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Figure 1: Our context-aware framework performs the assessment and labeling of images in photo collections by considering

image quality in the context of the collection as well as photos captured in the same scene. (a) Extract from a photo collection

and visualization of clustering. (b) Photos captured in the same scene and close-ups of image details. (c) Top: image labeling

obtained from independent assessment. Bottom: labels assigned after our context-aware adaptation of the independent score.

ABSTRACT

To ensure that all important moments of an event are represented

and that challenging scenes are correctly captured, both amateur

and professional photographers often opt for taking large quantities

of photographs. As such, they are faced with the tedious task of

organizing large collections and selecting the best images among

similar variants. Automatic methods assisting with this task are

based on independent assessment approaches, evaluating each im-

age apart from other images in the collection. However, the overall

quality of photo collections can largely vary due to user skills and

other factors. In this work, we explore the possibility of context-

aware image quality assessment, where the photo context is defined

using a clustering approach, and statistics of both the extracted

context and the entire photo collection are used to guide identifica-

tion of low-quality photos. We demonstrate that our method is able

to flexibly adapt to the nature of processed albums and to facilitate

the task of image selection in diverse scenarios.

KEYWORDS
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1 INTRODUCTION

With digital photography and low storage costs, users have the

ability to capture many photos of the same scene, object or event

with little overhead in terms of cost or effort – an estimated 1.1

trillion photos were captured in 2016 alone1. However, this increase

in the number of photos captured, brings a significant overhead in

the time and effort necessary for organizing one’s photo collections,

and eventually selecting which images to keep or reject.

This task is commonly addressed with individual image aes-

thetics assessment approaches, where an input image is evaluated

irrespective of its context [Chang et al. 2016; Datta et al. 2006; Lu

et al. 2014; Luo and Tang 2008; Mavridaki and Mezaris 2015; Redi

et al. 2015; Tang et al. 2013]. However, these approaches often tend

to be modeled over average user preferences, extracted from a vast,

generic range of content, thus diminishing the subjective aspect of

selection and neglecting the context of other photos present in the

same collection.

Generally, as a pre-selection step, users tend to remove clearly

flawed photos, such as for example blurred or wrongly exposed

ones, to facilitate the subsequent step of subjective selection, where

aspects related to the depicted scene or people present in the photo

1http://blog.infotrends.com/?p=21573

http://blog.infotrends.com/?p=21573


Figure 2: An overview of our context-aware framework. (a) An independent image assessment is performed based on the

selected quality criteria. (b) Using computed SIFT matches and time stamps, photos are clustered in a hierarchical manner. (c)

Obtained clustering is used to define the context for each photo and create the context-aware visualization of the collection.

(d) An independent image score is re-estimated for the three context levels, leading to a final scoring and labelling of the photo

collection.

are assessed. Detection of such low-quality photos is generally

assumed to be an objective process that can be performed on each

image independently.

Nevertheless, users implicitly consider the characteristics of the

entire collection, as well as surrounding photos, to make a deci-

sion for a particular image. For example, photos taken by a non-

experienced user with a smartphone camera might present more

blur and other artifacts, compared to photos acquired by a profes-

sional photographer in a studio. In a non-professional scenario, the

user is likely to keep the best photos of their collection as a repre-

sentation of an event, even if they are not objectively perfect photos.

As an opposite example, pre-selection of sharp photos taken in a

professional photo session presents stricter quality requirements,

especially when numerous similar photos from the same scene are

available. Regardless of the user skills and collection characteristics,

if many photos of a particular object, landscape or moment are

available, the user might apply stricter criteria to select whether to

keep each instance or not. At the same time, they might be more

lenient in their decision if only a single version is available. There-

fore, the notion of quality context is important, and computation

of context characteristics should be considered in the process of

photo pre-selection.

To that end, we propose a novel framework that facilitates the

process of photo pre-selection by evaluating image quality in the

context of the collection in which it belongs and the relevant photos

captured in the same scene. Given a collection of photos, originat-

ing from the same user and equipment, and representing a single

event (e.g. trip, holiday, party, wedding), we employ a hierarchical

clustering approach to organize collection into similarity-based

clusters and define the context of each image.

This clustering, in addition to offering a convenient structure for

browsing photos, also provides the context in which quality may

be evaluated, using any desired criteria. The context is modeled on

three levels, with the following intuition behind each level:

(1) Collection level statistics can be used to reflect the fea-

tures of the capturing devices and skills of a photographer.

(2) Scene level statistics focus on images of the same gen-

eral scene but not necessarily completely overlapping, and

aim to reflect environment properties, such as influence of

illumination.

