
Context-Aware Exception Handling
in Mobile Agent Systems: The MoCA Case

Karla Damasceno
1
 Nelio Cacho

2
 Alessandro Garcia

2

Alexander Romanovsky

3
 Carlos Lucena

1

1
Computer Science Department, Pontifical Catholic University of Rio de Janeiro – PUC-Rio, Brazil

2
Computing Department, Lancaster University, United Kingdom

3
Computer Science School, University of Newcastle upon Tyne, United Kingdom

{karla,lucena}@inf.puc-rio.br, {n.cacho,a.garcia}@lancaster.ac.uk
alexander.romanovsky@newcastle.ac.uk

ABSTRACT

Handling erroneous conditions in context-aware mobile agent
systems is challenging due to their intrinsic characteristics:
openness, lack of structuring, mobility, asynchrony, and increased
unpredictability. Even though several context-aware middleware
systems support now the development of mobile agent-based
applications, they rarely provide explicit and adequate features for
context-aware exception handling. This paper reports our experience
in implementing error handling strategies in some prototype context-
aware collaborative applications built with the MoCA (Mobile
Collaboration Architecture) system. MoCA is a publish-subscribe
middleware supporting the development of collaborative mobile
applications by incorporating explicit services to empower software
agents with context-awareness. We propose a novel context-aware
exception handling mechanism and discuss some lessons learned
during its integration in the MoCA infrastructure. The discussions
include how to use other emerging implementation techniques, such
as aspect-oriented programming, to address the limitations of
classical publish-subscribe mechanisms identified in our study.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging – Error

handling and recovery; I.2.11 [Distributed Artificial

Intelligence]:Multiagent systems

General Terms: Algorithms, Reliability, Languages

Keywords: Exception handling, mobile agents, context-

awareness, middleware, fault tolerance, aspect-oriented
programming.

1. INTRODUCTION

There is a growing popularity of pervasive agent-based
applications that allow mobile users to seamlessly exploit the
computing resources and collaboration opportunities while
moving across distinct physical regions. Typically mobile
collaborative applications need to be made context aware to allow
autonomous adaptation of the agent functionalities. In particular,

they need to deal with frequent variations in the system execution
contexts, such as fluctuating network bandwidth, temperature
changes, decreasing battery power, changes in location or device
capabilities, degree of proximity to other users, and so forth.
However, the development of robust context-aware mobile
systems is not a trivial task due to their intrinsic characteristics of
openness, “unstructureness”, asynchrony, and increased
unpredictability [6, 18].

These system features seems to indicate that the handling of
exceptional situations in mobile applications is more challenging,
which in turn makes it impossible the direct application of
conventional exception handling mechanisms [13, 14]. First, error
propagation needs to be context aware since it needs to take into
consideration the dynamic system boundaries and changing
collaborative agents. Second, both the execution of error recovery
activities and determination of exception handling strategies often
need to be selected according to user contexts. Third, the
characterization of an exception itself may depend on the context,
i.e. a system state may be considered an erroneous condition in a
given context, but it may be not in others.

Several middleware systems [6,9,19] are nowadays available to
support the construction of mobile agent-based applications. Their
underlying architecture rely on different coordination techniques,
such as tuplespaces [6], publish-subscribe mechanisms [9], and
computational reflection [19]. However, such the middleware
systems rarely provide explicit support for context-aware exception

handling. Often the existing solutions (e.g. [12,18,20]) are too
general and not specific for the characteristics of the coordination
technique used. Typically they are not scaleable because they do not
support clear system structuring using exception handling contexts.
Our analysis shows that understanding the interplay between context
awareness and exception handling in mobile agent systems is still an
open issue. As a result, in order to deal with the complexity of
context-aware exceptions, application programmers need to directly
rely on existing middleware mechanisms, such as interest
subscriptions or regular tuple propagation. The situation is
complicated even further when they need to express exceptional
control flows in the presence of mobility.

