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Abstract
Cell interactions determine phenotypes, and intercellular communication is shaped by cellular contexts

such as disease state, organismal life stage, and tissue microenvironment. Single-cell technologies

measure the molecules mediating cell-cell communication, and emerging computational tools can

exploit these data to decipher intercellular communication. However, current methods either disregard

cellular context or rely on simple pairwise comparisons between samples, thus limiting the ability to

decipher complex cell-cell communication across multiple time points, levels of disease severity, or

spatial contexts. Here we present Tensor-cell2cell, an unsupervised method using tensor

decomposition, which is the first strategy to decipher context-driven intercellular communication by

simultaneously accounting for multiple stages, states, or locations of the cells. To do so,

Tensor-cell2cell uncovers context-driven patterns of communication associated with different

phenotypic states and determined by unique combinations of cell types and ligand-receptor pairs. We

show Tensor-cell2cell can identify multiple modules associated with distinct communication processes

(e.g., participating cell-cell and ligand receptor pairs) linked to COVID-19 severities. Thus, we introduce

an effective and easy-to-use strategy for understanding complex communication patterns across

diverse conditions.
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Introduction
Organismal phenotypes arise as cells adapt and coordinate their functions through cell-cell interactions

within their microenvironments1. Variations in these these interactions and the resulting phenotypes can

occur because of genotypic differences (e.g. different subjects) or the transition from one biological

state or condition to another2 (e.g. from one life stage into another, migration from one location into

another, and transition from health to disease states). These interactions are mediated by changes in

the production of signals and receptors by the cells, causing changes in cell-cell communication (CCC).

Thus, CCC is dependent on temporal, spatial and condition-specific contexts3, which we refer to here

as cellular contexts. That is, “cellular contexts” refer to variation in genotype, biological state or

condition that can shape the microenvironment of a cell and therefore its CCC. Under this idea, CCC

can be seen as a function of a context variable that is not necessarily binary and can encompass

multiple levels (e.g. multiple time points, gradient of disease severities, different subjects, distinct

tissues, etc.). Consequently, varying contexts trigger distinct strength and/or signaling activity1,4–6 of

communication, leading into complex dynamics of CCC (e.g. increasing, decreasing, pulsatile and

oscillatory communication activities across contexts). Importantly, unique combinations of cell-cell and

ligand-receptor (LR) pairs can follow different context-dependent dynamics, making CCC hard to

decipher across multiple contexts.

Single-cell omics assays provide the necessary resolution to measure these cell-cell interactions and

the ligand-receptor pairs mediating the CCC. While computational methods for inferring CCC have

been invaluable for discovering the cellular and molecular interactions underlying many biological

processes, including organismal development and disease pathogenesis5, current approaches cannot

account for high variability in contexts (e.g., multiple time points or phenotypic states) simultaneously.

Existing methods lose the correlation structure across contexts since they usually involve repeating

analysis for each context separately, disregarding informative variation across such factors as disease
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severities, time points, subjects or cellular locations7. Additional analysis steps are required to compare

and compile results from pairwise comparisons8–11, reducing the statistical power and hindering efforts

to link phenotypes to the interacting cells and their associated CCC. Moreover, this roundabout process

is computationally expensive, making analysis of large sample cohorts intractable. Thus, new methods

are needed that analyze CCC while accounting for the correlation structure across multiple contexts

simultaneously.

Tensor-based approaches such as Tensor Component Analysis12 (TCA) can deconvolve patterns

associated with the biological context of the system of interest. While matrix-based dimensionality

reduction methods such as Principal Component Analysis (PCA), Non-negative Matrix Factorization

(NMF), Uniform Manifold Approximation and Projection (UMAP) and t-distributed Stochastic Neighbor

Embedding (t-SNE) can extract low-dimensional structures from the data and reflect important

molecular signals13,14, TCA is better suited to analyze multidimensional datasets obtained from multiple

biological contexts or conditions7 (e.g. time points, study subjects and body sites). Indeed, TCA

outperforms matrix-based dimensionality reduction methods when recovering ground truth patterns

associated with, for example, dynamic changes in microbial composition across multiple patients15 and

neuronal firing dynamics across multiple experimental trials12. TCA’s superior performance resides in

that it does not require the aggregation of datasets across varying contexts into a single matrix. It

instead organizes the data as a tensor, the higher order generalization of matrices, which better

preserves the underlying context-driven correlation structure by retaining mathematical features that

matrices lack16,17. Thus, with the correlation structure retained, the use of TCA with expression data

across many contexts allows one to gain a detailed understanding of how context shapes

communication, as well as the specific molecules and cells mediating these processes.

Here, we introduce Tensor-cell2cell, a TCA-based strategy that deconvolves intercellular

communication across multiple contexts and uncovers modules or latent patterns of CCC. These
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data-driven patterns reveal underlying communication changes given the simultaneous interaction

between contexts, ligand-receptor pairs, and cells. We demonstrate that Tensor-cell2cell is broadly

applicable, enabling the study of diverse biological questions about CCC in multiple organisms and

contexts. We first show that Tensor-cell2cell successfully extracts complex temporal patterns from a

simulated dataset. Next, while Tensor-cell2cell introduces the ability to simultaneously analyze any

number of contexts, it can also be used for more simple analyses accessible to other existing tools, so

we compare the computational efficiency and accuracy of existing tools to our method on these more

basic analyses. Through this we show that Tensor-cell2cell is faster, demands less memory and can

achieve better accuracy in separating context-specific information. We further apply it to study the

differences of CCC associated with varying severities of COVID-19 across patients. Notably, our

strategy recapitulates multiple biological features associated with COVID-19 severity, including, for

example, stronger interactions between epithelial and immune cells in more severe cases18. Moreover,

it suggests novel features distinguishing moderate from severe cases, especially in the macrophage

communication with other cells in lungs, predominating signatures of M2-like and M1-like phenotypes,

respectively. Thus, Tensor-cell2cell can be widely applied to any system that involves cell-cell

communication that is expected to change due to context. Its easily interpretable output enables quick

identification of key mediators of cell-cell communication in these contexts, both reproducing known

results and identifying novel interactors.

