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ABSTRACT 

Handling erroneous conditions in context-aware mobile agent 
systems is challenging due to their intrinsic characteristics: 
openness, lack of structuring, mobility, asynchrony, and increased 
unpredictability. Even though several context-aware middleware 
systems support now the development of mobile agent-based 
applications, they rarely provide explicit and adequate features for 
context-aware exception handling. This paper reports our experience 
in implementing error handling strategies in some prototype context-
aware collaborative applications built with the MoCA (Mobile 
Collaboration Architecture) system. MoCA is a publish-subscribe 
middleware supporting the development of collaborative mobile 
applications by incorporating explicit services to empower software 
agents with context-awareness. We propose a novel context-aware 
exception handling mechanism and discuss some lessons learned 
during its integration in the MoCA infrastructure. The discussions 
include how to use other emerging implementation techniques, such 
as aspect-oriented programming, to address the limitations of 
classical publish-subscribe mechanisms identified in our study. 

Categories and Subject Descriptors 

D.2.5 [Software Engineering]: Testing and Debugging – Error 

handling and recovery; I.2.11 [Distributed Artificial 

Intelligence]:Multiagent systems 

General Terms: Algorithms, Reliability, Languages 

Keywords: Exception handling, mobile agents, context-

awareness, middleware, fault tolerance, aspect-oriented 
programming. 

1. INTRODUCTION 

There is a growing popularity of pervasive agent-based 
applications that allow mobile users to seamlessly exploit the 
computing resources and collaboration opportunities while 
moving across distinct physical regions. Typically mobile 
collaborative applications need to be made context aware to allow 
autonomous adaptation of the agent functionalities. In particular, 

they need to deal with frequent variations in the system execution 
contexts, such as fluctuating network bandwidth, temperature 
changes, decreasing battery power, changes in location or device 
capabilities, degree of proximity to other users, and so forth. 
However, the development of robust context-aware mobile 
systems is not a trivial task due to their intrinsic characteristics of 
openness, “unstructureness”, asynchrony, and increased 
unpredictability [6, 18]. 

These system features seems to indicate that the handling of 
exceptional situations in mobile applications is more challenging, 
which in turn makes it impossible the direct application of 
conventional exception handling mechanisms [13, 14]. First, error 
propagation needs to be context aware since it needs to take into 
consideration the dynamic system boundaries and changing 
collaborative agents. Second, both the execution of error recovery 
activities and determination of exception handling strategies often 
need to be selected according to user contexts. Third, the 
characterization of an exception itself may depend on the context, 
i.e. a system state may be considered an erroneous condition in a 
given context, but it may be not in others. 

Several middleware systems [6,9,19] are nowadays available to 
support the construction of mobile agent-based applications. Their 
underlying architecture rely on different coordination techniques, 
such as tuplespaces [6], publish-subscribe mechanisms [9], and 
computational reflection [19]. However, such the middleware 
systems rarely provide explicit support for context-aware exception 

handling. Often the existing solutions (e.g. [12,18,20]) are too 
general and not specific for the characteristics of the coordination 
technique used. Typically they are not scaleable because they do not 
support clear system structuring using exception handling contexts. 
Our analysis shows that understanding the interplay between context 
awareness and exception handling in mobile agent systems is still an 
open issue. As a result, in order to deal with the complexity of 
context-aware exceptions, application programmers need to directly 
rely on existing middleware mechanisms, such as interest 
subscriptions or regular tuple propagation. The situation is 
complicated even further when they need to express exceptional 
control flows in the presence of mobility.  

We have implemented error handling features in several prototype 
context-aware collaborative applications built with the MoCA 
(Mobile Collaboration Architecture) system [9]. MoCA is a publish-
subscribe middleware that supports the development of 
collaborative mobile applications by incorporating explicit services 
empowering software agents with context-awareness. This paper 
presents the lessons learned while developing exception handling in 
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MoCA applications. We have identified a number of exception 
handling issues that are neither satisfied by the regular use of the 
exception mechanisms of programming languages nor addressed by 
conventional mechanisms of the existing context-aware middleware 
systems, such as MoCA. We have also analysed how 
complementary techniques, such as aspect-oriented programming, 
can be used to tackle some limitations identified in the use of those 
conventional mechanisms.   