We have implemented error handling features in several prototype
context-aware collaborative applications built with the MoCA
(Mobile Collaboration Architecture) system [9]. MoCA is a publish-
subscribe middleware that supports the development of
collaborative mobile applications by incorporating explicit services
empowering software agents with context-awareness. This paper
presents the lessons learned while developing exception handling in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SELMAS’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

37

MoCA applications. We have identified a number of exception
handling issues that are neither satisfied by the regular use of the
exception mechanisms of programming languages nor addressed by
conventional mechanisms of the existing context-aware middleware
systems, such as MoCA. We have also analysed how
complementary techniques, such as aspect-oriented programming,
can be used to tackle some limitations identified in the use of those
conventional mechanisms.

The main contributions of this paper are as follows. First, we
present a case study helping us to identify the requirements for the
context-aware exception handling mechanism. The system is a
typical ambient intelligence (AmI) application developed with the
MoCA middleware. Secondly, using these requirements we
formulate a proposal for a context-aware exception handling model.
Thirdly, we describe a prototype implementation of the model in the
MoCA middleware; it consists of an extension of the client and
server APIs and new middleware services, such as management of
exceptional contexts, context-sensitive error propagation and
execution of context-aware exception handlers.

The plan of the paper is as follows. Section 2 presents the basic
concepts of context awareness and introduces the fundamental
exception handling concepts. Section 3 describes the case study in
which we have identified challenging exception handling issues for
the development of robust context-aware agent applications. Section
4 discusses an implementation of the proposed mechanism in
MoCA. Section 5 overviews the related work. Section 6 concludes
the paper by discussing directions of future work.

2. BACKGROUND
This section discusses the background of our work. Section 2.1
introduces the terminology and a categorization of the context-aware
middleware. Section 2.2 overviews the MoCA system. Section 2.3
introduces the exception handling concepts used in this paper.

2.1 Context and Context-Aware Middleware
The concepts of context and context-aware systems have been
defined in a number of ways (e.g. [2, 3, 4]). According to Dey and
Abowd [1], context is any information that can be used to
characterize the situation or an entity. A system is context-aware if it
uses context to provide relevant information and/or services to the
user. Thus, one entity can be represented by an agent or a person
with a mobile device and the context-aware system can provide
information about location, identity, time and activity for these
entities.

Before the context can be used it is necessary to acquire data from
sensors, conduct context recognition and some other tasks [5].
These tasks are usually implemented by context-aware middleware,
which hides the heterogeneity and distributed nature of devices
processing the contextual information. The following session
describes MoCA, a context-aware publish/subscribe middleware
which has been used in our first experiment to incorporate exception
handling strategies in context-aware mobile agent systems. Such an
architecture was selected because of the growing number of context-
aware middleware systems based on the publish-subscribe model
[7,8,9].

Publish/Subscribe (pub/sub) architectures rely on an asynchronous
messaging paradigm that allows loose coupling between publishers
and subscribers. Publishers are the agents that send information to a
central component, while subscribers express their interest in

receiving messages. Broker [7] or Dispatcher [8] is the central
component of a pub/sub system, and is responsible for recording all
subscriptions, matching publications against all subscriptions, and
notifying the corresponding subscribers.

2.2 MoCA: Mobile Collaboration Architecture
MoCa [9] is a middleware system supporting development and
execution of the context-aware collaborative applications which
work with mobile users. Figure 1 shows the three elements that
compose the MoCa application: a server, a proxy, and clients. The
first two are executed on the nodes of the wired network, while the
clients run on mobile devices. A proxy intermediates all
communication between the application server and one or more of
its clients on mobile hosts. The server and the client of a
collaborative application are implemented using the MoCA APIs,
which hide from the application developer most of the details
concerning the use of the services provided by the architecture.

To support context-aware applications, MoCA supplies three
services: Context Information Service (CIS), Symbolic Region
Manager (SRM) and Location Inference Service (LIS). The CIS
component receives and processes state information sent by the
clients. It also receives notification requests for from the application
Proxies, and generates and delivers events to a proxy whenever a
change in a client’s state is of interest to this proxy. To provide
transparency, CIS takes decisions on behalf of the publish/subscribe
mechanism; which is implemented using built-in mechanisms that
cater for the basic functionalities rather than deal with the high
levels of heterogeneity and dynamicity intrinsic to mobile
environments, such as the problem of late delivery [7].