Results

Deciphering context-driven communication patterns with Tensor-cell2cell

Organizing biological data through a tensor preserves the underlying correlation structure of the

biological conditions of interest12,15,17. Extending this approach to inference of cell-cell communication

enables analysis of important ligand-receptor pairs and cell-cell interactions in a context-aware manner.

Accordingly, we developed Tensor-cell2cell, a method based on tensor decomposition17 that extracts
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context-driven latent patterns of intercellular communication in an unsupervised manner. Briefly,

Tensor-cell2cell first generates a 4D-communication tensor that contains non-negative scores to

represent cell-cell communication across different conditions (Figures 1a-c). Then, a non-negative

TCA19 is applied to deconvolve the latent CCC structure of this tensor into low-dimensional components

or factors (Figures 1d-e). Thus, each of these factors can be interpreted as a module or pattern of

communication whose dynamics across contexts is indicated by the loadings in the context dimension

(Figure 1e).

To demonstrate how Tensor-cell2cell recovers latent patterns of communication, we simulated a system

of 3 cell types interacting through 300 LR pairs across 12 contexts (represented in our simulation as

time points) (Figure 2a). We built a 4D-communication tensor that incorporates a set of embedded

patterns of communication that were assigned to certain LR pairs used by specific pairs of interacting

cells, and represented through oscillatory, pulsatile, exponential, and linear changes in communication

scores (Figures 2a-f; see Supplementary Notes for further details in simulating and decomposing this

tensor). Using Tensor-cell2cell, we found that four factors led to the decomposition that best minimized

error (Supplementary Figure S1a), consistent with the number of introduced patterns (Figure 2f). This

was robustly observed in multiple independent simulations (Supplementary Figure S2a).

Our simulation-based analysis further demonstrates that Tensor-cell2cell accurately detects

context-dependent changes of communication, and identifies which LR pairs, sender cells, and receiver

cells are important (Figure 2g). In particular, the context loadings of the TCA on the simulated tensor

accurately recapitulate the introduced patterns (Figures 2f-g), while ligand-receptor and cell loadings

properly capture the ligand-receptor pairs, sender cells and receiver cells assigned as participants of

the cognate pattern (Figure 2g). Indeed, we observed a concordance between the “ground truth” LR

pairs assigned to a pattern and their respective factor loadings through Jaccard index and Pearson

correlation metrics (Supplementary Tables S1-S2). Moreover, Tensor-cell2cell robustly recovered
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communication patterns when we added noise to the simulated tensor (Supplementary Figure S2 and

Supplementary Notes).

Tensor-cell2cell is fast and accurate

Tensor-cell2cell is the first method for interpreting CCC across multiple conditions or contexts

simultaneously, enabling a wealth of analyses and conclusions inaccessible to any other tools. Most

available tools for inferring intercellular communication are designed to analyze one context at the time,

while a few also allow pairwise comparisons between contexts (Table 1). However, pairwise

comparisons will likely miss insights about changes of intercellular communication across multiple

contexts.

To quantify computational efficiency and accuracy of Tensor-cell2cell, we compared our method to

CellChat10, the only tool that summarizes multiple pairwise comparisons in an automated manner (Table

1). While CellChat cannot extract patterns of CCC across multiple contexts, we instead use the output

of its joint manifold learning on pairwise-based changes in signaling pathways as a comparable proxy

to the output of Tensor-cell2cell. Crucially, Tensor-cell2cell reports behaviors of communication modules

across all contexts simultaneously and associates these modules with specific molecular and cellular

mechanisms, information that CellChat is limited to reporting when comparing just two contexts. Thus,

our comparison of tools is intended to assess running time and memory demand, and each tool’s ability

to identify signals that could separate contexts by measuring the accuracy of a context classifier trained