The main contributions of this paper are as follows.  First, we 
present a case study helping us to identify the requirements for the 
context-aware exception handling mechanism. The system is a 
typical ambient intelligence (AmI) application developed with the 
MoCA middleware. Secondly, using these requirements we 
formulate a proposal for a context-aware exception handling model. 
Thirdly, we describe a prototype implementation of the model in the 
MoCA middleware; it consists of an extension of the client and 
server APIs and new middleware services, such as management of 
exceptional contexts, context-sensitive error propagation and 
execution of context-aware exception handlers.  

The plan of the paper is as follows. Section 2 presents the basic 
concepts of context awareness and introduces the fundamental 
exception handling concepts. Section 3 describes the case study in 
which we have identified challenging exception handling issues for 
the development of robust context-aware agent applications. Section 
4 discusses an implementation of the proposed mechanism in 
MoCA. Section 5 overviews the related work. Section 6 concludes 
the paper by discussing directions of future work. 

2. BACKGROUND 
This section discusses the background of our work. Section 2.1 
introduces the terminology and a categorization of the context-aware 
middleware. Section 2.2 overviews the MoCA system. Section 2.3 
introduces the exception handling concepts used in this paper. 

2.1 Context and Context-Aware Middleware 
The concepts of context and context-aware systems have been 
defined in a number of ways (e.g. [2, 3, 4]). According to Dey and 
Abowd [1], context is any information that can be used to 
characterize the situation or an entity. A system is context-aware if it 
uses context to provide relevant information and/or services to the 
user. Thus, one entity can be represented by an agent or a person 
with a mobile device and the context-aware system can provide 
information about location, identity, time and activity for these 
entities. 

Before the context can be used it is necessary to acquire data from 
sensors, conduct context recognition and some other tasks [5].  
These tasks are usually implemented by context-aware middleware, 
which hides the heterogeneity and distributed nature of devices 
processing the contextual information. The following session 
describes MoCA, a context-aware publish/subscribe middleware 
which has been used in our first experiment to incorporate exception 
handling strategies in context-aware mobile agent systems. Such an 
architecture was selected because of the growing number of context-
aware middleware systems based on the publish-subscribe model 
[7,8,9]. 

Publish/Subscribe (pub/sub) architectures rely on an asynchronous 
messaging paradigm that allows loose coupling between publishers 
and subscribers. Publishers are the agents that send information to a 
central component, while subscribers express their interest in 

receiving messages. Broker [7] or Dispatcher [8] is the central 
component of a pub/sub system, and is responsible for recording all 
subscriptions, matching publications against all subscriptions, and 
notifying the corresponding subscribers. 

2.2 MoCA: Mobile Collaboration Architecture 
MoCa [9] is a middleware system supporting development and 
execution of the context-aware collaborative applications which 
work with mobile users. Figure 1 shows the three elements that 
compose the MoCa application: a server, a proxy, and clients. The 
first two are executed on the nodes of the wired network, while the 
clients run on mobile devices. A proxy intermediates all 
communication between the application server and one or more of 
its clients on mobile hosts. The server and the client of a 
collaborative application are implemented using the MoCA APIs, 
which hide from the application developer most of the details 
concerning the use of the services provided by the architecture.  

To support context-aware applications, MoCA supplies three 
services: Context Information Service (CIS), Symbolic Region 
Manager (SRM) and Location Inference Service (LIS). The CIS 
component receives and processes state information sent by the 
clients. It also receives notification requests for from the application 
Proxies, and generates and delivers events to a proxy whenever a 
change in a client’s state is of interest to this proxy. To provide 
transparency, CIS takes decisions on behalf of the publish/subscribe 
mechanism; which is implemented using built-in mechanisms that 
cater for the basic functionalities rather than deal with the high 
levels of heterogeneity and dynamicity intrinsic to mobile 
environments, such as the problem of late delivery [7]. 

 

Figure 1. MoCA application 

SRM provides an interface to define and request information about 
hierarchies of symbolic regions, which are names assigned to well-
defined physical regions (i.e. rooms, halls, buildings) that may be of 
interest to location-aware applications [9]. Based on SRM 
information, LIS infers the approximate location of a mobile device 
from the raw context information collected by CIS of this device. It 
does this by comparing the current pattern of radio frequency (RF) 
signals with the signal patterns previously measured at the pre-
defined Reference Points of the physical region. Therefore, to make 
any inference, the LIS database has to be populated with RF signal 
probes (device pointing in several directions) at each reference 
point, and with the inference parameters that are chosen according 
to the specific characteristics of the region.  
 