Figure 1. MoCA application

SRM provides an interface to define and request information about
hierarchies of symbolic regions, which are names assigned to well-
defined physical regions (i.e. rooms, halls, buildings) that may be of
interest to location-aware applications [9]. Based on SRM
information, LIS infers the approximate location of a mobile device
from the raw context information collected by CIS of this device. It
does this by comparing the current pattern of radio frequency (RF)
signals with the signal patterns previously measured at the pre-
defined Reference Points of the physical region. Therefore, to make
any inference, the LIS database has to be populated with RF signal
probes (device pointing in several directions) at each reference
point, and with the inference parameters that are chosen according
to the specific characteristics of the region.

2.3 Exception Handling
Agent activity, as the activity of any software component, can be
divided into two parts [21]: normal activity and exceptional activity.
The normal activity implements the agent’s normal services while
the exceptional activity provides measures that cope with

38

exceptions. Each agent (and other system components) should have
exception handlers, which constitute its exceptional activity.
Handlers are attached to a particular region of the normal code
which is called protected region or handling scope. Whenever an
agent cannot handle an exception it raises, the exception will be
signaled and propagated to other handling scopes defined in the
higher-level components of the system. After the exception is
handled, the system returns to its normal activity.

Developers of dependable systems often refer to errors as exceptions
because they manifest themselves rarely during the agent’s normal
activity. Exceptions can be classified into two types [14]: (i) user-

defined, and (ii) pre-defined. The user-defined exceptions are
defined and detected at the application level. The predefined
exceptions are declared implicitly and are associated with the
erroneous conditions detected by the run-time support, the
middleware or hardware .

Exception handling mechanisms [13, 14] developed for many high-
level programming languages allow software developers to define
exceptions and to structure the exceptional activity of software com-
ponent. An exception handling mechanism introduces the specific
way in of exception propagation and of changing the normal control
flow to the exceptional control flow when an exception is raised. It
is also responsible for supporting different exceptional flow
strategies and search for the appropriate handlers after an exception
occurs. Exception mechanisms are either built as an inherent part of
the language with its own syntax, or as a feature of the middleware
systems coping with the intricacies of the different application
domains and architecture styles.

3. Context-Aware Exception Handling in

Mobile Agent Systems
This section describes a typical context-aware agent-based
application, for which we have implemented a prototype system
with the MoCA architecture, and identified a number of difficulties
in incorporating error handling. Section 3.1 describes the case study,
while Section 3.2 presents the identified requirements for a
mechanism smoothly supporting context-aware exception handling.

3.1 AmI: a Case Study
The case study is an ambient intelligence (AmI) [11] application,
which is composed of numerous sensors, devices and control units
interconnected to effectively form a machine [10]. A wide range of
sensors and controllers could be utilized, such as: fire alarm, energy
control, heating control, ventilation control, climate, surveillance,
lightning, power, and automatic door and window. Figure 2 depicts
an AmI scenario where each office contains sensors and output
devices, which are monitored and controlled locally by software
agents. All these agents are connected together via a network,
forming a decentralized architecture that enables building-wide
collaboration.

Each piece of equipment has an associated device controlling its
activation. All users have a smartcard that operates as a mobile
device supplying the current position and employee ID. Immediately
after entered the office, the system needs to identify the user
preferences and starts the procedures for dealing with the
temperature, ventilation, illumination, and climate adaptation for the
specific user preferences. In order to achieve the system robustness,
a number of environmental, hardware, and software-related
exceptions that need to be effectively handled. Such exceptional

circumstances include fire or excessive number of users in a given
building region, or the occurrence of problems in the diverse
primary and/or secondary mobile heating systems distributed over
the building, or even in the central heating system. The handling of
such exceptional conditions depend on the combination of changing
contextual information, such as the location and type of the heating
systems, the physical regions where the different system
administrators are, and so on.

In the following, we discuss problems relative to the incorporation
and implementation of error handling scenarios in such a context-
aware mobile agent-based application. First, we explain the
problems found in the context of our case study. Second, we explain
why they cannot be addressed while using the underlying
mechanisms of the MoCA architecture. The shortcomings here vary
from exception declaration to exception handlers and error
propagation issues.

