
Context-Aware Aspects

Éric Tanter1,�, Kris Gybels2, Marcus Denker3, and Alexandre Bergel4,��

1 Center for Web Research/DCC
University of Chile, Santiago – Chile

2 PROG Lab
Vrije Universiteit Brussel – Belgium

3 Software Composition Group
University of Bern – Switzerland

4Distributed Systems Group
Trinity College – Ireland

Abstract. Context-aware applications behave differently depending on
the context in which they are running. Since context-specific behavior
tends to crosscut base programs, it can advantageously be implemented
as aspects. This leads to the notion of context-aware aspects, i.e., aspects
whose behavior depends on context. This paper analyzes the issue of
appropriate support from the aspect language to both restrict the scope
of aspects according to the context and allow aspect definitions to access
information associated to the context. We propose an open framework for
context-aware aspects that allows for the definition of first-class contexts
and supports the definition of context awareness constructs for aspects,
including the ability to refer to past contexts, and to provide domain-
and application-specific constructs.

1 Introduction

Context awareness [5,10], i.e., the ability of a program to behave differently de-
pending on the context in which it is running, has been the subject of a number
of research proposals, mainly in the field of ubiquitous computing [21], self-
adaptive [17] and autonomic systems [16]. In these areas, a major issue is that
of perceiving the context surrounding an application (e.g., hardware or network
state, user characteristics, location, etc.). Context awareness toolkits have been
proposed to address this issue of context perception (e.g., WildCAT [9]). In the
area of programming languages, it has been recognized that beyond perceiving
context, actually composing context-specific behavior with the application logic
results in context-related conditionals (if statements) being spread out all over
the program [7]. Context awareness is therefore a crosscutting concern, which

� Author financed by the Milenium Nucleous Center for Web Research, Grant P01-
029-F, Mideplan, Chile.

�� Author supported by the Science Foundation Ireland and Lero - the Irish Software
Engineering Research Centre, and the Swiss National Science Foundation, Project
No. 200020-105091/1 “A Unified Approach to Composition and Extensibility”.

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 227–242, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



228 É. Tanter et al.

is a good candidate for being treated as an aspect. Doing so implies that as-
pects should be context aware; a context-aware aspect is an aspect whose behav-
ior depends on the context. The “behavior” of an aspect includes the crosscut
specification of the aspect as well as its associated action (a.k.a., advice). This
paper explores aspect language constructs to scope aspects to certain contexts,
and to allow aspect advices to be parameterized by information associated to
contexts.

Current approaches to AOP support several means to restrict an aspect based
on some kind of context: e.g., based on certain data associated with the join
points it intercepts (e.g., the value of a certain parameter), or based on their
relationship to past join points (e.g., current control flow or past execution his-
tory [14, 12]). However the notion of context used in context-aware applications
is more general and AOP languages lack an explicit notion of context. Interest-
ingly, context can also be related to particular application domains, such as a
promotional context in an online shopping application. Also, current AOP lan-
guages are limited with respect to the kind of context dependencies that can
be expressed: most do not consider past contexts. While there are approaches
that keep track of past events and state of the program, the problem of context-
dependent aspects has not been fully considered in these cases. Expressing con-
text dependencies in aspects would imply relying on design patterns and idioms.
Conversely, we believe context awareness is central enough to many systems to
deserve dedicated language constructs. We therefore aim at studying appropriate
aspect language constructs for context-aware aspects, including general-purpose
and domain-/application-specific constructs. The contributions of this paper are:
(a) a general analysis of the issues associated with context-aware aspects; (b)
the description and implementation of an open framework for context-aware as-
pects that meets all identified requirements. This framework, implemented on
the Reflex AOP kernel [19], includes a context definition framework and a frame-
work for defining context-related aspect language constructs.

Section 2 introduces a running example on which we base our analysis of
context-aware aspects, and distills a number of requirements for defining contexts
and providing aspect language features for context awareness. We describe our
framework for context-aware aspects in Section 3, and discuss related work in
Section 4. Section 5 presents our conclusions.

2 Motivation and Requirements

2.1 Running Example

The running example is an online shop application. When a customer logs in, a
shopping cart is created that can be filled with various items. When the purchase
has to be ordered, the bill is calculated. Within this application, we consider
a simple discounting aspect. The following is a skeleton implementation of a
Discount aspect in AspectJ which is not at all dependent on current promotions
but simply applies a constant discount of 10%:



Context-Aware Aspects 229

aspect Discount {
double rate = 0.10;
pointcut amount() : execution(double ShoppingCart.getAmount());
double around() : amount() { return proceed() * (1 - rate); }

}

There are several ways in which the discounting aspect can be related to a pro-
motion. For instance, the discount can be based on (D1) the current promotion
that is active either when the customer checks out, or (D2) when the customer
logs in and the shopping cart is created, or (D3) when the item is added to the
shopping cart.