2.3 Exception Handling  
Agent activity, as the activity of any software component, can be 
divided into two parts [21]: normal activity and exceptional activity. 
The normal activity implements the agent’s normal services while 
the exceptional activity provides measures that cope with 
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exceptions. Each agent (and other system components) should have 
exception handlers, which constitute its exceptional activity. 
Handlers are attached to a particular region of the normal code 
which is called protected region or handling scope. Whenever an 
agent cannot handle an exception it raises, the exception will be 
signaled and propagated to other handling scopes defined in the 
higher-level components of the system. After the exception is 
handled, the system returns to its normal activity.  

Developers of dependable systems often refer to errors as exceptions 
because they manifest themselves rarely during the agent’s normal 
activity. Exceptions can be classified into two types [14]: (i) user-

defined, and (ii) pre-defined. The user-defined exceptions are 
defined and detected at the application level. The predefined 
exceptions are declared implicitly and are associated with the 
erroneous conditions detected by the run-time support, the 
middleware or hardware . 

Exception handling mechanisms [13, 14] developed for many high-
level programming languages allow software developers to define 
exceptions and to structure the exceptional activity of software com-
ponent. An exception handling mechanism introduces the specific 
way in of exception propagation and of changing the normal control 
flow to the exceptional control flow when an exception is raised. It 
is also responsible for supporting different exceptional flow 
strategies and search for the appropriate handlers after an exception 
occurs. Exception mechanisms are either built as an inherent part of 
the language with its own syntax, or as a feature of the middleware 
systems coping with the intricacies of the different application 
domains and architecture styles.  

3. Context-Aware Exception Handling in 

Mobile Agent Systems 
This section describes a typical context-aware agent-based 
application, for which we have implemented a prototype system 
with the MoCA architecture, and identified a number of difficulties 
in incorporating error handling. Section 3.1 describes the case study, 
while Section 3.2 presents the identified requirements for a 
mechanism smoothly supporting context-aware exception handling. 

3.1 AmI: a Case Study 
The case study is an ambient intelligence (AmI) [11] application, 
which is composed of numerous sensors, devices and control units 
interconnected to effectively form a machine [10]. A wide range of 
sensors and controllers could be utilized, such as: fire alarm, energy 
control, heating control, ventilation control, climate, surveillance, 
lightning, power, and automatic door and window. Figure 2 depicts 
an AmI scenario where each office contains sensors and output 
devices, which are monitored and controlled locally by software 
agents. All these agents are connected together via a network, 
forming a decentralized architecture that enables building-wide 
collaboration. 

Each piece of equipment has an associated device controlling its 
activation. All users have a smartcard that operates as a mobile 
device supplying the current position and employee ID. Immediately 
after entered the office, the system needs to identify the user 
preferences and starts the procedures for dealing with the 
temperature, ventilation, illumination, and climate adaptation for the 
specific user preferences. In order to achieve the system robustness, 
a number of environmental, hardware, and software-related 
exceptions that need to be effectively handled. Such exceptional 

circumstances include fire or excessive number of users in a given 
building region, or the occurrence of problems in the diverse 
primary and/or secondary mobile heating systems distributed over 
the building, or even in the central heating system. The handling of 
such exceptional conditions depend on the combination of changing 
contextual information, such as the location and type of the heating 
systems, the physical regions where the different system 
administrators are, and so on. 

In the following, we discuss problems relative to the incorporation 
and implementation of error handling scenarios in such a context-
aware mobile agent-based application. First, we explain the 
problems found in the context of our case study. Second, we explain 
why they cannot be addressed while using the underlying 
mechanisms of the MoCA architecture. The shortcomings here vary 
from exception declaration to exception handlers and error 
propagation issues.  

3.2 Specification of “Exceptional Contexts” 
During design of the AmI application we have identified a number 
of user-defined “exceptional contexts” that depend on a multitude of 
contextual information and also on user preferences, which in turn 
are typically application-specific. For us, exceptional contexts mean 
one or more conditions associated with the context types, which 
together denote a environmental, hardware, or software fault. For 
example, the exceptional contexts can be characterized by the 
situations when the temperature of an office or public room in the 
building occasionally exceeds the maximum limit according to user 
preferences, which can indicate a serious problem in the heating 
system (not detected by the associated controlling system). Handling 
of such situations requires an exceptional control flow different from 
the normal one, consisting of regular notification-based reactions. 
The seriousness of this context requires propagation of such 
exceptional context information to the proper administrators, which 
also may vary depending on their physical location. It may also 
require involvement of several people. 