(3) Near-duplicate level information focuses on images that

depict the same scene or object with minor variations due

to occasional user mistakes and other arbitrary changes

between similar images.

Using the obtained context information, an independent quality

score is adapted according to surrounding photos and transformed

into a user friendly selection label. For demonstrating our frame-

work, we focus on sharpness as the quality criterion, however our

system can be extended to include further assessment criteria. Fig.2

shows an overview of our clustering and assessment framework.

2 RELATED WORK

Image quality assessment methods aim to automatically evaluate

the visual quality of an image based on particular criteria. The
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majority of existing approaches is represented by machine learn-

ing based solutions, where subjective factors (such as image com-

position, color characteristics and scene complexity) are aggre-

gated together with objective metrics (such as sharpness and scene

exposure metrics) [Chang et al. 2016; Datta et al. 2006; Lu et al.

2014; Luo and Tang 2008; Mavridaki and Mezaris 2015; Tang et al.

2013]. At the same time, the evaluation of particular aspects of low-

quality pictures is reflected in more specialized research. Detection

of blurred photos is often performed using wavelet transform based

approaches [Tong et al. 2004; Yan Ke et al. 2006], or by comput-

ing blur likelihood over local image windows in Fourier domain

[Chakrabarti et al. 2010; Mavridaki and Mezaris 2014]. Exposure

artifacts, such as over-exposure, are usually detected using straight-

forward approaches based on average intensity information [Datta

et al. 2006] or image histograms statistics [Redi et al. 2015].

Whether relying on specific criteria or a combination of multiple

factors, most methods assess general image quality or particular

defects by analyzing each image independently, and not considering

the individual preferences, the photographer’s skills, the capturing

environment, or the camera properties.

To encode personal preferences in the context of aesthetic im-

age assessment, Yeh et al. [2010] proposed a photo ranking system

combining general aesthetics features with personal preferences,

which are manually defined or learned from a chosen photo exam-

ple. In the work of Bychkovsky et al. [2011], an extensive dataset

of photo pairs before and after processing by different professional

retouchers was created. Based on this dataset, a tone style adjust-

ment model was learned, which could be adapted to a particular

user using a small set of training photos.

The described preferences-based approaches perform the anal-

ysis of photos independently, where the information about other

photos, captured in the same conditions, is not taken into consid-

eration. The knowledge of the photo context – characteristics for

the entire album and specific scenes – could potentially assist the

process of automatic photo assessment and selection, even without

explicit user modeling.

To extract this necessary context information, we need to find

natural boundaries between different captured scenes within a col-

lection, which can be achieved using clustering methods. Photo

album clustering is typically obtained using temporal [Cooper et al.

2005; Platt et al. 2003] or similarity [Ceroni et al. 2015; Chu and

Lin 2008; Loui and Savakis 2003] information. Among clustering

approaches, hierarchical clustering takes a prominent place. As it

does not require a pre-defined number of clusters, it is versatile in

its application and suitable for different types of data, and, in par-

ticular, images. Hierarchical clustering is often applied for creating

tree-like representations for image browsing, for example based on

color histogram similarities [Krishnamachari and Abdel-Mottaleb

1999] or on geo-location information [Epshtein et al. 2007]. In our

proposed method we also rely on hierarchical clustering, but, in

contrast to previous methods, our clustering approach is based on

similarity computed from matches defined over SIFT descriptors.

More importantly, instead of a typical tree-like browsing structure,

we obtain a flat representation of the entire collection, which can

serve as a convenient way of image browsing (which is demon-

strated in Section 4.4).

Collection clustering and quality assessment may also be per-

formed in conjunction, either in an independent manner [Loui and

Savakis 2003] or by considering both tasks simultaneously [Ceroni

et al. 2015]. In the latter case, in the method of Ceroni et al., a set

of features is accumulated on intra- and inter-cluster levels, and a

final decision to keep or not to keep a particular photo is obtained

using a machine learning system. Although some of their features

depend on the clustering, their method does not perform adaptive

per-album and per-cluster evaluation, but rather learns a binary

classifier that reflects a model learned over numerous non-related

albums and users. Another approach for context-aware selection

was recently introduced by Chang et al. [2016], where pairwise

comparisons are performed within photo series of similar (near-

duplicate) photos using deep convolutional neural networks, to

obtain a relative ranking of images. This method demonstrates

impressive results, however it is limited to ranking and selecting

among small sets of nearly identical photographs, although their

approach also presents a potential for further extension to handle

complete collections.

In contrast, in our framework we consider the complete collec-

tion as well as different levels of image context simultaneously.