from each tool output.
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Figure 1. Tensor representation and factorization of cell-cell communication. In a given context (n-th context among N
total contexts), cell-cell communication scores (see available scoring functions in REF5) are computed from the expression of
the ligand and the receptor in a LR pair (k-th pair among K pairs) for a specific sender-receiver cell pair (i-th and j-th cells
among I and J cells, respectively). This results in a communication matrix containing all pairs of sender-receiver cells for that
LR pair (a). The same process is repeated for every single LR pair in the input list of ligand-receptor interactions, resulting in a
set of communication matrices that generate a 3D-communication tensor (b). 3D-communication tensors are built for all
contexts and are used to generate a 4D-communication tensor wherein each dimension represents the contexts (colored
lines), ligand-receptor pairs, sender cells and receiver cells (c). A non-negative TCA model approximates this tensor by a
lower-rank tensor equivalent to the sum of multiple factors of rank-one (R factors in total) (d). Each component or factor (r-th
factor) is built by the outer product of interconnected descriptors (vectors) that contain the loadings for describing the relative
contribution that contexts, ligand-receptor pairs, sender cells and receiver cells have in the factor (e). For interpretability, the
behavior that context loadings follow represent a communication pattern across contexts. Hence, the communication captured
by a factor is more relevant or more likely to be occurring in contexts with higher loadings. Similarly, ligand-receptor pairs with
higher loadings are the main mediators of that communication pattern. By constructing the tensor to account for directional
interactions (panels a-b), ligands and receptors in LR pairs with high loadings are mainly produced by sender and receiver
cells with high loadings, respectively.
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Figure 2. Tensor-cell2cell recovers simulated communication patterns. (a) Cell-cell communication scenario used for
simulating patterns of communication across different contexts (here each a different time point). (b) Examples of specific
ligand-receptor (LR) and (c) cell-cell pairs that participate in the simulated interactions. Individual LR pairs and cell pairs were
categorized into groups of signalling pathways and cell types, respectively. In this simulation, signaling pathways did not
overlap in their LR pairs, and each pathway was assigned 100 different LR pairs. (d) Distinct combinations of signaling
pathways with sender-receiver cell type pairs were generated (LR-CC combinations). LR-CC combinations that were assigned
the same signaling pathway overlap in the LR pairs but not in the interacting cell types. (e) A simulated 4D-communication
tensor was built from each time point’s 3D-communication tensor. Here, a communication score was assigned to each
ligand-receptor and cell-cell member of a LR-CC combination. Each communication score varied across time points according
to a specific pattern. (f) Four different patterns of communication scores were introduced to the simulated tensor by assigning
a unique pattern to a specific LR-CC combination. From top to bottom, these patterns were an oscillation, a pulse, an
exponential decay and a linear decrease. The average communication score (y-axis) is shown across time points (x-axis). This
average was computed from the scores assigned to every ligand-receptor and cell-cell pair in the same LR-CC combination.
(g) Results of running Tensor-cell2cell on the simulated tensor. Each row represents a factor, and each column a tensor
dimension, wherein each bar represents an element of that dimension (e.g. a time point, a ligand-receptor pair, a sender cell or
a receiver cell). Factor loadings (y-axis) are displayed for each element of a given dimension. Here, the factors were visually
matched to the corresponding latent pattern in the tensor.
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Table 1. Methodological strategy and context-based analysis in available tools

Tool Communication
Scorea

Context Evaluation Simultaneous
Contexts

Multimeric
LR pairs

Data
Resolution

Platform Refs.

Tensor-cell2cell Expression Mean
and Expression

Product

Builds a tensor with all
contexts simultaneously

and runs a tensor
decomposition,

accounting for the
correlation structure

across contexts

Unlimitedb Yes Bulk, Single
Cell

Python This
work

CellChat Mass-action-based
probability

Runs separate
analyses of each

context, does pairwise
comparisons and
harmonizes them

through a joint manifold
learning

2 Yes Single Cell R 10

CellPhoneDB Expression Mean None 1 Yes Single Cell Python 20

CellTalker Differential
Combinations

Differential analysis
between two contexts

2 No Single Cell R 8

Connectome Modified
Expression Product

Differential analysis
between two contexts.
An overall analysis of
cell-type importance

can be done for more
contexts

2 No Single Cell R 11

ICELLNET Expression Product None 1 Yes Bulk, Single
Cell

R 21

iTalk Differential
Combinations

Differential analysis
between two contexts

2 No Single Cell R 22

NATMI Expression Product
and Normalized

Expression Product

None 1 No Bulk, Single
Cell

Python 9

NicheNet Personalized-Page
Rank-based score

None 1 No Bulk, Single
Cell

R 23

scAgeCom Geometric Mean Differential analysis
between two contexts

2 Yes Single Cell R 24

scTensor Expression Product None 1 No Single Cell R 25

SingleCellSignalR Regularized
Expression Product

None 1 No Single Cell R 26

a For further details about distinct communication scores, see REF5 and/or respective references for each tool.
b Dependent on computational resources (e.g. memory availability)
LR, ligand-receptor
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We ran Tensor-cell2cell and CellChat on a single-cell transcriptome atlas of peripheral blood

mononuclear cells (PBMCs) from COVID-19 patients with varying severity27 to measure the time and

memory demands of each tool when performing the context-driven CCC analysis (Figures 3a-d).

Considering the number of samples in this dataset, processing time of CellChat scales more rapidly

with the high number of pairwise comparisons. To control this, we varied the number of samples and

performed this benchmarking in two scenarios: 1) by considering every sample individually as a

context, wherein one can obtain sample-specific signatures that may coincide with others of the same

severity (Figures 3a-b), and 2) by considering every severity (control, mild/moderate and severe/critical)

as contexts by aggregating cognate samples (Figures 3c-d), which keeps the number of pairwise

comparisons constant at three comparisons but at the expense of losing sample-specific information.

Tensor-cell2cell performed better in all cases we tested (Figures 3a-d). The most favorable scenario led

to an ~89-fold improvement in running time, which occured when 60 samples were analyzed as

individual contexts and CellChat comparisons were run under the “structural” method (computes a

network topology dissimilarity10). Cases when CellChat performed closer to Tensor-cell2cell were either

when using the “functional” comparison (Figure 3a), which is based on a Jaccard similarity, or when

samples were aggregated into major contexts (Figure 3c); however, the latter demanded substantial

increases in memory usage (Figure 3d). Importantly, this improvement is obtained even though

Tensor-cell2cell runs a brute-force elbow analysis (that is, by computing the error for every rank in a

range of values). In this regard, this step can be either omitted (for example, when a desired number of

factors is used; Supplementary Figure S3) or optimized (for example, when a binary search is used),

multiplying the speed-up we reported here by ~10-fold and ~3-fold, respectively. Remarkably, the

memory usage of Tensor-cell2cell never surpassed 16GB in any of the tested scenarios, even when

using 60 samples as individual contexts (Figure 3b); meanwhile, CellChat surpassed 16GB when

aggregating 12 samples (Figure 3d) or using 24 samples as individual contexts (Figure 3b). Overall,
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Tensor-cell2cell is more efficient in both time and memory, indicating it can more readily be run on

multiple contexts simultaneously in a personal computer or laptop. Moreover, Tensor-cell2cell can run

on a GPU when available, which can substantially improve the computational time of the analysis (up to

19- and 790-fold faster than the “functional” and “structural” methods of CellChat, respectively, when

analyzing 60 PBMC samples).