The fact that a promotion is active or not can be described as the application
being in a promotional context 1. Whether the application is currently in a pro-
motional context can be defined in several ways, e.g.: (P1) it can be time-based,
based on whether the current time falls in any of the given intervals during
which promotions are given; or (P2) the shop application can automatically
give promotions when the shop’s stock area is getting overloaded and needs to
be cleared; or (P3) the shop’s sales department may want to advertise a new
web-services-based interface to the application, the application would then be in
a promotional context if shopping is done through web-service requests.

Finally, the discount rate may (R1) simply be constant as in the example
above, but (R2) may also vary depending on the actual promotion. In other
words, instead of being in a promotional context or not, the application may
also offer promotions with different discount rates.

2.2 Example Design Analysis

Context Definition. The definition of when to apply the discount and the
definition of the promotional context should be separate. The reason for this
is simply good separation of concerns. As discussed above, there are several
variations possible both for the context definition itself and the discount aspect
that depends on it. In an evolution scenario, the shopping company may either
change when the discounts are applied without changing the definition of the
promotion, or vice-versa. Also, the definition of the promotion may apply to
other aspects besides the discount aspect, such as an advertising aspect which
adds customized banners for each customer to the shop’s web pages. Hence,
separating aspects that are dependent on some contexts from the definition of
contexts themselves serves well-established engineering principles. In addition to
this logical separation between aspects and contexts, contexts should be:

– stateful: a context may have state associated to it. Support should be
provided for both state internal to the context’s implementation (e.g., the
time slots when a promotion is active) and publicly accessible state, such as
for variation R2 in the example when the rate of discount depends on the

1 We also use the interchangeable phrases “the application is in a given context” and
“a given context is active”.



230 É. Tanter et al.

promotion. In that case, the discount aspect would define when to actually
apply a discount, and would get the specific discount rate from the promotion
which defines when this rate is determined. Of course, the state of a context
may change dynamically.

– composable: a context may be defined from more primitive contexts. For
instance, one can define the stock overload context independently of the
promotional context; this way, other contexts can be based on stock overload,
and the promotional context can combine the time-based definition with the
stock overload context.

– parameterized: contexts can be defined generically, and parameterized by
aspects that are restricted to it; for instance, the stock overload context can be
parameterized by the actual threshold that leads to the context being active.

Finally, a context can be related to control flow properties (e.g., the web-services-
based promotional context), in the broad sense of the term (not only as AspectJ’s
cflow, but also as past event sequences [14, 12]).

Contextual Restriction. Restricting an aspect to a particular context re-
quires the possibility to refer to a context definition in a pointcut definition. For
instance:

pointcut amount(): execution(double Item.getPrice()) && inContext(PromotionCtx);

Furthermore, since the discount rate may vary on the actual promotion, the as-
sociated advice may need to access some external state of the considered context:

aspect Discount {
pointcut amount(double rate): execution(double ShoppingCart.getAmount())

&& inContext(PromotionCtx(rate));
double around(double rate): amount(rate) { return proceed() * (1 - rate); }

}

The code above assumes that using rate in PromotionCtx(rate) relies on the fact
that a promotional context exposes a rate property (e.g., via a getRate accessor).
In addition to context state exposure, it has to be possible to parameterize a
context when expressing a dependency on it: e.g., Discount could depend on
both a time-based PromotionCtx, and the StockOverloadCtx, parameterized by a
threshold of, say, 80%2.

pointcut amount(double rate): execution(double ShoppingCart.getAmount())
&& inContext(PromotionCtx(rate)) && inContext(StockOverloadCtx[.80]);

The above inContext pointcut restrictor is semantically equivalent to an if re-
strictor in AspectJ: restricting an aspect based on whether a certain (context)
condition is currently verified. However, it should also be possible to restrict
an aspect based on whether the application was in a certain context previously.
2 We assume the syntax: (..) for exposing context state, and [..] for context parame-

terization.



Context-Aware Aspects 231

There is one generally-useful past context dependency: the context during which
an object is created (a.k.a., its creation context), e.g., the context during which
a shopping cart is created. Using an appropriate language construct createdInCtx,
the following implies that Discount applies for any shopping cart that was created
when PromotionCtx was active, without considering whether the promotion is still
active when the customer checks out:

pointcut amount(): execution(double ShoppingCart.getAmount())
&& createdInCtx(PromotionCtx);

Finally, it should also be possible to define domain- or application-specific context
restrictors; e.g., to refer to the context during which an item was added to
the shopping cart (assuming an appropriate application-specific putInCartInCtx
pointcut restrictor):

pointcut amount(): execution(double Item.getPrice()) && putInCartInCtx(PromotionCtx);

The combination of past context dependencies and stateful contexts implies
the need for keeping track of past contexts and their associated state: on the one
hand, contexts can be stateful and this state can vary over time; on the other
hand, the actual application of the discount can depend on a past promotion
context. We refer to this process of keeping track of past contexts and their
states as context snapshotting, and to the frozen state of a context at a given
point in time as a context snapshot. A global context snapshot is therefore a
snapshot of all defined contexts at a given point in time.