By performing hierarchical similarity clustering, the necessary

multi-level context is obtained, which gives an intuitive collec-

tion representation and provides a base for adaptive image scoring

and labeling. While several previous methods are based on a pre-

defined criteria for image quality assessment, in our work we opt

for a more flexible approach that can adapt any image quality cri-

teria to consider the context of each photo. This way, our method

can provide the evaluations that are closer to user’s expectations.

3 CONTEXT-BASED ASSESSMENT

3.1 Method Overview

The goal of our framework is to simultaneously organize and as-

sess the quality of photographs belonging to a photo collection by

considering not only each image independently but also its sur-

rounding context. To achieve this, our approach consists of the

following stages, which are illustrated in Fig.2.

First, for each image, an independent image quality score is

computed based on the selected quality criteria (Fig.2a). Second,

an input collection is grouped into temporal windows, and then

each temporal window is hierarchically clustered into scene-level

clusters and near-duplicate clusters (Fig.2b). These clusters are used

to define the similarity-based context of each image and create

the intuitive collection visualization through the context-aware

representation (Fig.2c).

The per-image independent quality score computed initially is

then re-estimated for the three context levels, defined by collection,

scene-level and near-duplicate level statistics (Fig.2d). Finally, the

weighted sum of context-based scores for different levels is used

to obtain a global scoring and subsequent labeling of each image,

flagging images as Accept, Reject or Maybe, similar to common

photo editing workflows.

We have opted to demonstrate our framework using sharpness

as the underlying image quality criterion. Accordingly, a photo

is suggested to be removed when its sharpness is not sufficient

(or, in other words, a photo is too blurred) in the context of the

3



Figure 3: Demonstration of our similarity-based hierarchical clustering on an example set of six images. (a) Similarity distance

matrix between each pair of images. Crosses indicate that nomatches between images are found. (b) Dendrogram of hierarchi-

cal clustering based on similarity distances. Cuts at specific height (corresponding to the similarity distance) produce clusters

grouped by different levels of similarity. (c) Output of clustering. The images are clustered into two scenes (yellow borders),

where two images from the second scene (5 and 6) are grouped into near-duplicates cluster (red borders). Image credits: INRIA

Holidays dataset [Jegou et al. 2008].

collection. Among the criteria leading to image rejection, blur in

its different forms is one of the most important factors [March-

esotti and Perronnin 2013; Wolters et al. 2014], as it can affect both

professional and amateur photographs and it is hard to remove

in post-processing. At the same time, the sharpness requirements

largely vary depending on content type and user intentions, hence

the need for context-aware adaptation.

Our framework can be adapted to other independent metrics or

extended to include multiple factors, such as exposure issues or

noise. In effect, any existing method can be used to obtain initial

independent image quality scores, as long as the scores provided

are defined within a limited range of values (e.g. 0 to 1, not 0 to

infinity).

3.2 Independent Image Quality Score

Existing techniques are capable of assessing sharpness or blur in

individual images, but they cannot be easily adapted to the nature of

particular collections. For example, a collection captured in difficult

illumination conditions by an amateur photographer might exhibit

a large number of blurred photos. However, typical blur assessment

methods are pre-trained on a wide range of photos, thus they can

underestimate and reject many photos in a low-quality collection.

In our method, we use a traditional blur assessment method as an

initial quality estimator for each image, and adapt its result to the

particular context at a later stage.

We adopt the wavelet-based blur detection by Tong et al. [2004].

The Haar wavelet transform is applied to an image, and edge maps

Ei are generated on three scales, using the pyramid images LH

(vertical details), HL (horizontal details), and HH (diagonal details):

Ei =

√

LH2
i + HL2i + HH2

i (i = 1, 2, 3). (1)

Non-maximum suppression is applied to process all maps into

the equivalent scale, using scale-dependent local windows. Depend-

ing on the edge properties across scales, each pixel is assigned an

edge or non-edge value, and each edge pixel is further assigned

one of four edge structure types: Dirac-structure, Roof-structure,

Astep-structure and Gstep-structure. In particular, Dirac-structure

and Astep-structure pixels are considered sharp (as they tend to

disappear in presence of blur), and their total number Nda , along

with the total number of edge pixels Nedдe is used to compute a

final sharpness score:

sI =
Nda

Nedдe
. (2)

The obtained sharpness score is used as an individual image score

in our approach. Sharpness histograms for three different photo

collections are shown in Fig. 4. Context-based adaptation of the

obtained score is described in Section 3.4.