We next evaluated the accuracy of Tensor-cell2cell and CellChat in classifying individual samples after

predicting context-driven CCC (Figures 3e-h). It is important to consider that the outputs coming from

each tool are extremely different due to the scope of their analyses, so a direct comparison is not

feasible. Hence, we instead used an intermediary approach that uses a classification model to evaluate

how well each tool separates contexts given their outputs. In particular, we measured how well each

tool separates samples by COVID-19 severity (Figures 3e-f) and disease state (Figures 3g-h). For this,

we trained a classifier to predict severity (control, mild/moderate vs severe/critical) and a disease state

(healthy vs COVID-19) in two different COVID-19 datasets, one containing PBMC samples27 and the

other bronchoalveolar lavage fluid (BALF) samples28. We next measured their accuracy with the area

under the receiver operating characteristic curve (AUC). Tensor-cell2cell outperformed CellChat when

classifying PBMC samples by severity (Figure 3e), and performed similarly when classifying samples by

disease state (Figure 3g). Moreover, Tensor-cell2cell performed better than CellChat in all classification

tasks associated with BALF samples (Figures 3f,h). Surprisingly, all methods performed better (highest

AUC) when classifying BALF samples than when classifying PBMC samples, possibly due to a more

evident severity-driven variation of the immune response in the infection site rather than in the

periphery. Thus, these results show that Tensor-cell2cell can successfully find signatures of CCC that

differentiate between contexts in a computationally efficient manner.
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Figure 3. Benchmarking Tensor-cell2cell. (a) Running time of Tensor-cell2cell and CellChat for analyzing CCC when the
contexts correspond to individual patient samples. (b) Memory usage of each method to perform analyses in (a). (c) Running
time of Tensor-cell2cell and CellChat for analyzing CCC when the contexts correspond to COVID-19 severity (individual
samples were aggregated by severity: control, mild/moderate and severe/critical COVID-19). (d) Memory usage of each
method to perform the analyses in (c). In (a) and (c), Tensor-cell2cell was benchmarked when running with or without a GPU,
a feature unavailable in CellChat. In addition, CellChat was benchmarked by using the two approaches it has for pairwise
comparisons (functional and structural similarities, see Methods). (e-h) Receiver operating characteristic (ROC) curves of
random forest models for classifying individual samples from the outputs of Tensor-cell2cell and the two CellChat approaches
(functional and structural). These models predict specific severities of patients (control, mild/moderate or severe/critical) for (e)
PBMC and (f) BALF samples, and disease state (healthy or COVID-19) for (g) PBMC and (h) BALF samples. For each
classifier, the mean (solid line) ± standard deviation (transparent area) of the ROCs were computed from the 3-fold cross
validations.
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Tensor-cell2cell successfully associates differences in intercellular communication with
varying severities of COVID-19

Great strides have been made to unravel molecular and cellular mechanisms associated with

SARS-CoV-2 infection and COVID-19 pathogenesis. Thus, we tested our method on a single-cell

dataset of BALF samples from COVID-19 patients28, to see how many cell-cell and LR pair

relationships in COVID-19, could be revealed by Tensor-cell2cell. By decomposing the tensor

associated with this dataset into 10 factors (Figure 4a and Supplementary Figure S1b), Tensor-cell2cell

found factors representing communication patterns that are highly correlated with COVID-19 severity

(Figure 4c) and other factors that distinguish features of the different disease stages (Supplementary

Figure S4), in both cases consistent with the high performance that the classifier achieved for this

dataset (Figures 3f,h). Furthermore, these factors involve signaling molecules previously linked with

severity in separate works (Supplementary Table S3).

The first two factors capture CCC involving autocrine and paracrine interactions of epithelial cells with

immune cells in BALF (Figure 4a). The sample loadings of these factors reveal a communication

pattern wherein the involved LR and cell-cell interactions become stronger as severity increases

(Supplementary Figure S4). Consistently, a correlation between COVID-19 severity and the airway

epithelium-immune cell interactions has been reported elsewhere18, coinciding with our observation

(Figure 4c). Specifically, epithelial cells are highlighted as the main sender cells in factor 1 (Figure 4a),

involving top ranked signals such as APP, MDK, MIF and CD99 (Figure 4b). These molecules were

reported to be produced by epithelial cells29–35 and participate in immune cell recruiting31–33, in response

to mechanical stress in lungs34 and regeneration of the alveolar barrier during viral infection35.