For implementation considerations (basically, memory usage), it is obviously
impossible to keep the global context snapshots at each and every point in time.
It is thus important to be able to snapshot contexts only when really needed. For
instance, snapshotting the creation context of an object is needed only if this object
is affected by an aspect that is subject to a creation-context dependency. It is also
desirable that snapshots be associated to the object they relate to in order to avoid
maintaining huge global hashtables, as these would surely become bottlenecks.

Finally, the possibility of defining domain- and application-specific context
restrictors implies that the corresponding snapshotting (when to snapshot, where
to store the snapshots) be user-definable.

2.3 Summary

The above design analysis of the running example points out a number of require-
ments for appropriately modeling contexts on the one hand, and for providing
aspect language features for context awareness on the other hand, which can be
summarized as follows:

– Contexts and context-aware aspects must be separate entities.
– Contexts should possibly be parameterized, stateful, and composable.
– Context state should possibly be bound to pointcut variables.
– It should be possible to express dependencies on past contexts.
– New context-related constructs (possibly domain-specific) should be

definable.
– Non-naive implementation of context snapshotting must be supported.



232 É. Tanter et al.

3 An Open Framework for Context-Aware Aspects

We now present an open framework for context-aware aspects that meets the
above requirements. The framework is an extension of Reflex3, a versatile kernel
for multi-language AOP in Java [19]. Reflex supports AOP-like dynamic cross-
cutting, and the framework supports plugins that compile languages such as
AspectJ to standard Java programs using Reflex [18]. We do not discuss con-
crete syntax extensions for supporting context-dependent restrictions here; we
focus on the extension of the framework.

3.1 Why a Framework Approach?

A major requirement we have identified is to be able to add new constructs to an
aspect language, along with their corresponding semantics. Such an extensible
aspect language can be achieved using one of the following alternatives:

– modifying the interpreter of the aspect language;
– using a reflective aspect language, i.e., an aspect language that has an ac-

count of itself embedded within it;
– using an extensible compiler for that aspect language.

To the best of our knowledge, there have been no real reflective aspect lan-
guage proposed to date. As regards extensible compilers, we could implement
our proposal using abc, the AspectBench compiler, which is precisely an ex-
tensible AspectJ compiler [3]. Our framework-based approach has an advantage
in terms of simplicity of the implementation and hence rapidity in prototyping
new language features. There is no doubt though that abc would lead to a more
efficient implementation as a number of static optimizations could be done: but
this is not the purpose of this paper; optimized implementations of context-aware
aspects is deliberately left for future research. It has to be noted that working
at the framework level is conceptually equivalent to working at the level of the
interpreter of the aspect language.

The following section gives a brief overview of Reflex, to give the necessary
background for understanding the description of the extended framework that
follows. The presentation of the extension for context-dependence is divided
in four parts, following the organization depicted in Fig. 1: we first present the
context definition framework, followed by the context restriction framework, and
we illustrate the use of both with user-defined extensions.

3.2 Background on Reflex

Reflex is an open reflective extension of Java that supports both structural and
behavioral modifications of programs. The core concept of Reflex is the link; we
hereby only need to explain behavioral links: a behavioral link invokes messages
on a metaobject at occurrences of operations specified by a hookset [19, 20].

3 http://reflex.dcc.uchile.cl



Context-Aware Aspects 233

getState(): ContextState
Context

getContext(): Context
ContextState

*
1

- define(Context)
- get(): List<ContextState>

Contexts
* 1

evaluate(Object): boolean
ContextActive

1

- annotate(ClassSelector)
- snapshot(Hookset, Parameter)

SnapshotCtxActive

CtxAnnotator

getRate(): double
PromotionState

rate: double
PromotionCtx

CurrentlyInCtx

CreatedInCtx

PutInCartInCtx

Context Definition Framework

Context Restriction Framework

O
b
j
e
c
t
-
l
e
v
e
l

A
n
n
o
t
a
t
i
o
n
 
F
r
a
m
e
w
o
r
k

Fig. 1. The Reflex-based frameworks for context-aware aspects: the Context Defin-
ition Framework for defining when contexts are active and the Context Restriction
Framework for defining context-dependent activation conditions

