
 

1 

Context-aware and Automatic Configuration of Mobile Devices 

in Cloud-enabled Ubiquitous Computing 

 

Tor-Morten Grønli  

Norwegian School of IT 

Oslo, Norway 

tmg@nith.no 

Gheorghita Ghinea 

Brunel University 

London, UK / 

Norwegian School of IT 
george.ghinea@brunel. 

ac.uk 

Muhammad Younas 

Oxford Brookes University 

Oxford, UK 

m.younas@brookes. 

ac.uk 

 

 

 

Abstract  

Context-sensitive (or aware) applications have, in recent years, moved from the realm of possibilities to that of 

ubiquity. One exciting research area that is still very much in the realm of possibilities is that of cloud computing, 

and in this paper we present our work, which explores the overlap of these two research areas. Accordingly, this 

paper explores the notion of cross-source integration of cloud-based, context-aware information in ubiquitous 

computing through a developed prototypical solution. Moreover, the described solution incorporates remote and 

automatic configuration of Android smartphones and advances the research area of context-aware information 

by harvesting information from several sources to build a rich foundation on which algorithms for context-aware 

computation can be based. Evaluation results show the viability of integrating and tailoring contextual 

information to provide users with timely, relevant and adapted application behavior and content.  
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1. Introduction 

The notion of context-aware computing is generally the ability for the devices to adapt their behaviour to the 

surrounding environment, and ultimately enhancing usability [6]. In particular, context-awareness is becoming 

an important factor when it comes to mobile devices, as users bring their smartphone or tablet just about 

everywhere, highlighting the need for adapting the content to the user’s current situation. In a seminal article, 

Dey and Abowd [6] have remarked that if we fully understand context in a given environment and setting, we 

would be better able to adapt context-aware behaviour in our applications. The consequence of this desideratum 

is devices that adapt content based on the user’s context, eliminating the need for users to manually do these 

tasks. Indeed, context is a major part of our daily life and support for sharing and using contextual information 

will improve user interaction [19]. 

Context-aware solutions have been around for some years, and have been used in a variety of applications [1, 9, 

16, 17, 18]. The issue with much of the earlier approaches is that they have either only looked at one source of 

context-aware information or, if more than one source was used, each was utilized separately; indeed, even if 

multiple sources of contextual information were pulled together, these were not integrated with a cloud 

infrastructure.  

Cloud computing focuses on sharing data and makes it possible to distribute storage and computations over a 

scalable network of nodes. Large IT companies like Microsoft, Google and IBM, all have initiatives relating to 

cloud computing [4, 11, 12]. One of the key features is under this paradigm is scalability on demand, where the 

user pays for the amount of computation and storage that is actually used. Moreover, this scalability is usually 

completely transparent to the user. Mei et al. [11] highlighted interesting topics for future research in the area of 

cloud computing, and have drawn analogies between cloud computing and service and pervasive computing. 

They identify four main research areas: 1) pluggable computing entities, 2) data access transparency, 3) 

adaptive behaviour of cloud applications and 4) automatic discovery of application quality. 

Our work focuses on data access transparency, where clients transparently will push and pull for data from the 

cloud, and adaptive behaviour of cloud applications. We adapted the behaviour of the Google App Engine server 

application based on context information sent from the users’ devices, thus integrating context and cloud on a 

mobile platform. Further, as advocated by Bellavista et al. [3], our approach provides facilities for runtime 

dynamic adaptation of context data according to the given conditions and situation.  

The paper is structured as follows: the next section details and differentiates our approach from existing work; 

the design and development of a proof-of-concept application which showcases our ideas is then described. This 

is then evaluated and the results are  presented and discussed in the context of related work in subsequent 

sections. Lastly, conclusions and possibilities for future work are described. 

 

2. The Proposed Approach 

There exist various models and architectures in order to manage and process context data. Bellavista et al. [3] 

give a detailed survey of such models and architectures and propose a logical architecture in order to discuss and 

analyse existing approaches in terms of context data distribution. As described above, our proposed approach 

focuses data access transparency, which is one of the important aspects of context data distribution. Though the 

logical architecture presented (and the related work surveyed) in Bellavista et al. [3] have some common features 

with our proposed approach there are significant differences.  