3.3 Context Extraction by Hierarchical
Clustering

After individual image quality scores are obtained, they can be

adapted to the context of each image. This allows our framework to

consider the quality of the image in relation to images surrounding

it (same scene, taken at a similar time and so on). In this section,

we describe how the context of each image is determined. As a first

step, the entire collection is organized into time-based groups. Then,

inside each time group, a hierarchical tree is constructed, using

the proposed image similarity metric. Finally, each time group is

clustered into two levels: scene level and near duplicate level, which

group the photos according to the visual similarity between them.

Time-based Grouping. As an input collection can span a large

time range, varying from several minutes to days, we first split the

entire collection into sequential temporal windows, to facilitate fur-

ther similarity context extraction. Based on the photo time stamps,

temporal windows are computed using the solution by Platt et al.

[2003]. In their method, temporal window boundaries are created

when a time gap дN between two images (at the position N ) ex-

ceeds the time gap average across neighboring images, satisfying
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the following condition:

loд(дN ) ≥ K +
1

2d + 1

d
∑

i=−d

loд(дN+i ), (3)

where the parameters are set by the authors as K = loд(17) and

d = 10.

Time stamps for this analysis are extracted from EXIF data, typi-

cally available for most photographs. If no reliable timestamps are

available, the complete collection is considered as a single temporal

window in further analysis.

Similarity-based Distance. Each obtained temporal window is

further clustered in a hierarchical manner, providing scene-level

clusters and near-duplicate clusters of images. Before clustering, a

similarity-based distance metric is computed between all images.

Our distance metric is based on the SIFT features [Lowe 1999],

due to their advantage in identifying the image matches even in

presence of distortions (which often appear in the series of similar

photos). For each pair of images within a temporal window, two

sets of SIFT descriptors are compared using the Euclidean distance.

Given a pair of images I and J , the number of matching descrip-

tors [Lowe 1999] is computed in both directions:mI→J andm J→I .

Then, our distance between a pair of images is given by:

d(I , J ) =
10

M(I , J ) · P(I , J )
, (4)

whereM(I , J ) is the average of number ofmatches (mI→J+m J→I )/2,

and P(I , J ) is a measure of pair matches consistency, defined as:

P(I , J ) =
min(mI→J ,m J→I )

max(mI→J ,m J→I )
. (5)

The nominator in Eq.(4) is set to 10, to scale the output distance

to approximately a 0-1 range for most images.

Based on the computed pair-wise image similarities d(I , J ), we

obtain a similarity distance matrix (an example is shown in Fig.3a).

The distance matrix is computed within each temporal window and

then used to perform hierarchical agglomerative clustering [Everitt

et al. 2011].

Hierarchical Tree Construction. We chose the hierarchical clus-

tering approach, as it does not require a pre-defined number of

clusters, and it allows to create a specific cluster structure, where

clusters of different similarity are enclosed into each other, as it ex-

plained below. Such structure allows to reflect natural organization

of photos, where photos are usually considered in connection with

similar photos from the same scene.

Using the similarity distances computed in the previous step, the

clustering is performed in a bottom-up approach, where each image

initially belongs to a cluster containing only the image itself. At

each step, the two clusters with the lowest similarity distance are

merged together into a new cluster. The distance between single-

image clusters can be directly retrieved from the similarity distance

matrix. The distance between two clusters with multiple images

C1 and C2 is defined as the shortest distance over all possible pairs

of images, where one image from a pair belongs to the cluster C1

and another image belongs to the cluster C2 (this way of cluster

merging is also known as the single-linkage criteria).

The merging process continues recursively until only a single

cluster is left, where all clusters are merged together into one hier-

archical binary tree. It is worth noting that in our case there will

be pairs of images with no matches present between them, thus

leading to infinite similarity distance (denoted as X in Fig.3a). In

this case, the merging stops when one cluster is achieved or when

the distance between all remaining clusters is infinite. Thus, it is

possible to obtain multiple, unconnected hierarchical trees. An ex-

ample of such case is demonstrated in Fig.3b, where two trees are

obtained, due to the absence of similarity between the two scenes.

Note that the depth of branches in the hierarchical tree corresponds

to the similarity distances between the two connected clusters.

Tree Cutting. After the hierarchical tree is created, it can serve

to partition images into final clusters corresponding to different

levels of similarity. To achieve this, the hierarchical tree can be

cut at different levels, where the tree is traversed from top to the

bottom, and all connected nodes below a particular cut level are

assigned a single cluster. To obtain scene-level and near-duplicate

clusters, the tree is cut at two levels of similarity distance, using cut

thresholds cND and cSC , where cND < cSC , as the near-duplicate

clusters with higher similarity should be enclosed into the scene-

level clusters. As a result of the conducted experiments, the cut

thresholds were set as cSC = 1 and cND = 0.15, since we found

that these distances lead to a clear separation into scene-level and

near-duplicate groupings for all collections tested. A visualization

of the tree cuts and resulting clusters is given in Fig.3b-c.