A hookset, like an AspectJ pointcut, is a composable entity that specifies a
set of operations based on selection conditions. However, it expresses lexical
crosscutting only (pointcut shadows). An example hookset and its equivalent in
AspectJ is the following:

// execution(* WebServiceRequest+.*(..))
Hookset hs = new Hookset(MsgReceive.class,

new NameCS(”WebServiceRequest”, true), new AnyOS()));

The selection conditions of a hookset are split into a selection on the type of
operation, on the classes in which they occur and on the operations themselves. In
the example, the hookset intercepts occurrences of MsgReceive operations, which
corresponds to the execution join point type in AspectJ. The NameCS class selector
specifies that the class should be WebServiceRequest – or one of its subclasses, as
specified by the true parameter, which corresponds to the + in AspectJ. The
operation selector AnyOS simply specifies no further conditions on operation
occurrences (similar to the use of ”*” wildcards).

The exact message sent to the metaobject, as well as how and even if it is really
invoked, can be further controlled by setting attributes of the link. Following is
an example link definition (amountHS is the hookset corresponding to the amount
pointcut):

BLink discount = Links.createBLink(amountHS, new Discount());
discount.setCall(Discount.class, ”amount”);
discount.setControl(Control.BEFORE); // before advice kind
discount.setScope(Scope.GLOBAL); // singleton metaobject
discount.addActivation(new Condition()); // adding a dynamic condition



234 É. Tanter et al.

The discounting aspect’s advice is here modeled as a metaobject, instance of the
plain Java class Discount with an amount method, that simply applies the dis-
count. The setCall invocation specifies that the link should send the amount mes-
sage, with no arguments. The next two invocations illustrate setting the control
and scope attributes, which correspond to advice kind and aspect instantiation,
respectively.

Important for this paper is that the final invocation specifies an activation
condition. The activation condition is implemented as an object implementing
the interface Active which simply specifies a boolean method evaluate which takes
exactly one parameter, the object in which the operation occurred. At runtime,
interception occurs only if the activation condition evaluates to true. Hence, an
activation condition basically plays the role of pointcut residues in AspectJ.

The messages invoked by links on metaobjects can take parameters. One can
specify on a link what arguments to pass by giving a number of Parameter ob-
jects. There are several possible objects one can pass, but a number of pre-
defined parameters are available, such as Parameter.THIS and Parameter.RESULT
which represent the currently-executing object and the result of the intercepted
operation, respectively.

3.3 Context Definition Framework

A simple usage of Reflex for defining context can represent contexts as objects
with a boolean method active. Since Reflex supports first-class pointcuts via
hooksets and activation conditions, AOP features can be used for defining when
a context is active. For instance, consider the definition of the web-service-based
promotion context:

class PromotionCtx {
// cflow(execution(* WebServiceRequest+.*(..)))
CFlow cf = CFlowFactory.get(new Hookset(MsgReceive.class,

new NameCS(”WebServiceRequest”, true), new AnyOS()));
boolean active() { return cf.in(); }

}

The CFlow object exposes the control flow of the hookset given to the CFlowFactory
The active method is defined in terms of the in message of this object, which
returns true when the application is in the control flow of an operation that
matches the hookset.

We also need to define how contexts are snapshot: at any point in time, we
may need to snapshot a context, in order to access its state later. One way
to design this is to make contexts cloneable, and clone all active contexts when
doing a snapshot. But this introduces the issue of managing the depth of context
cloning; also, some state of the context is related to its initial parameterization
and hence does not need to be cloned.

We rather opted for a design that forces context implementors to explicitly
consider the issue of context snapshots. Context definitions should extend the
abstract class Context, which instead of having a boolean active method requires



Context-Aware Aspects 235

overriding a getState method. This method should return null if the context is
not active, otherwise it should return a snapshot of the context as a ContextState
object. ContextState is defined as an inner class of Context to ensure the snapshots
have a relation to the originating context:

abstract class Context {
Context() { Contexts.define(this); } // define context (explained later)
abstract ContextState getState(); // null if inactive
class ContextState {

Context getContext() { return Context.this; }
}}

Suppose that PromotionCtx is characterized by a variable discount rate:

class PromotionCtx extends Context {
CFlow cf = /* as above */
double rate; /* with setter */
ContextState getState() {

if(!cf.in()) return null;
return new PromotionState(rate);

}

class PromotionState
extends ContextState {

double rate; // init in constructor
double getRate() { return rate; }

}}

The above implementation ensures that the promotion context can be snapshot
correctly: a PromotionState object holds the value of the discount rate at the
time the snapshot was requested – although the current discount rate may be
different.