Importantly, MDK can exacerbate leukocyte recruitment to sites of inflammation36, consistent with the

immune response that Tensor-cell2cell deconvolved in severe COVID-19 patients18,37–39. In addition,

epithelial cells act as the main receiver in factor 2 (Figure 4a), involving proteins such as PLXNB2,

SDC4 and F11R (Figure 4b), which were determined important for tissue repair and inflammation during
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lung injury previously40–42. Remarkably, a new technology for tracing experimentally CCC revealed that

SEMA4D-PLXNB2 interaction promotes inflammation in a diseased central nervous system43; a role

consistent with the pattern in factor 2, which captured this interaction as the top-ranked LR pair

correlating with COVID-19 severity (Figures 4a,b).
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Figure 4. Deconvolution of intercellular communication in patients with varying severity of COVID-19. (a) Factors
obtained after decomposing the 4D-communication tensor from a single-cell dataset of BALF in patients with varying severities
of COVID-19. 10 factors were selected for the analysis, as indicated in Supplementary Figure S1b. Here, the context
corresponds to samples coming from distinct patients (12 in total, with three healthy controls, three moderate infections, and
six severe COVID-19 cases). Each row represents a factor and each column represents the loadings for the given tensor
dimension (samples, LR pairs, sender cells and receiver cells). Bars are colored by categories assigned to each element in
each tensor dimension, as indicated in the legend. (b) List of the top 5 ligand-receptor pairs ranked by loading for each factor.
The corresponding ligands and receptors in these top-ranked pairs are mainly produced by sender and receiver cells with high
loadings, respectively. Ligand-receptor pairs with supporting evidence (Supplementary Table S3) for a relevant role in general
immune response (black bold) or in COVID-19-associated immune response (red bold) are highlighted. (c) Coefficients
associated with loadings of each factor: Spearman coefficient quantifying correlation between sample loadings and COVID-19
severity, and Gini coefficient quantifying the dispersion of the joint distribution of cell pair loadings (to measure the imbalance
of cell-cell communication). Important values are highlighted in red (higher absolute Spearman coefficients represent stronger
correlations; while smaller Gini coefficients represent distributions with similar overall communication values).
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Our strategy also elucidates communication patterns attributable to specific groups of patients

according to disease severity (Figure 4a). For example, we found interactions that are characteristic of

severe (factor 8) and moderate COVID-19 (factors 3 and 10), and healthy patients (factor 9) (adj.

P-value < 0.05, Supplementary Figure S4). Factor 8 was the most correlated with severity of the

disease (Spearman coefficient 0.92, Figure 4c) and highlights macrophages playing a major role as

pro-inflammatory sender cells. Their main signals include CCL2, CCL3 and CCL8, which are received

by cells expressing the receptors CCR1, CCR2 and CCR5 (Figure 4b). Consistent with our result,

another study of BALF samples revealed that critical COVID-19 cases involve stronger interactions of

cells in the respiratory tract through ligands such as CCL2 and CCL3, expressed by inflammatory

macrophages18. Moreover, the inhibition of CCR1 and/or CCR5 (receptors of CCL2 and CCL3) has

been proposed as a potential therapeutic target for treating COVID-1918,44. Tensor-cell2cell also

deconvolved patterns attributable to moderate rather than severe COVID-19, also highlighting

interactions driven by macrophages (factors 3 and 10; Figure 4a). However, top-ranked molecules

(Figure 4b) and gene expression patterns (Supplementary Figure S5) suggest that the intercellular

communication is led by macrophages with an anti-inflammatory M2-like phenotype, in contrast to

factor 8 (pro-inflammatory phenotype). Multiple top-ranked signals in factors 3 and 10 have been

associated with an M2 macrophage phenotype in previous independent work45–47, also associating them

with mild but not severe myalgic encephalomyelitis48, and with the immune response to

SARS-CoV-245,46,49–51. Remarkably, the source article of the BALF dataset28 reported that M2-like (anti

inflammatory) macrophages were present with higher frequency than M1-like (pro-inflammatory)

macrophages in healthy and moderate COVID-19 patients, while M1-like macrophages were more

frequent in severe COVID-19 patients28,52, supporting the results of Tensor-cell2cell.
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In contrast to severe and moderate COVID-19 patients, communication patterns associated with

healthy subjects involve all sender-receiver cell pairs with a similar importance. In particular, factor 9

(Figure 4a) demonstrated the smallest Gini coefficient (0.09; Figure 4c), which measures the extent to

which communication scores between sender and receiver cells are evenly distributed across cell pairs.

Smaller Gini coefficients show more even distributions, i.e., more equally weighted communication

scores across sender and receiver cell pairs (see Methods). This indicates that the intercellular

communication represented by factor 9 is ubiquitous across cell types. Thus, this conservation across

cells may be an indicator of communication during homeostasis, since the context loadings for this

factor are not associated with disease (Supplementary Figure S4). Interestingly, the interaction between

MIF and the complex CD74-CD44 is a top-ranked LR pair in factor 9 (Figure 4b), which is consistent

with ubiquitous expression of MIF across tissues and its protective role in normal conditions35,53. Thus,

Tensor-cell2cell extracts communication patterns distinguishing one group of patients from another and

detects known mechanisms of immune response during disease progression (Supplementary Notes),

which can be important for therapeutic applications54. For example, our results suggest that COVID-19

severity might be reduced by delivering a drug to control the ratio of M1/M2 macrophages in lungs55.

Discussion
Here we present Tensor-cell2cell, a novel computational approach that finds modules or patterns of

cell-cell communication and their changes across contexts (e.g., across subjects with different disease

severity, multiple time points, different tissues, etc.). We show the power of Tensor-cell2cell with both

simulated and real datasets to extract complex patterns of intercellular communication in an

unsupervised fashion. Crucially, our approach can rank LR pairs based on their importance in each

module of communication, and it connects these signals with variations in phenotype (e.g., increasing

use of LR pairs with COVID-19 severity, as shown in factors 1,2 and 8 in Figure 4a). These features

distinguish Tensor-cell2cell as a novel tool in contrast to state-of-the-art tools that are either unaware of
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the context driving CCC5,20,23,56 or require analysis of each context separately and perform pairwise

comparisons in posterior steps10,11. Thus, Tensor-cell2cell is the first tool that facilitates the study of

CCC in a context-aware manner, simultaneously integrating any number of samples, and helping

generate testable hypotheses about the biological role of molecules across multiple conditions.

