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ABSTRACT

Knowledge tracing (KT) refers to the problem of predicting future

learner performance given their past performance in educational

applications. Recent developments in KT using �exible deep neural

network-based models excel at this task. However, these models of-

ten o�er limited interpretability, thus making them insu�cient for

personalized learning, which requires using interpretable feedback

and actionable recommendations to help learners achieve better

learning outcomes. In this paper, we propose attentive knowledge

tracing (AKT), which couples �exible attention-based neural net-

work models with a series of novel, interpretable model compo-

nents inspired by cognitive and psychometric models. AKT uses

a novel monotonic attention mechanism that relates a learner’s

future responses to assessment questions to their past responses;

attention weights are computed using exponential decay and a

context-aware relative distance measure, in addition to the sim-

ilarity between questions. Moreover, we use the Rasch model to

regularize the concept and question embeddings; these embeddings

are able to capture individual di�erences among questions on the

same concept without using an excessive number of parameters.

We conduct experiments on several real-world benchmark datasets

and show that AKT outperforms existing KT methods (by up to 6%

in AUC in some cases) on predicting future learner responses. We

also conduct several case studies and show that AKT exhibits excel-

lent interpretability and thus has potential for automated feedback

and personalization in real-world educational settings.
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1 INTRODUCTION

Recent advances in data analytics and intelligent tutoring systems

[32] have enabled the collection and analysis of large-scale learner

data; these advances hint at the potential of personalized learning

at large scale, by automatically providing personalized feedback

[24] and learning activity recommendations [11] to each learner by

analyzing data from their learning history.
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A key problem in learner data analysis is to predict future learner

performance (their responses to assessment questions), given their

past performance, which is referred to as the knowledge tracing

(KT) problem [3]. Over the last 30 years, numerous methods for

solving the KT problem were developed based on two common

assumptions: i) a learner’s past performance can be summarized

by a set of variables representing their current latent knowledge

level on a set of concepts/skills/knowledge components, and ii) a

learner’s future performance can be predicted using their current

latent concept knowledge levels. Concretely, let t denote a set of

discrete time indices, we have the following generic model for a

learner’s knowledge and performance

rt ∼ f (ht ), ht ∼ д(ht−1),

where rt ∈ {0, 1} denotes the learner’s graded response to an as-

sessment question at time step t , which is usually binary-valued

(1 corresponds to a correct response and 0 corresponds to an in-

correct one) and is observed. The latent variable ht denotes the

learner’s current knowledge level and is not observed. f (·) and д(·)
are functions that characterize how learner knowledge dictate their

responses and how it evolves; they are sometimes referred to as the

response model and the knowledge evolution model, respectively.

Earlier developments in KT methods before 2010 can be divided

into two classes. The �rst class centered around the Bayesian knowl-

edge tracing (BKT) method [19, 35] where knowledge (ht ) is a

binary-valued scalar that characterizes whether or not a learner

masters the (single) concept covered by a question. Since the re-

sponse (rt ) is also binary-valued, the response and knowledge evo-

lution models are simply noisy binary channels, parameterized by

the guessing, slipping, learning, and forgetting probabilities. The

second class centered around item response theory (IRT) models

[16] and use these models (especially sigmoidal link functions) as

the response model f (·); learner knowledge level is then modeled as

real-valued vectors (ht ) for questions that cover multiple concepts.

Among these methods, the SPARFA-Trace method [13] used a sim-

ple a�ne transformation model as the explicit knowledge evolution

model д(·). Other methods, e.g., additive factor models [1], perfor-

mance factor analysis [22], the di�culty, ability, and student history

(DASH) model [15], and a few recent methods including knowledge

factorization machines [30] and an extension to the DASH model,

the DAS3H model [2], used hand-crafted features such as the num-

ber of previous attempts, successes, and failures on each concept

in their knowledge evolution model. Methods in both classes rely

on expert labels to associate questions to concepts, resulting in

excellent interpretability since they can e�ectively estimate the

knowledge level of each learner on expert-de�ned concepts.

Recent developments in KT centered around using more sophisti-

cated and �exible models to fully exploit the information contained
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in large-scale learner response datasets. The deep knowledge trac-

ing (DKT) method [23] was the �rst method to explore the use

of (possibly deep) neural networks for KT by using long short-

term memory (LSTM) networks [7] as the knowledge evolution

model д(·). Since LSTM units are nonlinear, complex functions, they

are more �exible than a�ne transformations and more capable of

capturing nuances in real data.

The dynamic key-value memory networks (DKVMN) method

extended DKT by using an external memory matrix (Ht ) to char-

acterize learner knowledge [36]. The matrix is separated into two

parts: a static, “key” matrix that contains the �xed representation of

each concept, and a dynamic, “value” matrix that contains the evolv-

ing knowledge levels of each learner on each concept. DKVMN

also uses separate “read” and “write” processes on this external

matrix for the response and knowledge evolution models; these

processes make it even more �exible than DKT. DKT and KVMN

reported state-of-the-art performance in predicting future learner

performance [9] and have been the benchmark for new KTmethods.

The self-attentive knowledge tracing (SAKT) method [18] is

the �rst method to use attention mechanisms in the context of

KT. Attention mechanisms are more �exible than recurrent and

memory-based neural networks and have demonstrated superior

performance in natural language processing tasks. The basic setup

of SAKT has many similarities to the Transformer model [29], an

e�ective model for many sequence-to-sequence prediction tasks.