The framework also includes a global context dictionary, Contexts, which keeps
track of all contexts that have been defined (via define(c), as done in the construc-
tor of the abstract Context class) and which can be asked for a global snapshot of
all currently active contexts (via get). A global context snapshot is represented
as a Snapshot object, which is simply a map of Context-to-ContextState objects.
Recall that each context state object contains a reference to the context object
that generated it.

3.4 Context Restriction Framework

The context-dependent pointcut restrictors of Section 2.2 can be defined in the
Reflex framework as activation conditions on links. Two abstract classes im-
plementing the Active interface are defined as a framework for defining context-
dependent activation conditions (Fig. 1). We show here how these are specialized
for defining the currentlyInCtx restrictor. The createdInCtx and putInCartInCtx re-
strictors are presented in the next section. First of all, the CtxActive abstract
class is defined as follows:

abstract class CtxActive implements Active {
Context itsContext;
CtxActive(Context c){ itsContext = c; } // associate context to condition
boolean evaluate(Object o){ return getCtxState(o) != null; }
abstract ContextState getCtxState(Object o);

}



236 É. Tanter et al.

In the constructor, the context on which the activation condition relies is stored
in an instance variable. The activation condition evaluates to true if the associ-
ated context is active, or more precisely, is determined to (having) be(en) active
by getCtxState. This method is abstract because some context-related conditions
rely on a past context state, and should therefore be able to retrieve the ap-
propriate context snapshot associated to the currently-executed object. This is
explained in more details in the rest of this section.

The CurrentlyInCtx condition restricts a link to be active only when the condi-
tion’s context is active. So getCtxState returns the value of the context’s getState
method:

class CurrentlyInCtx extends CtxActive {
ContextState getCtxState(Object o){ return itsContext.getState(); }

}

The following is an example of using this activation condition to restrict a link
to activate only when the promotion context is active:

discount.addActivation(new CurrentlyInCtx(new PromotionCtx()));

Past Dependencies. The abstract class SnapshotCtxActive provides the nec-
essary support for defining activation conditions that depend on past context
snapshots.

abstract class SnapshotCtxActive extends CtxActive {
ContextState getCtxState(Object o){

Snapshot snapshot = getSnapshot(o);
return snapshot.get(itsContext);

} }

When queried, such an activation condition extracts the relevant snapshot from
the currently-executing object passed as parameter (getSnapshot), and queries
the snapshot for the state associated to its context.

There are basically two design options for storing the snapshots of contexts
associated with specific objects. One is to rely on a global map of objects to
contexts, another is to associate snapshots as extra hidden state in the objects
themselves. We opted for the latter option, to avoid a central bottleneck and
also since it ensures that the snapshots are removed from memory when the
objects they are associated with are garbage collected. We rely on a general
object-level annotation framework based on Reflex and its abilities to perform
structural changes to classes (not presented here due to space restrictions). To
control snapshots, SnapshotCtxActive implements a number of utility methods to
interact with this framework, such as:

– void annotate(ClassSelector cs) – enable annotations in classes matched by cs.
– void snapshot(Hookset hs, Parameter p) – upon operation occurrences matched

by hs, store snapshot context in the parameter p of the occurrence.
– Snapshot getSnapshot(Object o) – return snapshot stored in o.



Context-Aware Aspects 237

3.5 User-Defined Extensions

Having presented the whole framework for context-aware aspects, we illustrate
its use by showing how new pointcut restrictors are defined. Two examples are
given, one for restricting based on the creation context of a particular object,
the other is an application-specific one. Since both refer to past contexts, they
are extensions of SnapshotCtxActive.

Creation Context. The creationCtx pointcut restrictor is implemented as the
CreatedInCtx class for activation conditions. It can be added as an activation
condition to the discount link as follows:

CtxActive createdInPromo = new CreatedInCtx(new PromotionCtx(), discount);
discount.addActivation(createdInPromo);

Note that the discount link itself is passed as a parameter to the activation con-
dition. This is done so that the link can be introspected, in order to determine
which instantiations of which classes the discount aspect actually depends on; the
snapshotting of the contexts can thus be limited to instantiations of just those
classes. In the constructor of CreationCtx below, the class selector of the link is
and used to define snapshotting on just the classes described by the selector:

class CreatedInCtx extends SnapshotCtxActive {
CreatedInCtx(Context c, BLink l){

super(c);
ClassSelector cs = l.getClassSelector();
annotate(cs);
snapshot(new Hookset(Creation.class, cs, new AnyOS()), Parameter.THIS);

} }

The class selector cs is retrieved from the link using its getClassSelector method
and is used in a call to snapshot. The hookset passed to snapshot describes all invo-
cations of constructors in classes matching the class selector. Context snapshots
are consequently stored in the newly-created object (Parameter.THIS).