The specification of contextual conditions of interest in publish-
subscribe systems, such as MoCA, requires explicit subscriptions 
based on regular expressions. The subscription is usually carried out 
by the code in the devices or proxy servers, which will be receiving 
notifications when those contextual conditions are matched 
according to the changing circumstances. However, the specification 
of an exceptional context situation inherently has a different 
semantics and, as such, needs to encompass different elements in its 
specification, including the handling scope, alternative “default 
handlers”, types of contextual information which should and should 

not propagated together with the exception occurrence, and so on. 
This is why in MoCA normal contextual subscriptions need to be 
different from the exceptional subscriptions.  

3.3 Lack of Exception Handling Scoping 
There are several situations in the AmI case study (Section 3.1) 
when handling exceptions requires several software agents and users 
to be involved depending on the physical regions and other types of 
contextual information. For example, as discussed in Section 3.2, 
the proper handling of some exceptional conditions in  the mobile 
heaters requires exceptions to be propagated to a set of devices 
belonging to the staff responsible for heater maintenance. However, 
the propagation needs to be context sensitive in the sense it should 
take into account the suitable maintainers for the specific heater type 
that is closest to the region where the faulty heater is located. The 
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contextual exception needs to be systematically propagated to 
broader scopes until the appropriate handlers are found. Moreover, 
if some fire exception is detected, it needs to be propagated to all the 
building regions and group of mobile users. Hence the physical 
regions or a group of devices (such as, those ones with the 
maintenance people) are examples of contextual handling scopes 
that should be supported by the underlying middleware. In this way, 
the proper exception handlers could be activated in all the relevant 
devices according to different user preferences. However, the 
MoCA middleware does not support such scopes for context-aware 
error handling, which hinders the modularity of the system on the 
presence of exceptional contexts.  

3.4 Need for Context-Aware Handlers 
There are also some cases where the selection of proper exception 
handlers depends on the contextual conditions associated with 
devices involved in the coordinated error handling. For the same 
exception, we need to create handlers tailored to different contextual 
conditions, and make sure that they are correctly executed. For 
instance, we need to associate contextual information about the 
heater physical location to the handlers dealing with the faulty 
heaters. Some handlers can be only selected if the mobile heater is in 
the context of a specific department. Again, we have to implement 
such a control of context-aware handlers as part of the application 
since there is no MoCA facility for that purpose.  

4. Exception Handling in MoCA 
This section presents our context-aware exception handling model 
and its MoCA implementation, which deal with the problems 
discussed in Sections 3.2 – 3.4. Our current approach basically 
supports the notion of exceptional context (Section 3.2) and 
different levels of handling scopes (Section 3.3) to treat the 
limitations of conventional APIs and mechanisms provided by 
existing context-aware middleware systems (Section 2.1). 

Exceptional contexts. The goal of exceptional contexts is to 
facilitate the definition of exceptional situations in applications that 
have a great number of devices and sensors that collect information 
for a specific purpose. An exceptional context corresponds to 
undesirable or dangerous set of conditions pertaining to different 
contexts. They can be associated with one specific user, 
application’s agents, or mobile devices. 

Scope nesting: protected device(s), regions, or groups. In order to 
support a modular context-aware approach for error propagation, 
exceptions can be caught by scopes at four different levels: a device, 
a group (of devices), a proxy server, and a region. In our MoCA 
implementation, the central MoCA server, where the CIS and LIS 
services (Section 2.2) are located, is also treated as an exception 
handling scope. To illustrate these types of handling scopes, Figure 
2 depicts how scopes of different type covers different elements of 
our AmI case study (Section 3.1). Device and server scopes 
comprise basic operational units of the context-aware system, which 
allows the exception handler functionality to be encapsulated into 
the scope of its own unit (device or server).  

Group-based scopes. Group scope encompasses a set of devices 
which are defined by the application to support mobile cooperative 
handling of an exception amongst the device’s agents pertaining to 
that group. This kind of scope is not directly related to spatial 
relationship, and it makes it possible to insert or remove elements 
from the scope according to the application necessity. Thus software 

agents can autonomously join and leave a group. For example, the 
agents acting on behalf of heat maintainers (Section 3.1) can form a 
specific group, as when heating-related exceptions are raised all of 
them may be notified. 