However, we observe that SAKT does not outperform DKT and

DKVMN in our experiments; see Section 4 for details. Possible

reasons for this include i) unlike in language tasks where strong

long-distance dependencies between words are more common, the

dependence of future learner performance on the past is likely

restricted to a much shorter window, and ii) the sizes of learner

response datasets are several magnitudes lower than natural lan-

guage datasets and are less likely to bene�t from highly �exible

and large-scale attention models.

More importantly, no existing KT method truly excels at both fu-

ture performance prediction and interpretability. Early KT methods

exhibit excellent interpretability but do not provide state-of-the-art

performance on future learner performance prediction. Recent KT

methods based on deep learning excel at that but o�er limited in-

terpretability. Therefore, these KT methods do not fully meet the

needs of personalized learning, which requires not only accurate

performance prediction but also the ability to provide automated,

interpretable feedback and actionable recommendations to help

learners achieve better learning outcomes.

1.1 Contributions

For the task of predicting the learner’s response to the current ques-

tion, we propose the attentive knowledge tracing (AKT) method,

which uses a series of attention networks to draw connections be-

tween this question and every question the learner has responded

to in the past. We summarize our key innovations below:

(1) Contrary to existing attention methods that use raw question

and response embeddings, we put raw embeddings into con-

text and use context-aware representations of past questions

and responses by taking a learner’s entire practice history into

account.

(2) Inspired by cognitive science �ndings on the mechanisms of for-

getting, we propose a novelmonotonic attention mechanism that

uses an exponential decay curve to downweight the importance

of questions in the distant past. We also develop a context-aware

measure to characterize the time distance between questions a

learner has responded to in the past.

(3) Leveraging the Rasch model, a simple and interpretable IRT

model, we use a series of Rasch model-based embeddings to

capture individual di�erences among questions without intro-

ducing an excessive amount of model parameters.

We conduct a series of experiments on several benchmark real-

world educational datasets comparing AKT to state-of-the-art KT

methods. Our results show that AKT (sometimes signi�cantly) out-

performs other KT methods in predicting future learner perfor-

mance. Further, we perform ablation studies on each of the key AKT

model components to demonstrate their value. We also perform sev-

eral case studies to show that AKT exhibits excellent interpretability

and has the potential for automated feedback and practice question

recommendation, both key requirements of personalized learning1.

2 KNOWLEDGE TRACING PROBLEM SETUP

Each learner’s performance record consists of a sequence of ques-

tions and responses at each discrete time step. For learner i at time

step t , we denote the combination of the question that they an-

swered, the concept this question covers, and their graded response

as a tuple, (qit , cit , r it ), where qit ∈ N+ is the question index, cit ∈ N+
is the concept index, and r it ∈ {0, 1} is the response. Under this
notation, (qit , cit , 1) means learner i responded to question qit on

concept cit correctly at time t . We note that this setup is di�erent

from some prior works on deep knowledge tracing that often ig-

nore the question index and summarize learner performance as

(cit , r it ). This choice was made to avoid overparameterization; see

Section 3.3 for a detailed analysis. In the following discussions, we

omit the superscript i as we discuss how to predict future perfor-

mance for a single learner. Given their past history up to time t − 1

as {(q1, c1, r1), . . . , (qt−1, ct−1, rt−1)}, our goal is to predict their

response rt to question qt on concept ct at the current time step, t .

2.1 Question and Response Embeddings

Following previous work [36], we use real-valued embedding vec-

tors xt ∈ RD and yt ∈ RD to represent each question and each

question-response pair (qt , rt ), respectively. xt characterizes in-

formation about questions, and yt characterizes the knowledge

learners acquire by responding to questions, with two separate

embeddings for correct and incorrect responses, respectively. D

denotes the dimension of these embeddings. Therefore, letQ denote

the number of questions, there are a total of Q question embed-

ding vectors and 2Q question-response embedding vectors. In most

real-world educational settings, the question bank is considerably

larger than the set of concepts and many questions are assigned to

very few learners. Therefore, the majority of existing KT methods

use concepts to index questions to avoid overparameterization; all

questions covering the same concept are treated as a single question.

In this case, qt = ct and Q = C .

1Source code and datasets will be available at https://github.com/arghosh/AKT

https://github.com/arghosh/AKT


3 THE AKT METHOD

The AKT method consists of four components: two self-attentive

encoders, one for questions and one for knowledge acquisition,

a single attention-based knowledge retriever, and a feed-forward

response prediction model; Figure 1 visualizes the AKT method

and its connected components.

We use the two self-attentive encoders to learn context-aware

representations of the questions and responses. We refer to the �rst

encoder as the question encoder, which produces modi�ed, contex-

tualized representations of each question, given the sequence of

questions the learner has previously practiced on. Similarly, we

refer to the second encoder as the knowledge encoder, which pro-

duces modi�ed, contextualized representations of the knowledge

the learner acquired while responding to past questions. Alterna-

tively, we could use raw embeddings of questions and responses

similar to prior work. We found that the context-aware representa-

tion performs better in most datasets. We refer to the knowledge

evolution model as the knowledge retriever, which retrieves knowl-

edge acquired in the past that is relevant to the current question

using an attention mechanism. Finally, the response prediction

model predicts the learner’s response to the current question using

the retrieved knowledge. The AKT method is motivated by three

intuitions rooted in cognitive science and psychometrics; we will

detail these intuitions in what follows.

