throughput (Throughput(high)).

◮ Chameleon Server.Still referring to Figure 5, the Analyzer (running on the
Chameleon server) is an interpreter that, abstracting a standard JVM, is able
to analyze the application alternatives (3) and derive their resource consumption
(5.a) and the code-embedded SLSs (5.b). The analyzer is parametric with respect
to the characteristics of the execution environment as described through the re-

source consumptions profile sent by the device (4.a). We remind that the profile
provides a characterization of the target execution environment, in terms of the
impact that Java bytecode instructions have on the resources. Note that this im-
pact depends on the execution environment since the same bytecode instruction
may require different resources in different execution environments.

More precisely, these profiles associate resources consumption to particular
patterns of bytecode instructions specified as regular expressions. Since the byte-
code is a verbose language3, this allows to define the resource consumption as-
sociated to both basic instructions (e.g., ipush, iload, etc.) and complex ones,
e.g., method calls. Figure 9 represents an example of a resource consumption
profile. For instance, the last row states that a call to the getLocalDevice()

3 This is particularly true for method invocations where the method is uniquely iden-
tified by a fully qualified id (base class identifier + name + formal parameters).
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1) aload 0 → {Memory(2)} 2) .* → {Memory(1), Energy(1)}
3) invokestatic LocalDevice.getLocalDevice() → {Bluetooth(true), Energy(20)}

Fig. 9. A Resource Consumption Profile

static method of the LocalDevice class within the javax.bluetooth library
requires the presence of Bluetooth on the device (Bluetooth (true)), and it
causes a consumption of the resource Energy equal to 20 cost units.

The analyzer performs a worst-case analysis of the program by statically in-
specting the Java bytecode of the different application alternatives. More specif-
ically, the analyzer scans each possible execution path of the application alterna-
tive bytecode by reconstructing (through the DAVA decompiler4) and travers-
ing the bytecode abstract syntax tree (BAST). Within a path, each encoun-
tered instruction is matched against the resource consumption profile and, by
combining the demand of each instruction, the overall resource demand of the
path is derived. The final resource demand (5.a) of the application alterna-
tive will be the one of the most demanding execution path. At the same time
the encountered SLS annotations contribute to determine the code-embedded
SLS (5.b). The analyzer is based on an operational semantic that has been for-
malized using a transition system. It is out of the scope of this paper to go
into details of our analysis technique, and we refer to [6] for further details.

IsLeaf(n) Label(n) = instr

instr !Like("invoke*")
!IsAnnotation(n)

r = b(instr)

〈e, b, M, n〉 →ARA {〈r, φ〉}

Fig. 10. Fall-Back Leaf Rule

As an example, in Figure 10 we show a very
simple rule that is applied when the tran-
sition system (reaching a BAST leaf node
n) encounters a basic bytecode instruction
instr that is neither a method invocation
(i.e., !Like("invoke*")) nor an annotation
(i.e., !IsAnnotation(n)). The rule simply uses

the function b that matches instr against the resource consumption profile in
order to obtain its resource demand r. The result is a set of pairs 〈r, s〉 where s

contains the encountered code-embedded SLSs (empty in this case since instr

is not an annotation).
Still referring to Figure 5, the resource demands (5.a) of the application al-

ternatives together with the resource supply sent by the device (4.b) are used
by the Customizer that is able to choose (6.a) and propose a set of “best”
suited application alternatives, and deliver (6.b) consumer- and/or provider-side
standard Java applications that (through the delivery mechanism described in
Section 4.2) can be automatically deployed in the target devices for execution.
The customizer bases on the notion of compatibility that is used to decide if
an application alternative can run safely on the requesting device, i.e., if for
every resource demanded by the alternative a “sufficient amount” is supplied
by the execution environment. For instance, a resource supply {WiFi(true),
Energy (300)} would be compatible only with the resource demand of adapta-
tion Cons 1 in Table 1.