In Cart Context. We now illustrate how an application-specific pointcut re-
strictor is defined, by considering the case of the PutInCartInCtx discussed in
Section 2.2. In Reflex, the corresponding activation condition would be used as
follows:

CtxActive putInCartInPromo = new PutInCartInCtx(new PromotionCtx());
discount.addActivation(putInCartInPromo);

The implementation of PutInCartInCtx states that Item objects should be anno-
tated, and that context snapshot annotation occurs upon execution of addItem
on a shopping cart; The object to be annotated, the item, is the first parameter
(NthParameter(1)) of the call:



238 É. Tanter et al.

class PutInCartInCtx extends SnapshotCtxActive {
PutInCartInCtx(Context c){

annotate(new NameCS(”eshop.Item”));
snapshot(new Hookset(MsgReceive.class, new NameCS(”eshop.ShoppingCart”),

new NameOS(”addItem”)), new NthParameter(1));
}}

3.6 State Exposure and Parameterization

Since contexts are standard objects, their parameterization is naturally done
by passing parameters at instantiation time, or by sending them configuration
messages. For instance, restricting Discount to inContext(StockOverflowCtx[.80]) is
implemented as:

discount.addActivation(new CurrentlyInCtx(new StockOverflowCtx(.80)));

Exposing context state, such as the discount rate in:

aspect Discount {
pointcut amount(double rate): execution(double ShoppingCart.getAmount())

&& createdInCtx(PromotionCtx(rate));
double around(double rate): amount(rate) { return proceed() * (1 - rate); }

}

is based on the mechanism provided by Reflex to customize the invocation of a
metaobject (recall Section 3.2). The above example would be implemented as
follows:

Context promotionCtx = new PromotionCtx();
CtxActive inPromo = new CreatedInCtx(promotionCtx, discount);
discount.addActivation(inPromo);
discount.setCall(Discount.class, ”amount”, inPromo.getCtxParam(”rate”));

The important line is the last one: the specification of the call to amount (the
advice) is changed to include one parameter, bound to the value of the rate
state property of the promotional context. getCtxParam is a method of CtxActive4

that returns a custom Parameter object. To evaluate the value of this parameter
at runtime, the activation condition inPromo is queried for the context state
corresponding to the currently-executing object, retrieves that context state in
the adequate snapshot (in this case, the creation context snapshot), and invokes
the getRate method on it.

3.7 More Extensions

In the current work we have only considered context dependencies related to the
currently-executing object of an operation occurrence. The two constructs we
4 The implementation of getCtxParam is not shown as this would lead us too far into

details. The interested reader is welcome to ask the authors.



Context-Aware Aspects 239

have presented for past context dependencies always look for context snapshots
in the this: if the currently-executing object has been created in a given context,
or put in the shopping cart in a given context, etc. It would be equally interesting
to be able to relate to past contexts associated with other objects, such as the
target or any of the arguments of an operation occurrence, or even any object
that is accessible from the join point. We could define additional activation
conditions that are defined to check for context-dependency related to other
objects than the this. Another option fitting in the Reflex framework would be
to parameterize context-related activation conditions with a Parameter object to
describe on which parameter of the operation occurrence the activation condition
acts. In that case, the constructors of the activation condition will also have to
perform a slightly more complex introspection of the link’s hookset to determine
on which classes snapshotting should be performed. We expect to research such
extensions in future work.

4 Related Work

We now review related work in the area of contexts, and existing proposals to re-
strict the scope of aspects. The term context can be found in different meanings
and definitions in many computer science disciplines, such as human-computer
interaction and ubiquitous computing. We hereby only focus on the use of con-
text as an element of a programming language.

Context-Oriented Programming. ContextL [7] is a recent CLOS-based ap-
proach for Context-Oriented Programming (COP). While we have presented an
extension of an aspect-oriented approach, COP is exploring a paradigmatically
new approach. A major difference between both approaches is in the way time is
dealt with. In the AOP approach an aspect can be made dependent on whether
the application was previously in a certain context, while in COP this is re-
versed: when the application enters a state that qualifies as being in a certain
context, code is redefined so that its future execution takes the “aspect” into
account. As the two approaches are paradigmatically different, it is difficult to
compare them, though one could state that our proposal has a more declarative
nature as the conditions under which the application is in a certain context are
encapsulated in context definitions, while in ContextL context has to be more
explicitly activated.

Context in other AOP Approaches. The term context has also been used
in other AOP approaches: the term is meant to denote information associated
with joinpoints, but is typically also limited to information directly associated
with joinpoints such as arguments of messages, or the control flow “context” of
the joinpoint. We have considered the term context in the more general meaning
of all the information about the state of a program when a joinpoint occurs, and
have also considered the use of context about past joinpoints, while limiting the
amount of information that is kept about past contexts.