3.1 Context-aware Representations and The
Knowledge Retriever

As introduced above, we use two encoders in our model. The ques-

tion encoder takes raw question embeddings {x1, . . . , xt } as in-

put and outputs a sequence of context-aware question embed-

dings {x̂1, . . ., x̂t } using a monotonic attention mechanism (de-

tailed in the next subsection). The context-aware embedding of

each question depends on both itself and the past questions, i.e.,

x̂t = fenc1 (x1, . . . , xt ). Similarly, the knowledge encoder takes

raw question-response embeddings {y1, . . . , yt−1} as input and

outputs a sequence of actual knowledge acquired {ŷ1, . . . , ŷt−1}
using the samemonotonic attentionmechanism. The context-aware

embedding of acquired knowledge depend on the learner’s re-

sponse to both the current question and past questions, i.e., ŷt−1 =
fenc2 (y1, . . . , yt−1).

The choice of using context-aware embeddings rather than raw

embeddings re�ects our �rst intuition: the way a learner compre-

hends and learns while responding to a question depends on the learner.

These modi�ed representations re�ect each learner’s actual compre-

hension of the question and the knowledge they actually acquire,

given their personal response history. This model choice is mo-

tivated by the intuition that for two learners with di�erent past

response sequences, the way they understand the same question

and the knowledge they acquire from practicing on it can di�er.

The knowledge retriever takes the context-aware question and

question-response pair embeddings x̂1:t and ŷ1:t−1 as input and
outputs a retrieved knowledge state ht for the current question.

We note that in AKT, the learner’s current knowledge state is also

context-aware since it depends on the current question they are

responding to; this model choice is di�erent from that in most

existing methods, including DKT. We also note that the knowl-

edge retriever can only use information on the past questions, the

learner’s responses to them, and the representation of the current

question, but not the learner’s response to the current question, i.e.,

ht = fkr(x̂1, . . . , x̂t , ŷ1, . . . , ŷt−1). The response prediction model

uses the retrieved knowledge to predict the current response.

3.2 The Monotonic Attention Mechanism

We use a modi�ed, monotonic version of the scaled dot-product

attention mechanism for the encoders and the knowledge retriever.

We start by brie�y summarizing the original scaled dot-product

attention mechanism. Under this framework, each encoder and the

knowledge retriever has a key, query, and value embedding layer

that maps the input into output queries, keys, and values of dimen-

sion Dq = Dk , Dk , and Dv , respectively. Let qt ∈ RDk×1 denote
the query corresponding to the question the learner responds to at

time t , the scaled dot-product attention values αt ,τ are computed

using the softmax function [5] as

αt ,τ = Softmax(
q
⊺

t kτ
√

Dk

) =
exp( q

⊺

t kτ√
Dk

)
∑

τ ′ exp(
q
⊺

t kτ√
Dk

)
∈ [0, 1].

The output of the scaled dot-product attention mechanism is then

given by
∑

τ αt ,τ vτ ∈ RDv×1. kτ ∈ RDk×1 and vτ ∈ RDv×1 denote
the key and value for the question at time step τ , respectively.

Depending on the speci�c component, the output depends either on

both the past and the current (τ ≤ t for the question and knowledge

encoders) or only the past (τ < t for the knowledge retriever).

Both encoders employ the self-attention mechanism, i.e., qt , kt ,

and vt are computed using the same input; the question encoder

uses {x1, . . . , xt } while the knowledge encoder uses {y1, . . . , yt−1}.
The knowledge retriever, on the other hand, does not use self-

attention. As shown in Fig. 1, at time step t , it uses x̂t (the modi�ed

embedding of the current question), {x̂1, . . . , x̂t−1} (the context-
aware embeddings of past questions), and {ŷ1, . . . , ŷt−1} (the

context-aware embeddings of past question-response pairs) as in-

put to generate the query, keys, and values, respectively. We note

that SAKT uses question embeddings for mapping queries whereas

response embeddings for key and value mapping. In our experi-

ments, we have found that using question embeddings for mapping

both queries and keys is much more e�ective.

However, this basic scaled dot-product attention mechanism is

not likely going to be su�cient for KT. The reason is that learning

is temporal and memories decay [21]; a learner’s performance in

the distant past is not as informative as recent performance when

we are predicting their response to the current question. Therefore,

we develop a new monotonic attention mechanism that re�ects our

second intuition: when a learner faces a new question, past experi-

ences i) on unrelated concepts and ii) that are from too long ago are

not likely to be highly relevant. Speci�cally, we add a multiplicative

exponential decay term to the attention scores as:

αt ,τ =
exp (st ,τ )

∑

τ ′ exp (st ,τ ′)
,
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Figure 1: Overview of the AKT method. We use the Rasch model-based embeddings as raw embeddings for questions and responses. The

question and knowledge encoders compute the context-aware representations of questions and responses pairs. The knowledge retriever

uses these representations as input and computes the knowledge state of the learner. For simplicity, we do not show the monotonic attention

mechanism in the encoders. We do not show sublayers either.

with

st ,τ =
exp (−θ · d(t, τ )) · q⊺t kτ

√

Dk

, (1)

where θ > 0 is a learnable decay rate parameter and d(t, τ ) is tem-

poral distance measure between time steps t and τ . In other words,

the attention weights for the current question on a past question de-

pends not only on the similarity between the corresponding query

and key, but also on the relative number of time steps between

them. In summary, our monotonic attention mechanism takes the

basic form of an exponential decay curve over time with possible

spikes at time steps when the past question is highly similar to

the current question. We note that we apply exponential decay to

the attention weights rather than latent knowledge, which is the

common approach in existing learner models (see e.g., [17, 26]).