3.4 Context-based Photo Scoring and Labeling

The final step of our framework is the adaptation of individual image

scores computed in Section 3.2, according to the context extracted at

different levels (Section 3.3). The context of each image is defined on

three levels: collection level, scene cluster level and near-duplicate

cluster level. In the following we refer to the three levels using the

C, SC,ND identifiers. To obtain context-dependent image scores,

we utilize the z-score [Kreyszig 2007] (based on the assumption

that the independent scores follow Gaussian distribution), which

can be computed from the independent image score sI as follows:

zIL =
sI − µL

σL
, (6)

where µL is a mean of quality scores on the level L ∈ C, SC,ND,

and σL denoting a standard deviation on the level L. It is worth

pointing out, that each image belongs to only one cluster from each

level (it can be observed in Fig. 4).

The intuition behind the z-score is that it normalizes score values

around the mean value of the corresponding level, therefore adapt-

ing to its quality statistics. Examples of collection-level distributions

are shown in Fig. 4, showing the necessity of such adaptation: over-

all sharpness can vary significantly across different collections.

In this manner, a z-score is computed on three levels, where each

level provides an estimation how good the photo in the context of

entire collection, its containing scene and among very similar near-

duplicate photos. If the image is unique at its level (for example,

no other similar photos have been taken in the same scene), then

no other images are available for the computation of the statistics

information, and we consider its z-score as undefined.
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The global score ZI of an image is computed by considering the

z-scores computed previously at each context level:

ZI =
zIC + zISC + zIND

nz
, (7)

where zIC is an image score on the collection level, zISC is a scene

level score, zIND
is a near-duplicates level score, and nz is the

number of defined z-scores for this image (number of non-singleton

clusters). Undefined z-scores for a given image are set to 0 for this

calculation.

The obtained score can either be used directly for sorting and

displaying the photo collections, or it can be transformed into

user-friendly selection label. To facilitate the process of further

photo selection, we provide users with three types of labels for

each image: Accept, Reject or Maybe. The threshold values for this

output labeling can be determined based on user input, for example,

from the percentage of photos that user wants to keep, or set to pre-

defined values. In our experiments, we define thresholds ZI ≥ 0 for

the label Accept, −0.5 ≥ ZI < 0 for the label Maybe, and ZI < −0.5

for the Reject label. This way the labels reflect the nature of z-

scores, where ZI = 0 corresponds to the mean of the scores across

three levels of the context, and images with scores below zero

are worse quality-wise than other neighboring images from their

corresponding context.

4 EXPERIMENTS

Accept Maybe Reject
Fleiss’ kappa

agreement

Travel collection 46% 26% 28% 0.470

Wedding ceremony 47% 27% 26% 0.423

Professional session 47% 36% 17% 0.172

Sport event 24% 30% 46% 0.336

Halloween party 35% 34% 31% 0.256

Table 1: Dataset characteristics computed from user study

results: label selection percentage and level of agreement be-

tween observers, according to Fleiss’ kappa measure [Fleiss

and Cohen 1973].

To demonstrate the effectiveness of our approach, we have con-

ducted a user study, where people’s pre-selection decisions have

been collected for various types of collections. Then, the obtained

data has been used to verify the benefit of our context-awaremethod

in comparison with independent methods for detection of low qual-

ity images, which do not adapt to the collection properties.

4.1 Dataset

Although a number of image datasets for aesthetic assessment

(with corresponding evaluations by users) is publicly available,

such as the Photo.Net dataset [Datta et al. 2006] or the AVA dataset

[Murray et al. 2012], these datasets are created to address the task of

independent image assessment. Thus each image is given without

any context information about the original collection. Moreover,

these datasets are acquired from photographers’ peer-review social

networks, hence the majority of presented photos are high-quality

post-processed photos, which represent the final outcome of a

photographer’s work.

In our work however, we aim to assess the photos at a very

early stage of pre-selection, when a large collection of photos is

just captured and needs to be organized. The recently proposed

Photo Triage dataset [Chang et al. 2016] partially addresses these

problems, as this dataset contains photos taken by a wide range of

users and is organized into series of similar shots from the same

scene. Nevertheless, these photo series still lack the context of

the corresponding containing collections, which better reflect the

overall intentions and skills of a photographer.