 

Figure 2. Different scope levels: Device, Region, Group, Server 

Region-based scopes. Differently from the three first ones, a region 
scope has a more dynamic behavior to identify t-he devices that is 
part of the scope. In our implementation, this scope is strongly 
related to the MoCa LIS service (Section 2.2) as it provides a 
reference mechanism that allows a device be aware of its neighbors. 
In addition, it is possible to control when a device enters and goes 
out from one region scope. A device movement characterizes the 
scope change; in other words, whenever a device moves from one a 
physical region X to Y, it automatically moves from the region-
based handling scope X to Y. Hence this movement encompasses 
the context-sensitive change of the exceptional conditions that the 
device can handle. 

Regular contextual subscription. Figure 3 shows the server code 
responsible for defining a user preference for a specific office. Due 
to the user movement, it is necessary to subscribe a listener in the 
LIS service to notify whenever a new device enters in the office. 
When this occurs, server gets user preferences and starts the 
appropriate services to suit the user requirements. To avoid long 
connections between server and devices, once each device can take 
long time to finish the process, servers break the connection after 
invoking the start method. 

An exceptional context example. As discussed in Section 3, a 
device’s agent suddenly detects that the temperature is exceeding the 
maximum limit, and then, it infers that there is a fault in the mobile 
heating system. In this situation, the device should throw and 
propagate an exception to inform the other mobile users and the 
heater support about the problem. This step is done by the code 
shown in Figure 4. The UnableToHeat exception is created and 
thrown by the heating device.  

Context-aware error propagation. It also specifies that it needs to 
be propagated to a set of scopes. To define the sequence of 
exception propagation, the user should use the propagateTo 

method. This method receives as parameter the scope reference, the 
sequence number, and also the condition constant. The scope 
reference determines for which scope the exceptional context will be 
propagated, the sequence number, and in which order. Scope 
constant defines the propagation policy in which the error 
propagation will occur; it determines when the exception needs to 
propagated: whether when none (NONE value), one (ONE value) or 
all handlers (ALL value) were found and successfully executed to 
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deal with this exception. For instance, in Figure 4, the 
UnableToHeat will firstly propagate to the region and group. If 
none of them handles this exception, it is delivered to the server 
scope.  

 
 

RegionListener listen = new RegionListen();  
Lis_service.subscribe(UserDevice, listen);  
...  
private class RegionListen  
              implements RegionListener {  
 public void onDeviceEntered(String regionID,  
                             String deviceID)  
   HashMap userpref = getUserPref(deviceId,  
                                regionID);  
   Heat.start(userpref.get(“Temperature”));  
   LightCtrl.start(userpref.get(“Light”));  
                . . .  
}}  

    Figure 3. User preference definition. 

Contextual information propagation and context-aware selection 

of handlers. In addition, the UnableToHeat exceptional context can 
carry information related to the exceptional occurrence. This may 
include the operation status of the thermostat, the operation status of 
the tip over the safety mechanism, the heater type, and also the 
heater brand. This contextual information is carried with the  
propagated exception to allow the exception mechanism to select an 
appropriate context-aware handler for a specific exception. Note 
that, after defining the exception content, this exception is thrown in 
the last line of the Figure 4. 
 

UnableToHeat unaheat = new UnableToHeat();  
Unaheat.  propagateTo((RegionScope.getInstance(),1, 
Scope.NONE);  
Unaheat.propagateTo((RegionScope.getInstance(”HeatM
aintainer”),1,Scope.NONE);  
Unaheat.propagateTo((ServerScope.getInstance(”MainS
erver”),2);  
Unaheat.getContext().  
    setStringProperty(“Thermostat”,”noanswer”);  
              . . .  
EHMechanism.throw(unaheat);  
 

Figure 4. Device code: throwing exception. 