We note that there are many other possible ways to characterize

the temporal dynamics of attention. First, in language tasks that

attention networks excel at, the temporal dynamics can be mod-

eled using additive positional embeddings or learnable embeddings

[29]. Second, in our monotonic attention mechanism, we can also

parameterize the exponential decay as st ,τ =
q
⊺

t kτ√
Dk

− θ · d(t, τ ).
However, neither of these changes lead to comparable performance

to our chosen model setup; we will compare AKT against its vari-

ants using positional encoding rather than monotonic attention in

our experiments.

A context-aware distance measure. The exponential decay

function decides the rate at which the attention weights decay

as the distance between the current time index and the previous

time indices increase. A straightforward way to de�ne the distance

between two time indices is their absolute value di�erence, i.e.,

d(t, τ ) = |t − τ |. However, this distance is not context-aware and
ignores the practice history of each learner. For example, consider

the two following sequences of concepts a learner practiced on:

Venn Diagram (VD)1,VD2, · · · ,VD8, Prime Numbers (PN)9, PN10

and

PN1,VD2,VD3, · · · ,VD9, PN10,

where the notation “VD2” means that the learner practiced the

concept of Venn Diagram at time step 2. In this example, the learner

answers a question on Prime Numbers at t = 10, i.e., the current

time index, in both of these sequences, but the most recent past

practice on Prime Numbers comes at di�erent time indices. Since

the concepts of Venn Diagram and Prime Numbers are not closely

related, the learner’s previous practices on Prime Numbers is more

relevant to us when predicting their answer to the current practice

question than recent practices on Venn Diagram. In this case, with

the straightforward absolute value di�erence, an exponential decay

curve will signi�cantly reduce the attention weight assigned to the

practice on Prime Numbers at t = 1.

Therefore, we propose the following context-aware distance

measure between time steps d(t, τ ) with τ ≤ t for the exponential

decay mechanism (in the encoders):

d(t, τ ) = |t − τ | ·
t
∑

t ′=τ+1

γt ,t ′,

γt ,t ′ =
exp ( q

⊺

t kt ′√
Dk

)
∑

1≤τ ′≤t exp (
q
⊺

t kτ ′√
Dk

)
, ∀t ′ ≤ t .



For the knowledge retriever, we replace τ ′ ≤ t with τ < t and

t ′ ≤ t with t ′ < t correspondingly. In other words, this context-

aware distance measure uses another softmax function to adjust

the distance between consecutive time indices according to how

the concept practiced in the past is related to the current concept. In

practice, in each iteration during model training, we use the current

AKT model parameters to compute the modi�ed distance measure

and �x it; we do not pass gradients through the distance measure.

Multi-head attention and sub-layers. We also incorporate

multi-head attention which is e�ective in attending to past posi-

tions at multiple time scales [29]. Therefore, we use H independent

attention heads where every head has its own decay rate θ , concate-

nate the �nal output into a (Dv ·H )×1 vector and pass it to the next

layer. This model design enables AKT to summarize past learner

performance at multiple time scales, which bears some similarities

to the multiple time windows in the multiscale context, DASH,

and DAS3H models [2, 15, 21]. We also use several sub-layers, in-

cluding one for layer normalization [14], one for dropout [27], a

fully-connected feedforward layer, and a residual connection layer

[6] in each encoder and the knowledge retriever.

3.3 Response Prediction

The last component of the AKT method predicts the learner’s re-

sponse to the current question. The input to the prediction model

is a vector that concatenates both the retrieved knowledge (the

knowledge retriever output ht ) and the current question embed-

ding xt ; this input goes through another fully-connected network

before �nally going through the sigmoid function [5] to generate

the predicted probability r̂t ∈ [0, 1] that the learner answers the
current question correctly. All learnable parameters in the entire

AKT method are trained in end-to-end fashion by minimizing the

binary cross-entropy loss of all learner responses, i.e.,

ℓ =
∑

i
∑

t −(r it log r̂ it + (1 − r it ) log(1 − r̂ it )).

3.4 Rasch Model-Based Embeddings

As we discussed above, existing KT methods use concepts to index

questions, i.e., setting qt = ct . This setup is necessary due to data

sparsity. Let Q denote the total number of questions and L denote

the number of learners. Inmost real-world learner response datasets,

the number of learner responses is comparable to CL and much

less than QL since many questions are assigned to few learners.

Therefore, using concepts to index questions is e�ective in avoiding

overparameterization and over�tting. However, this basic setup

ignores the individual di�erences among questions covering the

same concept, thus limiting the �exibility of KT methods and their

potential for personalization.

We use a classic yet powerful model in psychometrics, the Rasch

model (which is also known as the 1PL IRT model) [16, 25], to con-

struct raw question and knowledge embeddings. The Rasch model

characterizes the probability that a learner answers a question cor-

rectly using two scalars: the question’s di�culty, and the learner’s

ability. Despite its simplicity, it has shown to achieve comparable

performance to more sophisticated models on learner performance

prediction in formal assessments when knowledge is static [12, 31].