Our proposed approach utilizes web resources for effectively tailoring the user experience in cloud-based and 

context-aware mobile settings. To this end, we use the cloud infrastructure to combine context-aware 

information from several sources to customise and dynamically change a user’s smartphone interface.  



 

3 

We chose a cloud computing solution in order to have a feature rich, scalable and service oriented server 

framework. Traditional REST framework services were considered [5], but they were found to be insufficiently 

scalable and extensible to add and remove context-aware sources in an ad hoc manner. The cloud-based 

approach also has the advantage of being run as a platform-as-a-service instance in the separate hosting instance 

of the Google App Engine.   

2.1 Google App Engine 

 

The Google App Engine makes it possible to run web applications on the Google infrastructure. App Engine 

applications are easy to build, maintain and scale [8]. The Google App Engine is a cloud-based platform as a 

service (PaaS); the platform is pre-configured by Google and provides a much higher abstraction than an 

Infrastructure as a Service (IaaS) platform such as the Amazon elastic cloud. The App Engine is well integrated 

with Google Apps services like docs, Gmail and authentication. Although the platform imposes certain 

limitations on developers (for example no threading API), by enforcing these Google is able to provide very high 

scalability. The Google App Engine supports runtime environments for Java, Python and Go. Each environment 

provides standard protocols and common technologies for web application development [8].  

The Google App Engine has been used as the main server installation for this research and has proven to be a 

stable environment for deploying the Java server applications without having to consider hardware requirements 

and software installations. 

2.2 Meta-tagging and Context Computation 

In our approach users also have the added possibility to tag their appointments and contacts information on the 

Google cloud with context information, by employing special meta-tags. To this end, by adding a type tag, for 

example $[type = work] or $[type= leisure], user would be able to indicate if they had a business meeting or a 

leisure activity. We then filtered the contacts based on this information. If the tag $[type=work] was added, this 

lets the application know that the user is in a work setting and it will automatically adapt the contacts based on 

this input. Conversely, in a work context, only work related contacts would be shown. To add and edit these tags 

we used the web-interface of Google contacts and calendar.  

With this information in place, in any given situation, the user context can be expressed as the combination of 

the user’s activity (α), light conditions (β), social setting (γ), and geographical location (δ):  

User Context = f (α, β, γ, δ). 

Based on this function unique rules can be applied for each situation and thereby have the system act differently 

and accordingly tailor the user’s smartphone interface. In this function, user activity α is represented as an 

element collected from the entries in the user’s calendar. This activity can then be further queried to collect 

information such as room, participants and agenda. 

α Є {‘collected calendar information’} 

The light conditions given by β are calculated by extracting information from the sensors of the device to 

measure light lux in the surroundings of the device and matching this with the device timestamp. 

β Є {‘screen brightness harmonizing to timestamp and light lux’} 

The user’s social setting, γ, is depicted by an activity/appointment extracted from the device or cloud calendar 

application. γ is represented in the form of a meta-tag appended to appointments and contacts. The details for γ 

are expressed below: 

γ Є { $[type=’tag name’] } 

The final ingredient in the algorithm for computing the user context is the use of geographical position. The 
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values were extracted from the GPS unit of the device and stored locally for use. A timestamp indicates the 

validity of the stored value. This is used to be able to be offline when obtaining a new position is impossible 

until a GPS fix again can be obtained.  

δ Є {‘GPS read position’} 

The running of the algorithm will provide several outputs and trigger actions on the device. Depending on the 

calculated result applications displayed can be changed, device screen brightness increased/decreased and 

contact repository updated.  

Accordingly, in our work, by taking data from sensors and context-aware services and integrating it in a mobile 

application, we reduce the user workload and cognitive stress. Thus, in combination with a cloud-based server 

application, we are able to remotely configure smartphone interfaces independent of the device types. This 

creates a new concept of context-awareness and embraces the user in ways previously unavailable. 

 

3. Design and Implementation 

We have implemented an application suite, which provides a fully functional demonstration of the system. One 

of the main technical goals with the system was to make the interaction between the cloud and the mobile device 

as seamless as possible for the user. 