Context-sensitive handlers. In order to handle the UnAbleHeat 
exception, four handlers are defined in different scopes. The first 
one deals with the university maintenance group; it is defined by 
each maintainer device and informs each one whether the heaters 
related to the offices have a problem. Figure 5 describes the 
BrandSupport handler definition and also its association with the 
maintainer group of users. To define a handler in our mechanism it 
is necessary to extend the Handler abstract class. This class requires 
the implementation of verifyContextCondition and execute abstract 
methods defined in the API of our mechanism. The first method 
performs verification if the exceptional context is really appropriate 
for this handler and the second one executes the handler 
functionality. For instance, in our case study, each maintainer 
employee is responsible for a specific university region and also for 
a specific type of heating. For this reason, there is a handler for each 
employee with appropriate conditions. Therefore, when an 
exception is caught, the mechanism executes the 
verifyContextCondition for each handler defined in that scope. 
Whether this method returns true, the mechanism invokes execute, 
but if not, the mechanism follows to the next defined handler. The 

purpose of this approach is to promote extra flexibility that supports 
the definition of context-aware handlers. After the handler 
definition, Figure 5 depicts UniversityHeaterFail and the scope 
group definition. The exceptional context UniversityHeaterFail 
catch all UnableToHeat exception occurrences that come from 
University region and has one of the two brands (A or B). To deal 
with this exception, each maintainer device gets an instance of the 
HeatMaintainer scope group and adds itself to this scope. Thus, 
whenever UnableToHeat was propagated to the HeatMaintainer, 
each device can carry out the exceptional context through its 
context-aware handlers. 

 

public class BrandSupport extends Handler {  
  
public boolean verifyContextCondition(){  
SimpleContext simple =getException().getContext().  
     find("Computing Dep",  
            "HeaterType = ’Ceramic’");  
  if (simple != null) return true;  
  else return false;   
 }  
  public boolean execute(){  
     makeAppointment();  
  }  
}  
                 . . .  
UniversityHeaterFail branduni =  
    new UniversityHeaterFail(CompositeContext.OR);  
branduni.addContext(“University”,  
         ”UnableToHeat.Brand=’HeaterCompanyA’”)  
branduni.addContext(“University”,  
         ”UnableToHeat.Brand=’HeaterCompanyB’”)  
BrandSupport suppCeramic = BrandSupport(branduni);  
DeviceGroupScope groupScope = DeviceGroupScope.  
           getInstance(“HeatMaintainer”);  
groupScope.addDeviceList(this.getMyDefice());  
groupScope.attachHandler(suppCeramic);  
            . . .  

Figure 5. Group scope definition. 

To be aware of what is happening in the office, the user device need 
to define the exception shown in Figure 6. This exception represents 
all exception occurrences that come from its own current region. It 
is and associated with a handler that informs the user about the 
current problem. 
 

BeAwareException awarex = new BeAwareException ();  
Unaheat.addContext(device.getRegion());  
NotifyUsers ntusers = new NotifyUsers(awarex);  

RegionScope regionScope =  
                RegionScope.getInstance();  
regionScope.attachHandler(ntusers);  

Figure 6. Region scope definition. 

As we can see in Figure 4, if none of the devices that are part of the 
group scope do not handle the UnableToHeat exception, it will be 
propagated to the server scope. To deal with this exception, Figure 7 
illustrates the exception and server scope definition. The 
MakExternal handler creates an external request to fix the problem 
that no internal maintainer is able to satisfy. 

5. Discussions and Related Work 
This section provides discussions and some lessons learned from our 
experience, and compares our pub/sub-based approach with other 
existing exception handling techniques for mobile systems (Section 
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5.1). It also analyzes how aspect-oriented programming approaches 
(Section 5.2) can be used to address the modularity-related problems 
identified in our case study (Section 3).  

 

UnableToHeat uncatch = new UnableToHeat();  
MakExternal makexternal =  
                 new MakExternal(uncatch);  
ServerScope serverScope = ServerScope.  
                        getInstance(“MainServer”);  
serverScope.attachHandler(makexternal);  

Figure 7. Server scope definition. 

5.1 Comparison with Existing Techniques  
Although our current implementation (Section 4) supports a 
heterogeneous set of handling scopes, their granularity may not be 
always appropriate. To this end we are planning to adopt role-like 
abstractions, as supported by the CAMA tuplespace-based 
middleware [6], in order to allow handlers to be attached the 
specific agent actions or plans. Furthermore we plan to extend our 
mechanism to support code mobility in addition to physical 
mobility.  