Speci�cally, we construct the embedding of the question qt from

Dataset Learners Concepts Questions Responses

Statics2011 333 1, 223 - 189, 297

ASSISTments2009 4, 151 110 16, 891 325, 637

ASSISTments2015 19, 840 100 - 683, 801

ASSISTments2017 1, 709 102 3, 162 942, 816

Table 1: Dataset statistics.

concept ct at time step t as

xt = cct + µqt · dct ,

where cct ∈ RD is the embedding of the concept this question

covers, and dct ∈ RD is a vector that summarizes the variation in

questions covering this concept, and µqt ∈ R is a scalar di�culty

parameter that controls how far this question deviates from the

concept it covers. The question-response pairs (qt , rt ) from concept

ct are extended similarly using the scalar di�culty parameter for

each pair:

yt = e(ct ,rt ) + µqt · f(ct ,rt ),

where e(ct ,rt ) ∈ RD and f(ct ,rt ) ∈ RD are concept-response em-

bedding and variation vectors. This model choice re�ects our third

intuition: questions labeled as covering the same concept are closely

related but have important individual di�erences that should not be

ignored. This model choice is partly inspired by another work in

fusing KT and IRT models [8].

These Rasch model-based embeddings strike the right balance

between modeling individual question di�erences and avoiding

overparameterization. For the question embeddings, the total num-

ber of embedding parameters in this model is 2CD + Q , which

is slightly more than that in a model that uses concepts to index

questions (CD), but much less than that in a model where each

question is parameterized individually (QD), since C ≪ Q and

D ≫ 1. We further de�ne the concept-response embeddings as

e(ct ,rt ) = cct + grt , where g1 and g0 denote the embeddings for

correct and incorrect responses (regardless of the concept), respec-

tively. Therefore, we only introduce a total of (C + 2)D + Q new

embedding parameters instead of 2CD + Q new parameters for

the concept-response embeddings. We note that our question and

question-response embeddings share a group of parameters (cct );

this setting is di�erent from existing neural network-based KT

methods where the two are independent of each other. These com-

pact embedding representations signi�cantly reduce the number

of parameters in not only AKT but also some other KT methods,

leading to improved performance on future learner performance

prediction; see Table 5 for details.

4 EXPERIMENTAL RESULTS

In this section, we detail a series of experiments we conducted to

test on several real-world datasets. We evaluate AKT both quantita-

tively through predicting future learner responses and qualitatively

through a series of visualizations and case studies.

4.1 Experimental Setup

Datasets.We evaluate the performance of AKT and several base-

lines on predicting future learner responses using four benchmark



Dataset BKT+ DKT DKT+ DKVMN SAKT AKT-NR AKT-R

Statics2011 ∼ 0.75 0.8233 ± 0.0039 0.8301 ± 0.0039 0.8195 ± 0.0041 0.8029 ± 0.0032 0.8265 ± 0.0049

ASSISTments2009 ∼ 0.69 0.817 ± 0.0043 0.8024 ± 0.0045 0.8093 ± 0.0044 0.752 ± 0.004 0.8169 ± 0.0045 0.8346 ± 0.0036

ASSISTments2015 0.731 ± 0.0018 0.7313 ± 0.0018 0.7276 ± 0.0017 0.7212 ± 0.002 0.7828 ± 0.0019

ASSISTments2017 0.7263 ± 0.0054 0.7124 ± 0.0041 0.7073 ± 0.0044 0.6569 ± 0.0027 0.7282 ± 0.0037 0.7702 ± 0.0026

Table 2: Performance of all KT methods on all datasets in predicting future learner responses. AKT (sometimes signi�cantly) outperforms all

baseline methods on all datasets. Best models are bold, second best models are italic.

datasets: ASSISTments2009, ASSISTments2015, ASSISTments20172,

and Statics2011.3 The ASSISTments datasets were collected from

an online tutoring platform; in particular, the ASSISTments2009

dataset has been the standard benchmark for KT methods over the

last decade. The Statics2011 dataset was collected from a college-

level engineering course on statics. On all these datasets, we follow

a series of standard pre-processing steps in the literature. For the

ASSISTments2009 dataset, we remove all interactions that are not

associated to a named concept. For the ASSISTments2015 dataset,

we remove all interactions where the “isCorrect” �eld is not 0 or 1.

We list the numbers of learners, concepts, questions, and question-

response pairs in Table 1. Out of these datasets, only the ASSIST-

ments2009 and ASSISTments2017 datasets contain question IDs;

therefore, the Rasch model-based embeddings are only applicable

to these two datasets.

Baseline methods and evaluation metric.We compare AKT

against several baseline KT methods, including BKT+ [35], DKT,

DKT+ (which is an improved version of DKT with regularization

on prediction consistency [34]), DKVMN [36], and the recently

proposed self-attentive KT (SAKT) method [18], which uses an

attention mechanism that can be viewed as a special case of AKT

without context-aware representations of questions and responses

and the monotonic attention mechanism. We use the area under

the receiver operating characteristics curve (AUC) as the metric to

evaluate the performance of all KT methods on predicting binary-

valued future learner responses to questions.