 

Fig 1 Application suite architecture 

 

The system was designed with three major components: an android client, a cloud server application, and the 

remote Google services. Figure 1 gives an overview of the implementation of the system (blue boxes in the 
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diagram represent the parts of the system we created). The white boxes, like Google calendar and contacts, are 

external systems we communicated with. The server application was deployed remotely in the cloud on the 

Google App Engine, whilst data was also stored remotely in Google cloud services. After the Android client was 

installed on the mobile device, the device will register itself to the Google services as illustrated in the code 

snippet of Figure 3. 

The users would start by logging in to the webpage. This webpage is part of the server application hosted on the 

Google App Engine. The login process uses the Google username/password. By leveraging the possibilities with 

Open Authorization (OAuth) we facilitated for the user sharing of their private calendar appointments and 

contacts stored in their Google cloud account without having to locally store their credentials. OAuth allowed us 

to use tokens as means of authentication and made it thereby possible for us to act as a third party granted access 

by the user. After a successful authentication the user is presented with a webpage showing all configuration 

options.                                                                                                                                                                                                                                                                                                                                                

Because the configuration for each user is stored in the cloud, we avoided tying it directly to a mobile device. 

One of the major benefits of this feature is that users did not need to manually update each device; they have a 

“master configuration” stored externally that can be directly pushed to their phone or tablet. It is also easier to 

add more advanced configuration options, enabling the user to take advantage of the bigger screen, mouse and 

keyboard of a desktop/laptop PC. This is done on the configuration webpage, by selecting the applications the 

user wants to store on the mobile device and pressing the “save configuration” button, the effect of which is to 

send a push message to the client application. 

3.1 Android client 

The client application was implemented on an Android device. This application utilized context-aware 

information from the device in the form of time, location and sensors. Additionally it utilized context-aware 

information from the cloud-integrated backend to acquire dynamic interface content, contacts and calendar data. 

At launch, the application would look as illustrated in Figure 2. 

 

Fig 2 Home screen interface at launch of application 
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This interface would change depending on the user’s given context. The available applications would be adapted 

and customized to match the current computed user context and thereby unobtrusively alter the user experience. 

 

3.2 Cloud to Device Messaging 

The adaptation message from the cloud to the smartphone is sent with a push feature for Android called C2DM 

(Cloud to Device Messaging), available from Android 2.2. The C2DM feature requires the Android clients to 

query a registration server to get an ID that represents the device. This id is then sent to our server application 

and stored in the Google App Engine data store. When a message needs to be sent, the “save configuration” 

button is pushed. We composed the message according to the C2DM format and sent it with the registration id as 

the recipient. These messages are then received by the Google C2DM servers and finally transferred to the 

correct mobile device. A snippet from this process is shown below in Figure 3. 

 

Fig 3 Excerpt from the device messaging process 

The C2DM process is visualized in the Figure 4. This technology has a few very appealing benefits: messages 

can be received by the device even if the application is not running, saves battery life by avoiding a custom 

polling mechanism, and takes advantage of the Google authentication process to provide security. 
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Fig 4 C2DM message cycle 

Our experience with C2DM was mixed. It is a great feature when you get it to work, but the API is not very 

developer friendly. This will most likely change in the future since the product is currently in an experimental 

stage, but it requires the developer to work with details like device registration and registration id 

synchronization. Although C2DM does not provide any guarantees when it comes to the delivery or order of 

messages, we found the performance to be quite good in most of the cases. It is worth mentioning that we did see 

some very high spikes in response time for a few requests, but in the majority of cases the clients received the 

responses within about half a second. Performance measurements we recorded, while doing the user experiments, 

were on average 663 milliseconds of response value. It is also important to note that issues like network latency 

will affect the performance results. 

The calendar and contacts integration was also an important part of the Android application. We decided to 

allow the Android client to directly send requests to the Google APIs instead of going the route through the 

server. The main reason for this is that we did not think the additional cost of the extra network call was justified 

in this case. The interaction is so simple and there is very little business logic involved in this part so we gave the 

clients the responsibility for handling it directly. The implementation worked by simply querying the calendar 

and contacts API and then using XML parsers to extract the content. 
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3.3 Using Sensors as Adaptation Triggers 

Sensors are an important source of information input in any real world context and several previous research 

contributions look into this topic. For instance, Parviainen et al. [13] approached this area from a meeting room 

scenario. They found several uses for a sound localization system, such as: automatic translation to another 

language, retrieval of specific topics, and summarization of meetings in a human-readable form. In their work, 

they find sensors a viable source of information, but also acknowledge there is still work to do, like improving 

integration.  