Since our approach performs photo evaluation based on multi-

level context rarely available in publicly available datasets, we

decided to evaluate its efficiency with a user study, performed on 5

photo collections of different content type. The first collection con-

sists of travel photos, taken mostly outdoors, with a small number

of low-quality images. The second collection consists of wedding

photos, captured indoors in difficult lighting conditions, and con-

taining a noticeable number of blurred pictures. The third collection

is a photo session conducted by a professional photographer (the

photos are extracted before any processing is applied to them), with

a consistent level of photo quality. The fourth collection covers a

sport event (a volleyball match), where multiple pictures present

motion blur due to the players’ movements. Finally, the fifth col-

lection is taken during a Halloween party and presents cases of

out-of-focus and motion blurred photos. All collections, except the

professional collection, were acquired from the photo albums in

YFCC100m dataset [Kalkowski et al. 2015; Murray et al. 2012]. The

professional photo session is acquired directly from a photographer.

As the initial photo albums are of different size, for our analyzed

collections we extract 100 photos from each album, in their origi-

nal consecutive order, hence keeping the scene context unaltered.

Each image is resized, so that the longest side of the photograph

is 1920 pixels. In this manner, five collections, each of 100 photos,

are created. Example clusters of three collections along with the

statistics on their sharpness level (Section 3.2) can be seen in Fig.4.

4.2 User Study

The user study has been performed with 15 participants (9 male and

6 female), where each participant regularly takes personal photos

in every-day life and is familiar with the task of photo selection and

organization. Two of the participants occasionally use professional

cameras, and can be considered as experts. Every participant was

presented with each of the collections (selected in a random order),

and was given the task of labeling sharp and non-sharp photos.

The user could assign one of three labels: Accept if he considered a

photo sharp enough to keep, Reject if a photo was too blurry and not

worth keeping, and Maybe if a photo was not absolutely sharp but

still worth keeping or if they could not otherwise make a decision.

A user could freely browse through the entire collection during

the labeling process, as in a typical real-life selection scenario, and

zoom to view the images at full resolution.

The agreement between observers for each collection is ana-

lyzed using Fleiss’ kappa measure [Fleiss and Cohen 1973]. Detailed
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Figure 4: Visualization of clustering and labeling on example clusters extracted from the test collections. Blue borders indicate

temporal clusters, yellow borders indicate scene level clusters, and red borders indicate near-duplicates clusters. (a) Profes-

sional photo collection with a consistent level of quality. (b) Sport collection containing multiple pictures with motion blur.

(c) Halloween party collection presenting large number of blurred photos, represented by out-of-focus and motion blurred

shots. On the right: histograms of sharpness values corresponding to all photos in the collections containing presented clus-

ters. Image credits: professional photo session provided by Nikolay Kuzovkin, sport event and Halloween party collections

provided under Creative Commons by Flickr user Parker Knight. The travel collection and the wedding ceremony collection

are not demonstrated in the figure, due to copyright restrictions.

results of the assigned labels by participants as well as the corre-

sponding Fleiss’ kappa value for each collection are given in Table 1.

According to the interpretation of Fleiss’ kappa measure, the level

of user agreement ranges from fair to moderate on most of the

collections, with the exception of the professional session, where a

κ = 0.1827 indicates only slight agreement between observers. This

is not a surprising result, as this collection contains very little blur

as well as many repetitive images. This observation was supported

by participants’ feedback as well, many of which mentioned that

they had trouble assessing this particular collection. Given the low

degree of blur as well as the low agreement in this set, it is not

included in further analysis.

4.3 Results and Discussion

To evaluate the performance of the proposed approach, the out-

put labels of our method were compared with the labels given by

each participant in the experiment described above. The metrics

of accuracy, precision, recall and F-measure [Fawcett 2006] were

calculated for each label and user separately, and average values

of these metrics were computed across all participants. The perfor-

mance comparison is given in Table 2. For each metric, a higher

score indicates better performance. Both precision and recall values

are important to estimate the correctness of label prediction in

our task, therefore the F-measure is a good indicator of the overall

performance, since it is computed as the harmonic mean between

precision and recall.

To assess the benefit of our adaptation of quality scores accord-

ing to context, we compare the performance of our solution against

the performance of the original wavelet-based sharpness estimation

method by Tong et al. [2004], which performs image assessment

in an independent manner, i.e. without considering the image con-

text. To obtain labels for each photo according to the method of

Tong et al., the sharpness output of their method was thresholded.

The thresholds were estimated as follows: sharpness scores were

computed and averaged over 1600 different images, leading to an

average score of 0.34. Half a standard deviation (σ/2 = 0.1) was

considered above and below this average, obtaining the following

thresholds and corresponding labels: an image is labeled as Reject

if sharpness sI < 0.24, Maybe if 0.24 ≤ sI ≤ 0.44, and Accept if

sI > 0.44. Then, for the obtained labels, the same performance

metrics are computed.