Training and testing. For evaluation purposes, we perform

standard k-fold cross-validation (with k = 5) for all models and

all datasets. Thus, for each fold, 20% learners are used as the test

set, 20% are used as the validation set, and 60% are used as the

training set. For each fold, we use the validation set to perform

early stopping and tune the parameters for every KT method.

We truncate learner response sequences that are longer than 200,

following [23, 36], for computational e�ciency reasons. If a learner

has more than 200 responses, we break up their entire sequence

into multiple shorter sequences. We use the Adam optimizer to

train all models [10] with a batch size of 24 learners to ensure that

an entire batch can �t into the memory of our machine (equipped

with one NVIDIA Titan X GPU). We implement all versions of AKT

in PyTorch; We also re-implement DKT, DKT+, and SAKT, since

including question IDs requires new dataset partitions and leads

to new experimental results. We use the Xavier parameter initial-

ization method [4] for AKT, DKT, DKT+, and SAKT; for DKVMN,

2The ASSISTments datasets are retrieved from
https://sites.google.com/site/assistmentsdata/home and
https://sites.google.com/view/assistmentsdatamining/.
3The Statics2011 dataset is retrieved from
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507.

Dataset AKTraw-NR AKT-NR AKTraw-R AKT-R

Statics2011 0.8253 0.8265

ASSISTments2009 0.8082 0.8169 0.8267 0.8346

ASSISTments2015 0.7332 0.7828

ASSISTments2017 0.7066 0.7282 0.7552 0.7702

Table 3: AKT outperforms its variants that do not use contextual-

aware question and response representations.

Dataset SAKT AKT-NRpos AKT-NR�xed AKT-NR

Statics2011 0.8029 0.8196 0.8196 0.8265

ASSISTments2009 0.752 0.7706 0.7708 0.8169

ASSISTments2015 0.7212 0.7271 0.7272 0.7828

ASSISTments2017 0.6569 0.672 0.6722 0.7282

Table 4: AKT signi�cantly outperforms its variants that do not use

monotonic attention.

we follow their work and use samples from normal distributions

to initialize the parameters [36]. We do not re-implement BKT+;

its performance on various datasets is taken from [36]. For most

datasets and most algorithms, one training epoch takes less than

10 seconds. We set the maximum number of epochs to 300.

4.2 Results and Discussion

Table 2 lists the performance of all KT methods across all datasets

on predicting future learner responses; we report the averages as

well as the standard deviations across �ve test folds. AKT-R and

AKT-NR represent variants of the AKT model with and without

the Rasch model-based embeddings, respectively. We see that AKT

(sometimes signi�cantly) outperforms other KT methods on the

ASSISTments datasets while DKT+ marginally outperforms AKT

on the smallest Statics2011 dataset. In general, AKT performs better

on larger datasets; this result suggests that attention mechanisms

are more �exible than recurrent neural networks and are thus more

capable of capturing the rich information contained in large-scale

real-world learner response datasets. On the ASSISTments2015

and ASSISTments2017 datasets, AKT-NR improves the AUC by

6% and 1% over the closest baseline. It performs on-par with the

best-performing baseline on the Statics2011 and ASSISTments2009

datasets. More importantly, on the ASSISTments2009 and 2017

datasets with question IDs, AKT-R signi�cantly outperforms other

KTmethods, by 2% and 6% over the closest baseline, respectively.We

note that DKT outperforms the more advanced DKVMN method in

our implementation. While we are able to replicate the performance

of DKVMN using the same experimental setting [36], we found that

https://sites.google.com/site/assistmentsdata/home
https://sites.google.com/view/assistmentsdatamining/
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507


Dataset DKT DKT-R DKT+ DKT+-R DKVMN DKVMN-R SAKT SAKT-R AKT-NR AKT-R

ASSISTments2009 0.817 0.8179 0.8024 0.8033 0.8093 0.8235 0.752 0.7784 0.8169 0.8346

ASSISTments2017 0.7263 0.7543 0.7124 0.7382 0.7073 0.7628 0.6569 0.7137 0.7282 0.7702

Table 5: The Rasch model-based embeddings (sometimes signi�cantly) improve the performance of KT methods.

DKT performs much better than previously reported in that work.

DKT+ performs on-par with DKT, with minor improvements on

the Statics2011 dataset. We also observe that the RNN-based model,

DKT, outperforms SAKT on all datasets.

Ablation study. In order to justify the three key innovations in

the AKTmethod, context-aware representations of questions and re-

sponses, the monotonic attention mechanism, and the Rasch model-

based embeddings, we perform three additional ablation experi-

ments comparing several variants of the AKT method. The �rst ex-

periment compares AKT-NR and AKT-R using context-aware ques-

tion and response representations (with the question and knowl-

edge encoders) with two variants AKTraw-NR and AKTraw-R; In

these variants, we use raw question and response embeddings as

their representations instead of the context-aware representations

(i.e., without passing them through the encoders). The second exper-

iment compares AKT-NR against several variants without themono-

tonic attention mechanism. These variants include AKT-NRpos,

which uses (learnable) positional encoding to capture temporal de-

pendencies in learner response data and AKT-NR�xed, which uses

(�xed) positional encoding using di�erent frequencies of sine and

cosine functions [29]. The third experiment compares AKT-R with

AKT-NR, DKT, DKT-R, DKT+, DKT+-R, DKVMN, DKVMN-R, SAKT,

and SAKT-R on the ASSISTments2009 and 2017 datasets where ques-

tion IDs are available; DKT-R, DKT+-R, DKVMN-R, and SAKT-R

refer to the DKT, DKT+, DKVMN, and SAKT methods augmented

with the Rasch model-based embeddings as input, respectively.