240 É. Tanter et al.

Technically, this can be realized in any AOP approach like it is done in the im-
plementation of our framework, i.e., by defining additional pointcuts and advices
to capture contexts when needed. However, in our framework these additional
pointcuts (or hooksets) are automatically installed, they do not have to be writ-
ten by hand (Sect. 3.5). Also, in our approach context dependencies can be
checked in the pointcut, not in the advice, resulting in clearer code.

In AspectJ for example, one can implement a context definition such as the
promotion context as an object and the discounting as an aspect. The discounting
aspect has one advice for applying the discount, and a second one for snapshot-
ting the promotion context when, e.g., a shopping cart is created. But any aspect
depending on the promotion context needs an advice to snapshot the context as
needed. An attempt to define a more general promotion context snapshotting
aspect runs into the problem that it is not possible to analyze the pointcuts of
the aspects that depend on the context. So the reusable definition of the snap-
shotting necessarily has to snapshot the context at all instance creations, leading
to unnecessary overhead. In AspectJ, there is also the problem of defining con-
text activation predicates as reusable named pointcuts because such pointcuts
can neither be made dependent on a context using polymorphism (pointcut in-
vocations are not late bound), nor can named pointcuts be parameterized with a
context object (named pointcuts only have output arguments). In more advanced
aspect languages it may be possible to achieve an implementation of context-
aware aspects that is both more reusable and efficient than an implementation
in AspectJ, for instance with CaesarJ [2]. Although a detailed comparison with
the Reflex-based implementation presented here remains to be done, the interest
of Reflex (apart that it is sufficiently expressive and open to cover our needs)
is that it explicitly addresses the issue of extensible aspect languages on top of
the framework, through the on-going integration of Reflex and MetaBorg [6].
Therefore the context-aware syntactic extensions formulated at the beginning of
the paper can be provided over Reflex.

A number of proposals make it possible for aspects to depend on the past ex-
ecution history, and to refer to state associated to past events [1,8,11,13]. These
approaches make it possible to refer to past context, but only consider context in
the sense of join point-related information, as above. Conversely, in this work we
consider a more general notion of context, whose state can actually be computed
arbitrarily. In other words, we can bind any context state to pointcut variables,
which can then be used to parameterize advices. Although the extensions con-
sidered in this paper are not impossible to realize in, e.g., EAOP, they have not
been explicitly considered. Allowing aspects to refer to the full state of the pro-
gram was also introduced in the user-extensible logic-based language CARMA
using object reifying predicates [15]. This work could also be extended to solve
context-dependency problems.

The recent introduction of a let construct [4] in the AspectBench Compiler [3]
makes it possible to bind any context information to pointcut variables, as in
our approach. This construct therefore solves the issue of being able to expose
(external) context information in pointcuts. However, being an extension of



Context-Aware Aspects 241

AspectJ, an abc solution would not do any better with respect to the other
issues discussed previously with AspectJ: lack of first-class pointcuts, no late-
bound pointcut invocations, no input pointcut arguments, etc.

5 Conclusion

Handling context-related behavior as aspects allows for better modularization.
In this paper, we have analyzed what it means for aspects to be context aware
and explored the associated aspect language features. We have exposed an open
framework for context-aware aspects, i.e., aspects whose behavior is context
dependent. This includes the possibility to restrict aspects to certain contexts,
both currently and in the past, as well as to parameterize aspect advices with
context-related information. Furthermore, our approach makes it possible to
define application- or domain-specific context-related restrictors for aspects.

Future work includes experimenting with context-aware aspects in more elab-
orate scenarios, and implementing a set of contexts in our framework based on
a context-awareness toolkit such as WildCAT [9]. This should provide feedback
on our aspect language feature approach to handling context awareness.

Acknowledgments: Many thanks to thank Johan Brichau, Pascal Costanza,
Maja D’Hondt, Stéphane Ducasse, Johan Fabry, Oscar Nierstrasz and Roel
Wuyts for fruitful discussions on context-oriented programming and context-
aware aspects.

References

[1] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha
Kuzins, Ondrej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam,
and Julian Tibble. Adding trace matching with free variables to AspectJ. In
Proceedings of OOPSLA 2005. ACM Press, 2005.

[2] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An overview of
CaesarJ. In Transactions on Aspect-Oriented Software Development, volume 3880
of Lecture Notes in Computer Science, pages 135–173. Springer-Verlag, February
2006.

[3] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jen-
nifer Lhotak, Ondrej Lhotak, Oege de Moor, Damien Sereni, Ganesh Sittampalam,
and Julian Tibble. abc: an extensible AspectJ compiler. In Proceedings of AOSD
2005, pages 87–98, New York, NY, USA, 2005. ACM Press.