Tensor-cell2cell is fast for analyzing multiple contexts simultaneously, providing up to 790-fold

improvement in running time and reduced memory requirements with respect to analyses involving

multiple pairwise comparisons (Figures 3a-d). It is also more accurate, resulting in a marked 10-20%

higher classification accuracy of subjects with COVID-19 when compared to CellChat (Figures 3e-h),

the only available tool that summarizes multiple pairwise comparisons of contexts. However, it is

important to consider that benchmarking tools for predicting CCC is challenging due to the lack of a

ground truth5, and it is hard to compare and evaluate tools because of the diversity of scoring

approaches57. Indeed, the outputs and details offered by CellChat and Tensor-cell2cell differ. CellChat

reports context-associated UMAP embeddings of signaling pathways, while Tensor-cell2cell outputs

TCA embeddings for contexts, ligand-receptor pairs, and interconnected sender and receiver cells. By

training classifiers that accept these differing outputs, in most cases, Tensor-cell2cell greatly

outperformed CellChat (Figures 3e,f,h). While in a few scenarios we observed qualitatively comparable

performance (Figure 3g, Tensor-cell2cell and the functional method of CellChat), Tensor-cell2cell

always performed better quantitatively. Although context classification is a useful approach for

comparison, this strategy cannot evaluate how well these methods infer CCC due to their distinct

scopes and the vast differences in the tools’ outputs. In this regard, the outputs of Tensor-cell2cell seem

valuable for identifying specific molecular targets and involved cells of a context-dependent module of

communication, encompassing information beyond the scope of CellChat, which largely focuses on

pair-wise, context-specific differences between signaling pathways.
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Meaningful biological roles are easily identifiable from the patterns captured by Tensor-cell2cell. For

example, we detected a previously reported correlation between the interactions of the lung epithelium

with the immune cells and COVID-19 severity18 and differences between moderate and severe

COVID-19, especially associated with modules of macrophage communication28. Tensor-cell2cell

recapitulated molecular findings such as the role of SEMA4D-PLXNB2 interaction promoting

inflammation43, interaction that Tensor-cell2cell revealed to be stronger in cases with more lung

inflammation (severe cases) (Figure 4), and the role of CCL2, CCL3, CCR1 and CCR5 as

proinflammatory molecules, which makes them potential therapeutic targets for diminishing COVID-19

severity18, proteins that our strategy associated with CCC in severe cases (Figure 4b). Additionally, we

identified novel CCC patterns and mechanisms regarding COVID-19 pathogenesis. For example, Grant

et al. reported that CD206hi alveolar macrophages participate in the immune response to SARS-CoV-2

infection51, but the underlying mechanisms mediating this response remain unclear. Factor 10 seems to

extend the results presented by Grant et al. by showing that macrophage-expressed MRC1 (CD206)

interacts with PTPRC (CD45) expressed by other cells (Figure 4a-b). Interestingly, the MRC1-PTPRC

interaction mediating macrophage communication can promote immune tolerance58, which is consistent

with factor 10 being associated with moderate cases, wherein anti-inflammatory macrophages (M2-like

phenotype) seem to be characteristic. Another example is a recent GWAS study that reported 13

significant loci associated with SARS-CoV-2 infection59, wherein ICAM1 popped up as an involved

gene. Remarkably, Tensor-cell2cell assigned a high loading to the ITGB2-ICAM1 interaction in a

communication pattern that seems to be associated with antigen presentation (factor 5, Figures 4a-b),

providing further insights of its potential mechanism.

One limitation of Tensor-cell2cell is that it is not intended for analyzing the behavior of specific pairs of

cells or ligands and receptors of interest across contexts. Instead, Tensor-cell2cell finds data-driven

modules of communication, which may result in factors with small loadings for cells and LR pairs of
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interest. In such a scenario, those cells and LR pairs may not participate in a latent context-dependent

module but may still follow certain behavior across contexts; thus, applying Tensor-cell2cell would not

be appropriate. Instead, using other tools may be recommended (Table 1). Another limitation to

consider is the potential of missing communication scores in the tensor (e.g. when a rare cell type

appears in only one sample). Although Tensor-cell2cell allows the inclusion of cell types missing in

some conditions, the implemented tensor decomposition algorithm is not specifically designed for

handling or imputing missing values. For that reason, we built a 4D-communication tensor that contains

only the cell types that are shared across all samples in our COVID-19 study case. Thus, further

improvements are needed for analyzing situations with missing values to include all possible members

of communication (i.e., LR pairs and cell types that may be missing in certain contexts).

Tensor-cell2cell is therefore a flexible method that can integrate multiple datasets and readily identify

patterns of intercellular communication in a context-aware manner, reporting them through

interconnected and easily interpretable scores. In addition to single cell data shown here,

Tensor-cell2cell also accepts bulk transcriptomics data (an example of a time series bulk dataset of C.

elegans is included in a CodeOcean capsule, see Methods), and it could further be used to analyze

proteomic data. We demonstrated the application of Tensor-cell2cell in cases where samples

correspond to distinct patients, but it can be applied to many other contexts. For instance, our strategy

can be readily applied to time series data by considering time points as the contexts, and to spatial

transcriptomic datasets, by previously defining cellular niches or neighborhoods as the contexts.