Table 3 shows the results (only averages and not standard de-

viations across test folds, due to spatial constraints) of the �rst

ablation experiment for the context-aware representations (i.e., the

question and knowledge encoders). On all datasets AKT-R and AKT-

NR outperform their counterparts, AKTraw-NR and AKTraw-R,

which use only a single self-attention mechanism with exponential

decay (i.e., the knowledge retriever). These results suggest that

our context-aware representations of questions and responses are

e�ective at summarizing each learner’s practice history.

Table 4 shows the results of the second ablation experiment for

the monotonic attention mechanism. We see that AKT-NR signi�-

cantly outperforms other attention mechanisms using positional

embeddings, including SAKT, by about 1% to 6% on all datasets. We

postulate that the reason for this result is that unlike in language

tasks where strong long-distance dependencies between words are

more common, the dependence of future learner performance on

the past is restricted to a much shorter time window. Therefore,

using multi-head attention with di�erent exponential decay rates

in the attention weights can e�ectively capture short-term depen-

dencies on the past at di�erent time scales.

Table 5 shows the results of the third ablation experiment for the

Rasch model-based embeddings on the two ASSISTments datasets

where question IDs are available. All baseline KT methods with

DKT DKT+ DKVMN SAKT AKT-NR AKT-R

0.7616 0.7552 0.7556 0.7432 0.7627 0.7866

Table 6: AKT still outperforms other KT methods on the ASSIST-

ments2009 dataset under an alternative experimental setting for

questions tagged with multiple concepts.

the added Rasch model-based embeddings outperform their reg-

ular versions, especially on the ASSISTments2017 dataset. These

results con�rm our intuition that treating all questions covering

the same concept as a single question is problematic; individual

di�erences among these questions should not be ignored as long

as overparameterization can be avoided.

Remark. Our standard experimental setting follows that used

in [23, 36]. In this setting, for questions tagged with multiple con-

cepts (in the ASSISTments2009 dataset), a single learner response

is repeated multiple times, one for each concept. Other works used

di�erent experimental settings for these questions; In [31], the au-

thors removed such questions and as a result, DKT’s performance

dropped to 0.71. In [33], the authors built new concepts for each

combination of co-occurring single concepts and as a result, DKT’s

performance dropped to 0.73. Therefore, we also use an alternative

experimental setting on the ASSISTments2009 dataset. For a ques-

tion tagged with multiple concepts, we average the corresponding

concept embeddings and use them as both input embeddings and

for response prediction. Table 6 lists the performance of all KT

methods on the ASSISTments2009 dataset under this setting. DKT’s

performance dropped to 0.76 using average embeddings, faring

better than settings under [31, 33]. We observe similar performance

drops compared to our standard experimental setting for all KT

methods, while AKT-R still comfortably outperforms all baselines.

4.3 Visualizing Learned AKT Parameters

Monotonic attention. Figure 2 shows the interpretability of-

fered by AKT’s monotonic attention mechanism using the ASSIST-

ments2009 dataset. Figure 2(a) visualizes the attention weights in

the knowledge retriever for one learner as an example; we plot the

attention weights used to predict their performance on 20 consec-

utive practice questions across three attention heads. We see that

each attention head operates on its own time scale: they all have

attention windows of di�erent widths. For example, the second

head is capable of attending to the entire past, up to 20 time steps

(in this example); on the contrary, the third head can only attend to

the immediate past and focuses primarily on the last 3-5 time steps.

This observation suggests that some questions and responses in the

past contain information that is highly predictive of the learner’s

response to the current question; this information can be e�ectively

captured by multiple attention heads with di�erent decay rates.
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Figure 2: Visualizations of (a) attention weights in the decoder of

AKT for three attention heads and (b) attention weights for three

consecutive practice questions for a learner. Concept similarity and

recency are key factor that control the attention weights.

Figure 2(b) visualizes the normalized attention weights in the

knowledge retriever for a single learner for three consecutive time

steps. In the top row, the learner is responding to a question on

Concept 30 at time T after practicing this concept from T − 10 to

T − 5, then taking a break to practice on Concept 42, before coming

back to Concept 30 at time T − 1. We see that AKT predicts their

response to the current question by focusing more on previous

practices on this concept (both in the immediate past and further

back) than practices on another concept also in the immediate past.

In the middle row, the learner switches to practicing on Concept

42 again. Again, AKT learns to focus on past practices on the same

concept rather than the immediate past on a di�erent concept at

times T − 2 and T − 1. In the bottom row, the learner practices on

Concept 42 for the second consecutive time, and AKT shows a sim-

ilar focus pattern to that in the top row, with the roles of Concepts

30 and 42 swapped. These observations suggest that AKT’s mono-

tonic attention mechanism has the potential to provide feedback to

teachers by linking a learner’s current response to their responses

in the past; this information may enable teachers to select certain

questions that they have practiced for them to re-practice and clear

misconceptions before moving on. We also note that AKT, using a

data-driven approach, learns these attention patterns that match

hand-crafted features in existing KT methods (e.g., the number of

total attempts and correct attempts on this concept) [15, 22].