3.2 Specification of “Exceptional Contexts”
During design of the AmI application we have identified a number
of user-defined “exceptional contexts” that depend on a multitude of
contextual information and also on user preferences, which in turn
are typically application-specific. For us, exceptional contexts mean
one or more conditions associated with the context types, which
together denote a environmental, hardware, or software fault. For
example, the exceptional contexts can be characterized by the
situations when the temperature of an office or public room in the
building occasionally exceeds the maximum limit according to user
preferences, which can indicate a serious problem in the heating
system (not detected by the associated controlling system). Handling
of such situations requires an exceptional control flow different from
the normal one, consisting of regular notification-based reactions.
The seriousness of this context requires propagation of such
exceptional context information to the proper administrators, which
also may vary depending on their physical location. It may also
require involvement of several people.

The specification of contextual conditions of interest in publish-
subscribe systems, such as MoCA, requires explicit subscriptions
based on regular expressions. The subscription is usually carried out
by the code in the devices or proxy servers, which will be receiving
notifications when those contextual conditions are matched
according to the changing circumstances. However, the specification
of an exceptional context situation inherently has a different
semantics and, as such, needs to encompass different elements in its
specification, including the handling scope, alternative “default
handlers”, types of contextual information which should and should

not propagated together with the exception occurrence, and so on.
This is why in MoCA normal contextual subscriptions need to be
different from the exceptional subscriptions.

3.3 Lack of Exception Handling Scoping
There are several situations in the AmI case study (Section 3.1)
when handling exceptions requires several software agents and users
to be involved depending on the physical regions and other types of
contextual information. For example, as discussed in Section 3.2,
the proper handling of some exceptional conditions in the mobile
heaters requires exceptions to be propagated to a set of devices
belonging to the staff responsible for heater maintenance. However,
the propagation needs to be context sensitive in the sense it should
take into account the suitable maintainers for the specific heater type
that is closest to the region where the faulty heater is located. The

39

contextual exception needs to be systematically propagated to
broader scopes until the appropriate handlers are found. Moreover,
if some fire exception is detected, it needs to be propagated to all the
building regions and group of mobile users. Hence the physical
regions or a group of devices (such as, those ones with the
maintenance people) are examples of contextual handling scopes
that should be supported by the underlying middleware. In this way,
the proper exception handlers could be activated in all the relevant
devices according to different user preferences. However, the
MoCA middleware does not support such scopes for context-aware
error handling, which hinders the modularity of the system on the
presence of exceptional contexts.

3.4 Need for Context-Aware Handlers
There are also some cases where the selection of proper exception
handlers depends on the contextual conditions associated with
devices involved in the coordinated error handling. For the same
exception, we need to create handlers tailored to different contextual
conditions, and make sure that they are correctly executed. For
instance, we need to associate contextual information about the
heater physical location to the handlers dealing with the faulty
heaters. Some handlers can be only selected if the mobile heater is in
the context of a specific department. Again, we have to implement
such a control of context-aware handlers as part of the application
since there is no MoCA facility for that purpose.

4. Exception Handling in MoCA
This section presents our context-aware exception handling model
and its MoCA implementation, which deal with the problems
discussed in Sections 3.2 – 3.4. Our current approach basically
supports the notion of exceptional context (Section 3.2) and
different levels of handling scopes (Section 3.3) to treat the
limitations of conventional APIs and mechanisms provided by
existing context-aware middleware systems (Section 2.1).

Exceptional contexts. The goal of exceptional contexts is to
facilitate the definition of exceptional situations in applications that
have a great number of devices and sensors that collect information
for a specific purpose. An exceptional context corresponds to
undesirable or dangerous set of conditions pertaining to different
contexts. They can be associated with one specific user,
application’s agents, or mobile devices.

Scope nesting: protected device(s), regions, or groups. In order to
support a modular context-aware approach for error propagation,
exceptions can be caught by scopes at four different levels: a device,
a group (of devices), a proxy server, and a region. In our MoCA
implementation, the central MoCA server, where the CIS and LIS
services (Section 2.2) are located, is also treated as an exception
handling scope. To illustrate these types of handling scopes, Figure
2 depicts how scopes of different type covers different elements of
our AmI case study (Section 3.1). Device and server scopes
comprise basic operational units of the context-aware system, which
allows the exception handler functionality to be encapsulated into
the scope of its own unit (device or server).