[4] Pavel Avgustinov, Julian Tibble, Eric Bodden, Ondrej Lhoták, Laurie Hendren,
Oege de Moor, Neil Ongkingco, and Ganesh Sittampalam. Efficient trace moni-
toring. Technical Report abc-2006-1, abc Group, March 2006.

[5] M. Baldauf and S. Dustdar. A survey on context-aware systems. Technical Report
TUV-1841-2004-24, Technical University of Vienna, 2004.

[6] Martin Bravenboer and Eelco Visser. Concrete syntax for objects. In Proceedings
of OOPSLA 2004, Vancouver, British Columbia, Canada, October 2004. ACM
Press. ACM SIGPLAN Notices, 39(11).



242 É. Tanter et al.

[7] Pascal Costanza and Robert Hirschfeld. Language constructs for context-oriented
programming. In Proceedings of the ACM Dynamic Languages Symposium, 2005.

[8] Thomas Cottenier and Tzilla Elrad. Contextual pointcut expressions for dynamic
service customization. In Dynamic Aspect Workshop, 2005.

[9] Pierre-Charles David and Thomas Ledoux. WildCAT: a generic framework for
context-aware applications. In Proceeding of MPAC’05, the 3rd International
Workshop on Middleware for Pervasive and Ad-Hoc Computing, Grenoble, France,
November 2005.

[10] A. K. Dey and G. D. Abowd. Towards a better understanding of context and
context-awareness. In Workshop on the What, Who, Where, When, and How of
Context-Awareness, as part of the 2000 Conference on Human Factors in Com-
puting Systems (CHI 2000), The Hague, The Netherlands, April 2000.

[11] Rémi Douence, Pascal Fradet, and Mario Südholt. Composition, reuse and inter-
action analysis of stateful aspects. In Proceedings of AOSD 2004, pages 141–150.
ACM Press, March 2004.

[12] Rémi Douence, Pascal Fradet, and Mario Südholt. Trace-based aspects. In
Robert E. Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet Akşit, editors,
Aspect-Oriented Software Development, pages 201–217. Addison-Wesley, Boston,
2005.

[13] Remi Douence, Olivier Motelet, and Mario Sudholt. A formal definition of cross-
cuts. In Proceedings of Reflection 2001, volume 2192 of Lecture Notes in Computer
Science, pages 170–186, Kyoto, Japan, September 2001. Springer-Verlag.

[14] Rémi Douence and Luc Teboul. A pointcut language for control-flow. In Gabor
Karsai and Eelco Visser, editors, Proceedings of GPCE 2004, volume 3286 of
Lecture Notes in Computer Science, pages 95–114, Vancouver, Canada, October
2004. Springer-Verlag.

[15] Kris Gybels and Johan Brichau. Arranging language features for more robust
pattern-based crosscuts. In Proceedings of AOSD 2003, 2003.

[16] J. Kephart. A vision of autonomic computing. In Onward! Track at OOPSLA
2002, pages 13–36, Seattle, WA, USA, 2002.

[17] P. K. McKinley, S. M. Sadjadi, and B. H Kasten, Cheng. Composing adaptive
software. IEEE Computer, 37(7):56–64, July 2004.

[18] Leonardo Rodŕıguez, Éric Tanter, and Jacques Noyé. Supporting dynamic cross-
cutting with partial behavioral reflection: A case study. In Proceedings of SCCC
2004, pages 48–58, 2004.

[19] Éric Tanter and Jacques Noyé. A versatile kernel for multi-language AOP.
In Robert Glück and Mike Lowry, editors, Proceedings of the 4th ACM SIG-
PLAN/SIGSOFT Conference on Generative Programming and Component Engi-
neering (GPCE 2005), volume 3676 of Lecture Notes in Computer Science, pages
173–188, Tallinn, Estonia, September/October 2005. Springer-Verlag.

[20] Éric Tanter, Jacques Noyé, Denis Caromel, and Pierre Cointe. Partial behavioral
reflection: Spatial and temporal selection of reification. In Proceedings of OOPSLA
2003, pages 27–46, nov 2003. ACM SIGPLAN Notices, 39(11).

[21] Mark Weiser. Some computer science issues in ubiquitous computing. Communi-
cations of the ACM, 36(7):75–84, July 1993.


	Introduction
	Motivation and Requirements
	Running Example
	Example Design Analysis
	Summary

	An Open Framework for Context-Aware Aspects
	Why a Framework Approach?
	Background on Reflex
	Context Definition Framework
	Context Restriction Framework
	User-Defined Extensions
	State Exposure and Parameterization
	More Extensions

	Related Work
	Conclusion