This is what we addressed in our work, where sensor data from the two mobile devices employed in our study 

were integrated with cloud based services and used as input to the proof-of-concept application. Accordingly, we 

used the API available on the Android platform and, through a base class called SensorManager, we were able to 

access all of the built-in sensors on the mobile device (the HTC Nexus One, for example, had 5 sensors 

available: accelerometer, magnetic field, orientation, proximity and light.). We ended up using two features 

directly in the prototype, namely the accelerometer and the light sensor. The accelerometer was used to register 

if the device was shaking. If the device is shaking it probably means that the user is on the move, for example 

running or walking fast. In these cases, we automatically change the user interface to a much simpler view that 

has bigger buttons and is easier to use when on the move. 

The second sensor we used in our experiment was the light sensor. By constantly registering the lighting levels 

in the room we adjusted the background colour of the application (Figure 5). We changed the background colour 

of the application very carefully, as it would be very annoying for the users if colour changes were happening 

often and were drastic. Accordingly, we gradually faded colour when the lighting values measured from the 

environment changed. 

 

   

Fig 5 Background light adjustment 

 

4. Evaluation Results 

The developed prototype was evaluated in two phases. In the first, a pilot test was performed with a total of 12 

users. Secondly, in the main evaluation, another 40 people participated in evaluating the application. All 

participants were classified according to a computer experience classification and answered a questionnaire after 

performing the instructed tasks with the application.  

4.1 Participants 

The first pilot test was performed with a total of 12 users. These users were of mixed age, gender and computer 

expertise. The results from this phase were fed back into the development loop, as well as helped remove some 
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unclear questions in the questionnaire. In the second phase, the main evaluation, another 40 people participated. 

Out of the 40 participants in the main evaluation, two did not complete the questionnaire afterwards and were 

therefore removed making the total number of participants 38 in the main evaluation. All 12 from the pilot test 

and the 38 from the main test session were aged between 20 and 55 years old. All participants had previous 

knowledge of mobile phones and mobile communication, but had not previously used the type of application 

employed in our experiment. None of the pilot test users participated in the main evaluation. From the user 

computer experience classification (asserted based on a questionnaire employing the taxonomy of McMurtrey 

[10]) we learnt that the majority of the users had a good level of computer expertise.  

4.2 Materials 

Our prototype was evaluated on two mobile devices, the HTC Nexus One and the HTC Evo. The HTC 

manufactured Nexus One represents one of the first worldwide available commercial Android phones. The 

Nexus One features dynamic voice suppression and has a 3.7-inch AMOLED touch sensitive display supporting 

16M colours with a WVGA screen resolution of 800 x 480 pixels. It runs the Google Android operating system 

on a Qualcomm 1 GHz Snapdragon processor and features 512 MB standard memory, 512 MB internal flash 

ROM and 4 GB internal storage. 

The HTC Evo 4G is an Android phone shipped by the Sprint operator for the American CDMA network. The 

HTC Evo 4G features a 4.3- inch TFT capacitive touchscreen display supporting 64K colours with a screen 

resolution of 480 x 800 pixels. It runs the Google Android operating system on a Qualcomm 1 GHz Scorpion 

processor and features WI-FI 802.11b/g, 512 MB standard memory, 1 GB internal flash ROM and 8 GB internal 

storage. 

4.3 Results 

The results presented here illustrate different parts of the questionnaire: statements one to three target the user 

interface, statements four to six regard sensor integration, statements seven to nine focus on the web application, 

statements ten to thirteen centre on context-awareness, while statements fourteen to seventeen are about cloud 

computing. The questionnaire ends with overall usefulness, which is in an open-ended question for comments. 

The statements are given below (Table 1) together with the mean, standard deviation and the results of applying 

a one-sample t-test.  

Table 1 User evaluation questionnaire and results 

 Statement Mean 
Std. 