4 Available at http://www.sable.mcgill.ca/dava/
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Table 2. Remote Diagnosis Provider Application Alternatives

Alter-
native

Features Resource Demand Code-embedded
SLS

Prov 1 Transmits images from patient camera, stores
and makes available manually inserted vital pa-
rameters values

{GPRS(true),
Memory(128),
...}

{Throughput(low),
Mobility(high)}

Prov 2 Streams video from patient camera, collects and
makes available data automatically retrieved
by measurement instruments, and provides all
functionalities of alternative Prov 1

{Memory(512),
PressureMeter(true),
HRM(true),
WiFi(true)...}

{Throughput(high),
Mobility(medium)}

Now, let us assume that the two application alternatives in Table 2 have
been derived for the provider (i.e., the patient): Prov 1 provides a high patient
mobility5 (Mobility(high)) but a low throughput (Throughput(low)), Prov 2
provides a limited patient mobility but a high throughput.

Since to consume the RD service an ad-hoc client application needs to be
deployed on the consumer device (see Section 4.2), the code-embedded SLSs
associated to provider alternatives that will be stored in the Chameleon ap-
plication registry will be those in Table 3. They results from the combination of
the code-embedded SLSs associated to the provider alternatives in Table 2 with
the ones associated to the consumer alternatives in Table 1. Note that merging
Throughput(low) with Throughput(high) produces Throughput(low).

Table 3. Combined Code-embedded SLSs

Cons 1 Cons 2
Prov 1 {Throughput(low),

Mobility(high)}
{Throughput(low),
Mobility(high)}

Prov 2 {Throughput(low),
Mobility(medium)}

{Throughput(high),
Mobility(medium)}

Still referring to Section 4.2, let
us now assume that a patient (a
provider), deploying both the alter-
natives Prov 1 and Prov 2 of Ta-
ble 2, has published the RD Service
in the PLASTIC registry along with
the offered SLSs associated to them
in Table 3. Upon a doctor (a consumer) request, the PLASTIC registry relies
on the Chameleon server to obtain a set of applications compatible with the
doctor device. If the doctor device is compatible only with the consumer-side RD
alternatives Cons 1 of Table 1, the doctor will be allowed to choose among only
the offered SLSs related to Cons 1 (i.e., the combined SLSs of Cons 1-Prov 1
and Cons 1-Prov 2 in Table 3).

6 Related Work

Our resource model and analyzer can be related to other approaches to resource-
oriented analysis. The MRG Project [5] proposes a framework (based on proof-
carrying code) for giving correct guarantees that programs are free from run-
time violations of resource bounds. The MRG approach is based on a resource-
counting semantics that takes into account, through a resource component, the
number of executed instructions and the maximum size of the stack frame. The
same line of research is continued in the Mobius project [11]. For example, in [3]

5 Mobility describes the size of network coverage considered by the PLASTIC B3G
middleware.
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the authors propose static analysis framework for the cost analysis of sequential
Java bytecode that adds cost relations for defining the cost of a program as a
function of its input data size.

In [25] the authors present a framework that, at both deployment- and run-
time, is able to estimate the energy consumption of a distributed Java-based
system. In particular, at the component level, they integrate an energy cost
model and a communication cost model that allow for estimating the overall
energy cost of each component. This information can then be used by software
engineers in order to make decisions when adapting an application.

Tivoli [19] provides a resource modeler tool that enables the specification of
resources and allows for the automatic monitoring of them by instrumenting the
environment in which programs are executed.

The worst-case execution-time (WCET) problem has been deeply studied in
the literature. In [28], the authors give an exhaustive survey of methods and
tools for estimating (under precise assumptions) the WCET of hard real-time
systems. Even though not strictly related to our work, this work provides an
in-depth insight into the static and dynamic program analyses techniques used
in this research area. In particular, the work in [4] also addresses the WCET
problem and proposes a parametric timing analysis that instead of computing
a single numeric value for WCET, as done by numeric timing analyses, derives
symbolic formulas for representing the WCET. By accounting for parameters of
the program, processor behaviour, and by deriving parametric loop bounds, the
proposed analysis allows for deriving precise WCETs.

All these approaches use a resource model and aim at giving an absolute (over-
)estimation of resources’ consumption. Our approach instead, does not aim at
establishing a punctual estimation rather aims at supporting a reasoning mech-
anism for selecting alternatives. Its correctness thus is restricted to consistently
reflect the ordering among resource consumptions of a set of alternatives that
will run in the same execution context.