Moreover, we have also included Tensor-cell2cell as a part of our previously developed tool cell2cell60,

enabling previous functionalities such as employing any list of LR pairs (even including protein

complexes), multiple visualization options, and personalizing the communication scores to account for

other signaling effects such as the (in)activation of downstream genes in a signaling pathway23,61, which

could lead to different biological interpretations57. Lastly, we demonstrated that Tensor-cell2cell stands
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as a fast, low-memory and accurate method (Figure 3), which can be substantially accelerated when a

GPU is available (Figure 3a). Thus, these attributes make Tensor-cell2cell valuable for identifying key

cell-cell and LR pairs mediating complex patterns of cellular communication in future studies, especially

when considering the response time needed to deal with, for example, the COVID-19 pandemic.

Methods

RNA-seq data processing

RNA-seq datasets were obtained from publicly available resources. One dataset corresponds to a

large-scale single-cell atlas of COVID-19 in humans27, while the other to a COVID-19 dataset of

single-cell transcriptomes for BALF samples28. These datasets were collected as raw count matrices

from the NCBI's Gene Expression Omnibus62 (GEO accession numbers GSE158055 and GSE145926,

respectively). In total, the first dataset contains 1,462,702 single cells, while the second 65,813. The

first dataset contains samples of patients with varying severities of COVID-19 (control, mild/moderate

and severe/critical) and we selected just 60 PBMC samples among all different sample sources (20 per

severity type). In the second dataset, we considered the 12  BALF samples of patients with varying

severities of COVID-19 (3 control, 3 moderate and 6 severe) and preprocessed them by removing

genes expressed in fewer than 3 cells, which left a total of 11,688 genes in common across samples. In

both datasets, we used the cell type labels included in their respective metadata. We aggregated the

gene expression from single cells into cell types by calculating the fraction of cells in the respective

label with non-zero counts, as previously recommended for properly representing genes with low

expression levels63, as usually happens with genes encoding surface proteins64.

Ligand-receptor pairs

A human list of 2,005 ligand-receptor pairs, 48% of which include heteromeric-protein complexes, was

obtained from CellChat10. We filtered this list by considering the genes expressed in the PBMC and
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BALF expression datasets and that match the IDs in the list of LR pairs, resulting in a final list of 1639

and 189 LR pairs, respectively.

Building the context-aware communication tensor

For building a context-aware communication tensor, three main steps are followed: 1) A communication

matrix is built for each ligand-receptor pair contained in the interaction list from the gene expression

matrix of a given sample. To build this communication matrix, a communication score5 is assigned to a

given LR pair for each pair of sender-receiver cells. The communication score is based on the

expression of the ligand and the receptor in the respective sender and receiver cells (Figure 1a). 2)

After computing the communication matrices for all LR pairs, they are joined into a 3D-communication

tensor for the given sample (Figure 1b). Steps 1 and 2 are repeated for all the samples (or contexts) in

the dataset. 3) Finally, the 3D-communication tensors for each sample are combined, each of them

representing a coordinate in the 4th-dimension of the 4D-communication tensor (or context-aware

communication tensor; Figure 1c).

To build the tensor for both COVID-19 datasets, we computed the communication scores as the mean

expression between the ligand in a sender cell type and  cognate receptor in a receiver cell type, as

previously described20. For the LR pairs wherein either the ligand or the receptor is a multimeric protein,

we used the minimum value of expression among all subunits of the respective protein to compute the

communication score. In both cases we further considered cell types that were present across all

samples. Thus, the 4D-communication tensor for the PBMC and BALF datasets resulted in a size of 60

x 1639 x 6 x 6 and 12 x 189 x 6 x 6, respectively (that is, samples x ligand-receptor pairs x sender cell

types x receiver cell types).
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Non-negative tensor component analysis

Briefly, non-negative TCA is a generalization of NMF to higher-order tensors (matrices are tensors of

order two). To detail this approach, let represent a C x P x S x T tensor, where C, P, S and Tχ
correspond to the number of contexts/samples, ligand-receptor pairs, sender cells and receiver cells

contained in the tensor, respectively. Similarly, let denote the representative interactions of contextχ𝑖𝑗𝑘𝑙
i, using the LR pair j, between the sender cell k and receiver cell l. Thus, the TCA method underlying

Tensor-cell2cell corresponds to CANDECOMP/PARAFAC65,66, which yields the decomposition,

factorization or approximation of through a sum of r tensors of rank-1 (Figure 1d):χ
(1)χ ≈ 𝑟 = 1

𝑅∑ 𝑐𝑟 ⊗  𝑝𝑟 ⊗  𝑠𝑟 ⊗  𝑡𝑟

Where the notation represents the outer product and are vectors of the factor r that ⊗  𝑐𝑟,  𝑝𝑟,  𝑠𝑟𝑎𝑛𝑑 𝑡𝑟
contain the loadings of the respective elements in each dimension of the tensor (Figure 1e). These

vectors have values greater than or equal to zero. Similar to NMF, the factors are permutable and the

elements with greater loadings represent an important component of a biological pattern captured by

the corresponding factor. Values of individual elements in this approximation are represented by:

(2)χ𝑖𝑗𝑘𝑙 ≈ 𝑟 = 1
𝑅∑ 𝑐𝑖𝑟 ⊗ 𝑝𝑗𝑟 ⊗ 𝑠𝑘𝑟 ⊗  𝑡𝑙𝑟

The tensor factorization is performed by iterating the following objective function until convergence

through an alternating least squares minimization17,67:

(3)𝑚𝑖𝑛{𝑐, 𝑝, 𝑠, 𝑡} χ − 𝑟 = 1
𝑅∑ 𝑐𝑟 ⊗  𝑝𝑟 ⊗  𝑠𝑟 ⊗  𝑡𝑟|||| |||||||| ||||𝐹

2
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Where represent the squared Frobenius norm of a tensor, calculated as the sum of element-wise .  | || |𝐹2
squares in the tensor:

(4) χ | || |𝐹2 = 𝑖=1
𝐼∑ 𝑗=1

𝐽∑ 𝑘=1
𝐾∑ 𝑙=1

𝐿∑ χ𝑖𝑗𝑘𝑙2
All the described calculations were implemented in Tensor-cell2cell through functions available in

Tensorly68, a Python library for tensors.