As shown in Table 2, the adaptation of image quality scores using

our framework offers a significant improvement on all collections

tested, relative to the results obtained with the independent method

of Tong et al. [2004]. In collections containing more challenging

photographs and conditions (Wedding ceremony, Sport event and

Halloween party), our method showed the most improvement. As

these collections no longer fit the implicit criteria of the sharpness

estimation method, falling well below the expected quality, most of

the photos are rejected according to the original non-adapted score.

On the contrary, the user study participants adapt to the album

quality level and the context, and tend to accept even not perfectly
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Travel collection Wedding ceremony Sport event Halloween party

Independent Context-dependent Independent Context-dependent Independent Context-dependent Independent Context-dependent

Accuracy 0.552 0.692 0.479 0.605 0.595 0.568 0.466 0.536

Precision 0.495 0.569 0.228 0.448 0.279 0.452 0.185 0.384

Recall 0.482 0.559 0.431 0.471 0.368 0.463 0.313 0.408

F-measure 0.435 0.560 0.288 0.452 0.297 0.432 0.178 0.387

Table 2: Comparison of labeling performance based on independent blur assessment scores using [Tong et al. 2004] and context-

dependent scores obtained using our approach, for several image collections. Higher value of each measure indicates better

performance, where F-measure can be used as an indicator of the overall performance.

sharp photos that might be important for the coverage of such an

event. Our method manages to adapt to the quality level in a similar

way and provides labeling results, which are more consistent with

the users’ decisions. At the same time, noticeable improvements

were measured even for the travel collection, where overall image

quality was relatively high and few blurry photos were present,

showing the ability of our approach to adapt to the context of each

collection and image.

Additional performance analysis was conducted using receiver

operating characteristic (ROC) curves, which were computed for

each of three labels over the all evaluated collections. The shape

of the curves, shown in Fig.5, as well as the Area Under the Curve

measures, given in Table 3, demonstrate better performance of our

method for each label type. It can be noted that the independent

method tends to correctly identify photos pre-labeled by users for

rejection, while it does not show high performance on two other

labels. This agrees with our intuition that the non-adapted method

is likely to reject the lower quality photos, while users try to find

acceptable photos even among imperfect ones.

Another interesting observation that can be made from the ROC

curves concerns the Maybe labels. Both the independent method

and our context-dependent method suggest performance that is

close to labeling by chance for that label. Indeed, the introduction

of the Maybe labels makes the task of automatic pre-labeling more

challenging. Despite the ambiguity that a Maybe label may intro-

duce, we have opted for including it in our pre-labelling of images

to facilitate the task of the end user. Our approach is aimed as a

pre-process prior to the user’s final selection of images, enabling

them to browse, and decide which images they want to keep or not

more efficiently. Given that our approach relies on objective image

assessment criteria and therefore cannot consider more subjective

preference aspects, using a binary pre-labelling would oblige users

to review all photos for making their final selection. In contrast,

using a Maybe label, allows us to use the more definite Accept and

Reject labels with higher confidence. As such, the end user in this

case would only need to verify images with a Maybe label assigned.

In addition, to demonstrate the flexibility of our framework, we

perform a similar analysis using a second blur assessment method,

namely the approach of Mavridaki et al. [2014]. As their method

relies on an SVM-based classification, we take the probability esti-

mates as an output [Chang and Lin 2011]. For the computed prob-

ability estimates, Pi = 1 indicates that the image is sharp, while

Pi = 0 indicates that the image is blurred. The probability is used as

an independent image quality score, and it is adapted to the context

as described in Section 3. The output photo labeling for this method

was performed in the following way: an image is labeled as Reject

if Pi < 0.4, Maybe if 0.4 ≤ Pi ≤ 0.6, and Accept if Pi > 0.6. Table 4

provides a comparison of the independent and context-dependent

results for the different image collections. Similar to our analysis

using the method of Tong et al., we find that in this case our ap-

proach also improves the initial results and leads to labels that

better correspond to user assessments.

Area Under The Curve

Independent Context-dependent

Accept 0.520 0.643

Maybe 0.499 0.512

Reject 0.629 0.663

Table 3: Area Under the Curve measured for independent

method of Tong et al. [2004] and our context-dependent

method (computed over all collections given in Table 2).

Higher value indicates better performance.

Although our approach shows promising results for many col-

lections, there are some challenging cases that merit future study.