By exploring all the possible computation paths and by mapping JVM byte-
code to a transition system, the Chameleon analyzer uses the same exhaustive
technique of other existent tools such as Java Pathfinder (JPF) [26]. JPF checks
for property violations (deadlocks or unhandled exceptions) traversing all pos-
sible execution paths. Differently from JPF, our analyzer gets rid of variable
values and abstracts the JVM with respect to resource consumption. In this ab-
straction we consider bytecode instructions behavior only by taking into account
their effects on resources.

For the sake of space, we cannot address all the recent related works in the
wide domain of software services. In the following, we provide only some ma-
jor references. In [20] an interesting approach is presented that considers sep-
aration of concerns between application logic and adaptation logic. The ap-
proach makes use of Java annotations to express metadata needed to enable dy-
namic adaptation. Stemming from the same separation of concerns idea, in [24]
in the scope of the MUSIC project [1], the authors propose the design of a
middleware- and architectural-based approach to support the dynamic
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adaptation and reconfiguration of the components and service composition struc-
ture. They use a planning-based middleware that, based on metadata included
in the available plans, enables the selection of the right alternative architectural
plan for the current context. Similarly to us this approach is based on requested
and offered QoS, and supports SLA negotiation. Differently from us, they do not
consider adaptability to the device execution context basing on a resource ori-
ented analysis that is parametric with respect to resource consumption profiles.

Current (Web-)service development technologies, e.g., [14,15,22,27,29] (just to
cite some), address only the functional design of complex services, that is they do
not take into account the extra-functional aspects (e.g., QoS requirements) and
the context-awareness. Our process borrows concepts from these well assessed
technologies and builds on them in order to make QoS issues, context-awareness
and adaptiveness emerge in service development.

7 Discussion and Future Work

In this paper we have described how the Chameleon framework is used to
realize a form of service adaptation in the IST PLASTIC project. Chameleon

allows for the development and deployment of adaptable applications (consuming
and providing services) targeted to mobile resource-constrained devices in the
heterogeneous B3G network. We have proposed a Service-oriented Interaction
Pattern for adaptable service provision and consumption, and have described
how it is based on Chameleon to support the two-fold PLASTIC adaptation
from both service provider side and consumer side.

Right now, PLASTIC adaptation happens at discovery time, thus the de-
ployed application is customized (i.e., it is tailored) with respect to the context
at binding time but, at run time, it is frozen with respect to evolution. If context
changes at run time the service needs to dynamically adapt to continue respect-
ing the reached SLA and dependability. As first attempt to tackle this problem,
in [17] we propose a mechanism that, exploiting ad-hoc methods for saving and
restoring the (current) application state, enables services’ evolution against mon-
itored SLA violations. Evolution is achieved by dynamically un-deploying the no
longer apt alternative and subsequently (re-)deploying a new alternative that is
able to preserve the agreed SLA. If no alternative is able to continue respecting
the agreed SLA, a re-negotiation of the SLA can happen which can in turn drive
a new adaptation.

Moreover, assuming that upon service request the user knows (at least a
stochastic distribution of) the mobility pattern [18] they will follow during service
usage, this permits to identify the successive finite contexts they can traverse dur-
ing service usage. Following this approach, an enhanced version of Chameleon

would be able to generate code that is a compromise between self-contained
(i.e., embedding adaptation logic) and tailored adaptable code. The code would
merge the adaptation alternatives that, associated to the specified mobility pat-
tern, are necessary to preserve the offered SLS. The code will also embed some
dynamic adaptation logic which is able to recognize context changes, seamlessly
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“switching” among the embedded adaptation alternatives. In this way, a seam-
less evolution will be performed among the embedded alternatives associated to
the mobility pattern, while the un-/re-deployment evolution will be performed
when moving out of the mobility pattern’s context.

We are currently performing an empirical analysis of the framework in order
to evaluate its correctness and its applicability to more complex real scenarios.
Moreover, we are investigating how ontology based specifications might be used
to establish a common vocabulary and relationships among resource/SLS types.
This would allow to relate resource/SLS types and to predicate about a common
set of related types. For instance, a demand of Energy could be related to a
supply of Battery.
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