Developing advanced exception handling mechanisms suitable for 
multi agent systems is an area that needs serious efforts from the 
research community even though there have been a number of 
interesting results. A scheme in [12] supports exception handling in 
systems consisting of agents that cooperate by sending 
asynchronous messages. This scheme allows handlers to be 
associated with services, agents and roles, and supports concurrent 
exception resolution. Paper [18] identifies several typical failure 
cases in building context-based collaborative applications and 
proposes an exception handling mechanism for dealing with them. 

An approach in [20] is based on defining a specialized service fully 
responsible for coordinating all exception handling activities in 
multi agent systems. Although this approach does not scale well, it 
supports separation of the normal system behavior from the 
abnormal one as the service curries all fault tolerance activities: it 
detects errors, finds the most appropriate recovery actions using a 
set of heuristics and executes them. As opposed to the last three 
schemes above which do not explicitly introduces the concept of the 
exception handling context  (scope), the CAMA framework [6] 
(introduced in Section 2.1) supports the concept of (nested) scopes, 
which confine the errors and to which exception handlers are 
attached. However, CAMA and the other mechanisms mentioned 
above do not support a fully context-aware exception handling, as 
supported by our approach (Section  4). In particular, they do not 
implement context-aware selection of handlers, proactive exception 
handling, and the definition of exceptional contexts. 

5.2 Aspectising Contextual Error Handling  
The fundamental driving principle underlying the conception of 
exception handling mechanisms has been the support for improved 
modularity in the presence of errors [22, 23]. However, achieving 
modular exception handling is hard as error detection and treatment 
are widely-recognized as crosscutting concerns by their very nature 
[16, 24]. Hence modular error handling in its own is still a challenge 
nowadays [16, 25, 26]; context-aware exception handling just 
complicates even further the scenario as it needs to be tightly 
coupled to the context services in the supporting middleware. 

As we can see in Section 4, to define context-aware exception 
handling is necessary to spread code out all over the application in a 

fashion that relates the application context specification, exception 
detection, and exception handling. In our experience, the 
implementation of error handling strategies has interfered and 
crosscut different levels of abstractions in the context-aware mobile 
system at hand: (1) the application level was affected by detection of 
context-aware exceptions and dynamic handler binding (Section 4), 
(2) the MoCA API was affected by inserting exception-related 
interfaces for context defintions, and (3) the core structure in the 
middleware level was modified to include components responsible 
for managing the context-aware exceptional control flow.  

In this context, aspect-oriented programming (AOP) [27] seems a 
promising approach to support the implementation of context-aware 
exception handling. For example, a specialized pointcut language 
could be defined to quantify and explicitly specify context-aware 
detections of exceptions.  In a recent work, AOP has been used [15] 
to modularize several parts of a context-aware application, such as 
context acquisition, location/proximity context and application 
specific context. This approach allows to create aspects capable to 
performing context fusion/fission and adapt modeled context into 
non-modeled contextual information that may be required by 
application to perform some function. However, this work does not 
take context-aware exceptions into account. 

In order to exploit AOP to deal with context-aware error handling 
issues, we are current working in two main directions: (i) identifying 
scenarios where AspectJ mechanisms work (and not work) to 
provide modular implementations of exception handling code; and 
(ii) defining a pointcut language to support exception detection 
according to contextual conditions. As part of (i), we are currently 
investigating the use of AspectJ [28] to support the explicit 
separation of exception handling code and normal application code 
[16]. However, the general-purpose pointcut language and inter-type 
declaration mechanism of AspectJ does not to work well in a wide 
range of scenarios [16], which are very common in context-aware 
applications. First, it is not trivial and even possible to modularize 
application-specific exception detection with the AspectJ 
mechanisms. Second, softening exceptions may lead to the behavior 
of the system being unintentionally altered when the handlers are 
extracted to aspects.  

6. Final Remarks  
Error handling in mobile agent-based applications needs to be 
context sensitive. This paper discussed our experience in 
incorporating exception handling in several prototype MoCA 
applications. This allowed us to elicit a set of requirements and 
define a novel context-aware exception handling model, which 
consists of: (i) explicit support for specifying “exceptional 
contexts”; (ii) context-sensitive search for exception handlers; (iii) 
multi-level handling scopes that meet new abstractions (such as 
groups), and abstractions in the underlying context-aware 
middleware, such as devices, regions, and proxy servers, (iv) 
context-aware error propagation, (v) contextual exception handlers, 
and (vi) proactive exception handling. We have also presented an 
implementation of this mechanism in the MoCA architecture, and 
illustrated its use in an AmI agent-based application. 
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