First, even aided by the context, our method largely depends on

the independent score used as an initial quality estimator. In the

demonstrated sharpness-based example framework, it is not un-

common that the sharpness estimation method itself fails and pro-

vides a wrong score (for instance, a blurred image can get a high

sharpness score due to the specific nature of blur). In case of such

failure, the context-based adaptation cannot correct the original

score. Furthermore, an incorrect score assigned to one image from

a multiple-images cluster can negatively affect score adaptation

for the surrounding images. As a second challenge, the context ex-

traction by clustering can be unreliable in some conditions. Photos

of low quality, especially captured in low-light conditions, often

lack reliable information for the SIFT matching, thus leading to

unreliable clustering and inaccurate context-adaptation as a result.

Finally, we would like to emphasize that our context-adaptive

assessment does not aim to achieve the best results in the task of

blurred image detection itself. Since our adapted scores rely on the

original scores provided by the independent quality assessment
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Figure 5: Receiver operating characteristic (ROC) curves for label prediction by independent method of Tong et al. [2004] and

our context-dependent method (computed over all collections given in Table 2). The closer the curve extends to the top left

corner, the better performance for particular label is achieved. The diagonal line represents performance of random labeling.

method used in each case, they are implicitly dependent on the

effectiveness of the image quality criterion chosen. The flexibility

of our framework however, allows for different criteria to be used

interchangeably.

F-measure

Independent method

by Mavridaki et al. [2014]

Context adaptation

by our method

Travel collection 0.5444 0.5462

Wedding ceremony 0.5459 0.5771

Sport event 0.3735 0.4459

Halloween party 0.2562 0.4472

Table 4: Performance of the labeling obtained with indepen-

dent blur estimationmethod byMavridaki et al. [2014], com-

pared with the results obtained using context-adaptation by

our approach.

4.4 Implementation & Visualization

In addition, we would like to discuss a few aspects of our results

visualization, which provides a user-friendly way of viewing the

photo collection.

Previous approaches that rely on hierarchical clustering for or-

ganizing photographs present images in a tree browsing structure,

where one representative image replaces the contents of the cluster

[Epshtein et al. 2007; Krishnamachari and Abdel-Mottaleb 1999].

However, in the typical photo viewing and managing software (e.g.

Picasa, Lightroom) flat representations are preferred, with flags and

other identifiers used to label photographs.

With our approach, we construct a flat representation and rely

on enclosing borders to identify clusters at different context levels

(temporal, scene-level, near-duplicate), as shown in Fig.4. The se-

lection labels can be assigned to images, similar to decision flags in

popular photo management software, allowing the user to quickly

understand the structure of their collection and perform their final

decision, without having to navigate several levels within a tree

structure.

The cluster-based context visualization of collections is imple-

mented in a form of auto-generated HTML pages, which show

image thumbnails with suggested labels, in a manner similar to

image browsers (examples are shown in Fig.4). The HTML page

can be freely browsed and zoomed without affecting the frames

delimiting photo clusters.

Our complete solution was implemented in Matlab, and timings

for processing photo collections were measured on an Intel Core i7

PC 2.80 GHz with 16 GB RAM, running Windows 7 64-bit. Using

our current framework, a collection of 100 images of HD resolution

can be fully processed in about 90 seconds, with a linear growth

to 460 seconds for 500 images. The clustering step takes around

40% of the execution time, and the sharpness estimation step takes

around 55% of the execution time.

5 CONCLUSION

In this work, we propose a novel context-aware approach of photo

assessment, where an independent image quality metric can be

adapted to the content of an analyzed photo collection. Our ap-

proach extracts the context of each photo by means of hierarchical

clustering, where each level reflects different degrees of similarity

between photos. Along with statistical information, our cluster-

ing method provides a flat collection representation with intuitive

indications of the scene boundaries, which can be used to assist

the user in the task of photo pre-selection. The extracted context

information is used to adapt the initial image quality score for each

level of context and compute a final weighted score for every image,

from which an output photo label is obtained. The conducted ex-

periments demonstrate that we are able to model user pre-selection

behavior, and that the context-adapted score performs significantly

better than the original computed score in the scenarios where

pre-selection decision cannot be made independently.
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We believe that the proposed approach is the first step towards

user-aware photo assessment methods. Modeling the entire spectra

of user preferences is indeed a big challenge, and in this research

we attempt to address one of the multi-dimensional quality aspects.

However, adapting to the collection context already allows us to

model the photographer’s intentions, skills and capturing environ-

ment to some extent. In this work, the three context levels are

considered as equally important. Nevertheless, further study of

the influence of each context level on the final selection of users

could provide useful insights on the relative importance of z-scores

from different levels in the weighting step. Finally, evaluating the

performance of our approach with other image quality assessment

metrics is also an interesting direction for future research, as well

as searching for a solution that would allow us to combine dif-

ferent types of quality scores into a more complete image quality

assessment.
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