Dev. 
t-test 

Statements regarding user interface 

Statement 1 It is easy to see the available functions 3.50 0.51 .000 

Statement 2 The features of the application are hard to use 1.89 0.73 .378 

Statement 3 
The adaptability of the application is a feature I approve 

of 
3.45 0.55 .000 
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Statements regarding sensor integration 

Statement 4 
The background colour in the application changes when 

the lighting in the room changes. 
3.55 0.65 .000 

Statement 5 
When moving around, a simplified user interface is not 

presented. 
2.11 1.06 .544 

Statement 6 
I found sensor integration annoying and would disable it 

on my device. 
1.84 0.72 .183 

Statements regarding the web application 

Statement 7 
I was able to register my device application configuration 

in the web application. 
3.61 0.59 .000 

Statement 8 
I was not able to store and push my configuration to my 

mobile device from the web page. 
1.47 0.80 .000 

Statement 9 
I would like to configure my phone from a cloud service 

on a daily basis. 
3.18 0.69 .000 

Statements regarding context-awareness 

Statement 10 
The close integration with Google services is an 

inconvenience. 
1.76 0.88 .107 

Statement 11 
Calendar appointments displayed matched my current 

user context. 
3.58 0.55 .000 

Statement 12 
The contacts displayed did not match my current user 

context. 
1.29 0.52 .000 

Statement 13 

I would like to see integration with other online services 

such as online editing tools (for example Google Docs) 

and user messaging applications (like Twitter and 

Google+). 

3.29 0.73 .000 
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Statements regarding cloud computing 

Statement 14 I do not mind Cloud server downtime. 2.08 0.78 .539 

Statement 15 

I do not like sharing my personal information (like my 

name and e-mail address) to a service that stores the 

information in the cloud. 

2.16 0.79 .225 

Statement 16 

Storing data in the Google Cloud and combining this 

with personal information on the device is a useful 

feature. 

3.26 0.60 .000 

Statement 17 I find the cloud-to device application useful. 3.53 0.51 .000 

Open comment question 

 

4.4 User interface 

Statements one to three deal with the user interface (Figure 6). These results reveal positive facts about the 

interface, highlighting that the majority of the users found it easy to see all available functions; moreover the 

vast majority (37/38) also finds the adaptability of the application a feature that they approve of. However, 

looking at statement two, their opinions are split in terms of whether the features are hard to use, and the results 

in this respect are not statistically significant. Overall, in this category, the results indicate that it is easy to get an 

overview of the application and the test candidates find adaptability a positive feature. 
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Fig 6 Statements regarding user interface 

 

4.5 Sensor integration 

Opinions are split regarding sensor integration. Users agree that the light sensor is working as expected, but 

disagree whether the simpler user interface changes (Figure 7). This can be due to the sensitivity threshold 

programmed for the sensor, and should be verified by more comprehensive testing. The majority, 32 out of 38, 

would not deactivate sensor integration and this is a useful observation, highlighting that sensors should be 

further pursued as context-aware input.  
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Fig 7 Statements regarding sensor integration 

4.6 Web application 

The statements dealing with the web application at the Google App Engine (Figure 8) show that the web 

application performed as expected, by letting participants register their devices as well as pushing performed 

configurations to the devices. Moreover, answers from statement nine are also quite interesting (“I would like to 

configure my phone from a cloud service on a daily basis”), highlighting a positive attitude towards cloud-based 

services (32 out of 38 are positive). 
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Fig 8 Statements regarding web application 

4.7 Context-awareness 

In terms of context-aware information the participants were asked to take a stand in respect of four statements, 

with results shown below (Figure 9). For the first statement in this category (“The close integration with Google 

services is an inconvenience”), although a clear majority supported this assertion (33/38), opinions are somewhat 

spread and this answer is not statistically significant. For the next two questions a very positive bias is shown, 

indicating correctly computed context-awareness and correct presentation to the users. Again for statement 13 

(“I would like to see integration with other online services…”), users indicated their eagerness to see more cloud-

based services and integration.  
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Fig 9 Statement regarding context-awareness 

 

4.8 Cloud computing 

When inspecting results from the cloud-computing section, results are mixed and differences in opinions do 

occur. For statements 14 (“I do not mind Cloud server downtime”) and 15 (“I do not like sharing my personal 

information … to a service that stores the information in the cloud”) the results are not statistically significant, 

but they indicate a mixed attitude towards cloud vulnerability and cloud data storage. In respect of the two 

statements in this category with statistically significant results (statements 16 and 17), participants find storage 

of data in the cloud and using this as part of the data foundation for the application a useful feature and are 

positive towards it. Their answers also suggest a fondness for push based application configuration (Figure 10).  
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Fig 10 Statement regarding cloud-computing 