Measuring the error of the tensor decomposition

Depending on the number of factors used for approximating the 4D-communication tensor, the

reconstruction error calculated in the objective function can vary. To quantify the error with an

interpretable value, we used a normalized reconstruction error as previously described12. This

normalized error is on a scale of zero to one and is analogous to the fraction of unexplained variance

used in PCA:

(5)
χ −𝑟 = 1

𝑅∑ 𝑐𝑟⊗ 𝑝𝑟⊗ 𝑠𝑟⊗ 𝑡𝑟|||| |||||||| ||||𝐹
2

 χ | || |𝐹2

Computing Gini coefficients of joint distributions of cell pair loadings

To represent an overall communication state of cells in a factor r, the outer product can be computed

between the vectors and , which contains the loadings of sender and receiver cells for that factor,𝑠𝑟 𝑡𝑟
respectively. This outer product represents a joint distribution of cell pair loadings, and each value

represents the overall communication between a pair of sender-receiver cells. A Gini coefficient 69

ranging between 0 and 1 can be computed on this distribution to detect the extent of equality in the

overall communication values within a factor r. In other words, how evenly distributed is the potential of

communication across cell pairs. A value of 1 represents maximal inequality of overall communication
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between cell pairs (i.e. one cell pair has a high overall communication value while the others have a

value of 0) and 0 indicates minimal inequality (i.e. all cell pairs have the same overall communication

values).

Statistical analyses

In the COVID-19 dataset of BALF samples, we compared the loadings of samples as well as the

fraction of macrophages with non-zero expression for a set of ligands and receptors across the

categories representing healthy patients and varying severities of COVID-19. To perform these

comparisons, we used an independent t-test followed by a Bonferroni’s correction to indicate

significance of the change (Supplementary Figures S3 and S4).

Benchmarking of computational efficiency of tools

We measured the running time and memory demanded by Tensor-cell2cell and CellChat to analyze the

COVID-19 dataset containing PBMC samples. Each tool was evaluated in two scenarios: either using

each sample individually, or by first combining samples by severity (control, mild/moderate, and

severe/critical) by aggregating the expression matrices. The latter was intended to favor CellChat by

diminishing the number of pairwise comparisons to always be between three contexts; thus, increases

in running time or memory demand in this case are not due to an exponentiation of comparisons (n

samples choose 2). CellChat was run by following the procedures outlined in the

“Comparison_analysis_of_multiple_datasets” vignette

(https://github.com/sqjin/CellChat/tree/master/tutorial). Briefly, signalling pathway communication

probabilities were first individually calculated for each sample or context. Next, pairwise comparisons

between each sample or context were obtained by computing either a “functional” or a “structural”

similarity. The functional approach computes a Jaccard index to compare the signaling pathways that

are active in two cellular communication networks, while the structural approach computes a network

dissimilarity70 to compare the topology of two signaling networks (see REF10 for further details). Finally,
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CellChat performs a manifold learning approach on sample similarities and returns UMAP embeddings

for each signaling pathway in each different context (e.g. if CellChat evaluates 10 signaling pathways in

3 different contexts, it will return embeddings for 30 points) which can be used to rank the similarity of

shared signalling pathways between contexts in a pairwise manner.

The analyses of computational efficiency were run on a compute cluster of 2.8GHz x2 Intel(R) Xeon(R)

Gold 6242 CPUs with 1.5 TB of RAM (Micron 72ASS8G72LZ-2G6D2) across 32 cores. Each timing

task was limited to 128 GB of RAM on one isolated core and one thread independently where no other

processes were being performed. To limit channel delay, data was stored on the node where the job

was performed, where the within socket latency and bandwidth are 78.9 ns and 46,102 MB/s

respectively. For all timing jobs, the same ligand-receptor pairs and cell types were used. Furthermore,

to make the timing comparable, all samples in the dataset were subsampled to have 2,000 single cells.

In the case of Tensor-cell2cell, the analysis was also repeated by using a GPU, which corresponded to

a Nvidia Tesla V100.

Training and evaluation of a classification model

A Random Forests71 (RF) model was trained to predict disease status based on both COVID-19 status

(healthy-control vs. patient with COVID-19) and severity (healthy-control, moderate symptoms, and

severe symptoms). The RF model was trained using a Stratified K-Folds cross-validation (CV) with

3-Fold CV splits. On each CV split a RF model with 500 estimators was trained and RF

probability-predictions were compared to the test set using the Receiver Operating Characteristic

(ROC). The mean and standard deviation from the mean were calculated for the area under the Area

Under the Curve (AUC) across the CV splits. This classification was performed on the context loadings

of Tensor-cell2cell, and the two UMAP dimensions of the structural and functional joint manifold

learning of CellChat, for both the BALF and PBMC COVID-19 datasets. All classification was performed

through Scikit-learn (v. 0.23.2)72.
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Code and data availability

Tensor-cell2cell is implemented in our cell2cell suite60, which is available in a GitHub repository

(https://github.com/earmingol/cell2cell). All the code and input data used for the analyses are available

online in a Code Ocean capsule for reproducible runs (https://doi.org/10.24433/CO.0051950.v1). While

the code for benchmarking the computational efficiency in a local computer is available in a GitHub

repository (https://github.com/LewisLabUCSD/CCC-Benchmark).
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