Rasch model-based embeddings. Figure 3 visualizes the

learned Rasch model-based question embeddings for several con-

cepts using t-SNE [28] using the ASSISTments2009 dataset, together

with their empirical di�culties for selected questions (portions of

correct responses across learners). We also highlight the hardest
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Figure 3: Visualization of learned question embeddings with frac-

tion of correct responses among learners for selected concepts.

and easiest question for each concept based on their empirical di�-

culties. We see that questions on the same concept form a curve and

are ordered by their di�culty levels: for the majority of concepts,

questions on one end of the line segment are easy while questions

on the other end are hard. This result con�rms our intuition that

questions from the same concept are not identical but closely re-

lated to each other; this relationship can be well-captured by the

Rasch model using its di�culty parameter.

Concept Question µq
From the list of numbers below, which

number is the largest? 6.7, 6.4, 3.4, 5.1
-0.0397

Ordering

Positive

Decimals

Which of following decimals is the

smallest? 0.107, 0.1889, 0.12, 0.11582
0.0090

Arrange these numbers from least to

greatest. -1/4, 12.1, -1.4, -4/4
0.0279

Steve has a marble jar, that he likes to

randomly select marbles from it to play

with. The jar has 5 orange marbles and 5

purple marbles. What is the probability

that Steve gets an orange marble from

the jar?

−0.0515

Probability

of a Single

Event

A bag contains 8 red, 5 green, and 7 blue

popsicles. John is going to draw out a

popsicle without looking in the bag.

What is the probability that he will draw

either a green or a blue popsicle?

0.0088

A card is selected at random from a

standard deck of 52 cards. Find the

probability of choosing a club or an ace

card. Enter your answer as a fraction.

0.0548

Convert 7/7 into a percent. -0.0540

Conversion of

Fractions

Convert 8/4 into a percent. 0.0038

Convert 9/8 into a percent. 0.0529

Table 7: Question text and learned di�culty parameters (µq ) for se-

lected questions on three concepts. Learned di�culty levels match

our intuition on the di�culty of these questions.

Table 7 lists sample questions each for three di�erent concepts,

“Ordering Positive Decimals”, “Probability of a Single Event”, and



“Conversion of Fractions to Percents”, and their learned di�culty

parameters. We show three questions for each concept: an easy one,

an average one, and a hard one. Using the “Probability of a Single

Event” concept as an example, the learned di�culty parameter

values (µq ) are −0.0515 for the easy one, 0.0088 for the average one,
and 0.0548 for the hard one. These learned di�culty levels match

our understanding about the di�culty levels of these questions.

These results suggest that AKT has the potential to be applied

in real-world educational settings. Using the estimated di�culty

parameters, a computerized learning platform can either i) auto-

matically select questions with appropriate di�culty levels for each

learner given their past responses, or ii) support teachers to adjust

course plans by providing them feedback on question di�culty

levels learned from real data. Therefore, AKT improves over exist-

ing KT methods by not only providing state-of-the-art predictive

performance but also exhibiting interpretability and potential for

personalized learning.

5 CONCLUSIONS AND FUTUREWORK

In this paper, we have proposed attentive knowledge tracing, a

new method for knowledge tracing that relies fully on attention

networks. Our method improves upon existing knowledge tracing

methods by building context-aware representations of questions

and responses, using a monotonic attention mechanism to sum-

marize past learner performance in the right time scale, and by

using the Rasch model to capture individual di�erences among

questions covering the same concept. Experimental results on a

series of benchmark real-world learner response datasets show

that our method outperforms state-of-the-art KT methods and ex-

hibit excellent interpretability. Avenues of future work include i)

incorporating question text to further enhance the interpretability

of question and concept embeddings and ii) testing whether our

method can improve prediction performance on language learning

datasets where memory decay occurs [26].
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Supplementary Material

Parameter tuning. For all methods, we use a two-layer, fully-

connected network for the response prediction model, with 512

and 256 hidden units in the �rst and second layers, respectively.

For AKT, we �x the number of attention heads to H = 8 and use

the same dimension for the queries, keys, and values for each head

in the encoders and the knowledge retriever, i.e., Dk = Dv = D/8
where D is the input embedding dimension. For AKT, we share

the query and key embedding layer in the attention mechanism.

We do not perform grid search over the values of these parame-

ters since the performance of KT methods is insensitive to these

parameters. For all methods, we use {256, 512}, {256, 512}, and
{0, 0.05, 0.1, 0.15, 0.2, 0.25} as values of the input embedding di-

mension, the hidden state dimension, and the dropout rate for the

feedforward network, respectively. We also use {1, 10,∞} as values
of the maximum gradient norm for clipping [20] where∞ means

no gradient norm clipping. For AKT, SAKT, and their variants, we

use {5×10−6, 10−5, 10−4} as values of the learning rate in the Adam

optimizer. For DKT, DKT+, and DKVMN, we use {10−4, 10−3} as val-
ues of the learning rate. Additionally, for DKVMN, we use {20, 50}
as values of the memory size parameter, following [36]. For DKT+,

we use {0.1, 0.2}, {0.3, 1}, and {3, 30} as values of the reconstruc-
tion regularization, the ℓ1-norm penalty, and the ℓ2-norm penalty

parameters, respectively, following [34].
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