 

5 Related Work and Discussion 

From the literature we point at the ability for modern applications to adapt to their environment as a central 

feature [6]. Edwards [7] argued that such tailoring of data and sharing of contextual information would improve 

user interaction and eliminate manual tasks. Results from the user evaluation support this. The users find it both 

attractive as well as have positive attitudes towards automation of tasks such as push updates of information by 

tailoring the interface. This work has further elaborated on context-aware integration and shown how it is 

possible to arrange the interplay between on device context-aware information, such as that provided by 

smartphone sensors, and cloud-based context-aware information such as calendar data, contacts and applications. 

In doing so, we build upon suggestions for further research on adaptive cloud behavior as identified by 

Christensen [5] and Mei et al. [11].  

In early work, Barkhuus and Dey [2] conducted a study to examine the effects of context on user’s control over 

mobile applications. The study defined three level of interactivity between users and mobile devices including 

personalization, passive context-awareness and active context-awareness. User preferences were then studied 

according to these three levels. The study showed that in the case of passive and active context-awareness 

scenarios, users felt less in control of their mobile applications. But the overall conclusion was that users were 

willing to compromise on losing some control if they could get some useful reward in return. Our results show 

that things have not changed in this respect recently – users who evaluated the developed prototype appreciated 

the adaptation features that cloud-based data push enables. 

Wei and Chan [15] incorporated a decade of work on context-awareness and investigated the matter further. 

They presented three characteristics of context-aware applications: 
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 Context is application-specific  

 Context is external to applications  

 Context can be used to change behaviour, data or structures  

These characteristics are suggested to be adopted in future research. This is indeed what we have done; we have 

used application-specific context information (sensor data, calendar and contacts data), together with external 

context information stored in the cloud in order to change application structure, behavior, and interface. Wei and 

Chan [15] also make the point that the more fundamental the adaptation is (e.g. changing structures), and the 

later it occurs (e.g. at runtime), the harder it would be to be implemented. However, our work has taken up this 

challenge and shown how run time structures and application adaptation can be achieved by using modern cloud 

architecture, all showcased through an implemented proof-of-concept prototype. 

Satyanarayanan [14] exemplified context-aware attributes as: physical factors (location, body heat and heart rate), 

personal records and behavioural patterns. He stated that the real issue was how to exploit this information and 

how to deal with all the different representations of context. Whilst we have pursued, in our work, the ideas of 

different representations of context, further research is needed to further integrate other dimensions of context 

(e.g. physical factors, behavioural patterns).  

To register the user tags the standard Google Calendar and Contacts web-interface was used. Such a tight 

integration with the Google services and exposure of private information was not regarded as a negative issue. 

As shown in the evaluation results of our developed prototype, most of the users surveyed disagreed that this 

was an inconvenience. This perception makes room for further integration with Google services in future 

research, where, amongst them, the Google+ platform will be particularly interesting as this may bring 

opportunities for integrating the social aspect and possibly merge context-awareness with social networks.  

Sensors are an important source of information input in any real world context and several previous research 

contributions look into this topic. The work presented in this paper follows in the footsteps of research such as 

that of Parviainen et al. [13], and extends sensor integration to a new level. By taking advantage of the rich 

hardware available on modern smartphones, the developed application is able to have tighter and more 

comprehensively integrated sensors in the solution. We have shown that it is feasible to implement sensors and 

extend their context-aware influence by having them cooperate with cloud-based services.  However, from the 

user evaluation one learns that although sensor integration as a source for context-awareness is well received, 

there is still research to do. In particular, this should establish thresholds for sensor activation and deactivation.  

 

6 Conclusions  

This paper proposes the novel idea of using cloud based software architecture to enable remote, context-aware 

adaptation. This, we argue, creates a new user experience and a new way to invoke control over a user’s 

smartphone. Through a developed proof-of-concept application, we have shown the feasibility of such an 

approach; moreover, this has been reinforced by a generally positive user evaluation. Future research should 

continue to innovate and expand the notion of context-awareness, enabling further automatic application 

adaptation and behaviour altering in accordance with implicit user needs.   
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