Group-based scopes. Group scope encompasses a set of devices
which are defined by the application to support mobile cooperative
handling of an exception amongst the device’s agents pertaining to
that group. This kind of scope is not directly related to spatial
relationship, and it makes it possible to insert or remove elements
from the scope according to the application necessity. Thus software

agents can autonomously join and leave a group. For example, the
agents acting on behalf of heat maintainers (Section 3.1) can form a
specific group, as when heating-related exceptions are raised all of
them may be notified.

Figure 2. Different scope levels: Device, Region, Group, Server

Region-based scopes. Differently from the three first ones, a region
scope has a more dynamic behavior to identify t-he devices that is
part of the scope. In our implementation, this scope is strongly
related to the MoCa LIS service (Section 2.2) as it provides a
reference mechanism that allows a device be aware of its neighbors.
In addition, it is possible to control when a device enters and goes
out from one region scope. A device movement characterizes the
scope change; in other words, whenever a device moves from one a
physical region X to Y, it automatically moves from the region-
based handling scope X to Y. Hence this movement encompasses
the context-sensitive change of the exceptional conditions that the
device can handle.

Regular contextual subscription. Figure 3 shows the server code
responsible for defining a user preference for a specific office. Due
to the user movement, it is necessary to subscribe a listener in the
LIS service to notify whenever a new device enters in the office.
When this occurs, server gets user preferences and starts the
appropriate services to suit the user requirements. To avoid long
connections between server and devices, once each device can take
long time to finish the process, servers break the connection after
invoking the start method.

An exceptional context example. As discussed in Section 3, a
device’s agent suddenly detects that the temperature is exceeding the
maximum limit, and then, it infers that there is a fault in the mobile
heating system. In this situation, the device should throw and
propagate an exception to inform the other mobile users and the
heater support about the problem. This step is done by the code
shown in Figure 4. The UnableToHeat exception is created and
thrown by the heating device.

Context-aware error propagation. It also specifies that it needs to
be propagated to a set of scopes. To define the sequence of
exception propagation, the user should use the propagateTo

method. This method receives as parameter the scope reference, the
sequence number, and also the condition constant. The scope
reference determines for which scope the exceptional context will be
propagated, the sequence number, and in which order. Scope
constant defines the propagation policy in which the error
propagation will occur; it determines when the exception needs to
propagated: whether when none (NONE value), one (ONE value) or
all handlers (ALL value) were found and successfully executed to

40

deal with this exception. For instance, in Figure 4, the
UnableToHeat will firstly propagate to the region and group. If
none of them handles this exception, it is delivered to the server
scope.

RegionListener listen = new RegionListen();
Lis_service.subscribe(UserDevice, listen);
...
private class RegionListen
 implements RegionListener {
 public void onDeviceEntered(String regionID,
 String deviceID)
 HashMap userpref = getUserPref(deviceId,
 regionID);
 Heat.start(userpref.get(“Temperature”));
 LightCtrl.start(userpref.get(“Light”));
 . . .
}}

 Figure 3. User preference definition.

Contextual information propagation and context-aware selection

of handlers. In addition, the UnableToHeat exceptional context can
carry information related to the exceptional occurrence. This may
include the operation status of the thermostat, the operation status of
the tip over the safety mechanism, the heater type, and also the
heater brand. This contextual information is carried with the
propagated exception to allow the exception mechanism to select an
appropriate context-aware handler for a specific exception. Note
that, after defining the exception content, this exception is thrown in
the last line of the Figure 4.

UnableToHeat unaheat = new UnableToHeat();
Unaheat. propagateTo((RegionScope.getInstance(),1,
Scope.NONE);
Unaheat.propagateTo((RegionScope.getInstance(”HeatM
aintainer”),1,Scope.NONE);
Unaheat.propagateTo((ServerScope.getInstance(”MainS
erver”),2);
Unaheat.getContext().
 setStringProperty(“Thermostat”,”noanswer”);
 . . .
EHMechanism.throw(unaheat);

Figure 4. Device code: throwing exception.

Context-sensitive handlers. In order to handle the UnAbleHeat
exception, four handlers are defined in different scopes. The first
one deals with the university maintenance group; it is defined by
each maintainer device and informs each one whether the heaters
related to the offices have a problem. Figure 5 describes the
BrandSupport handler definition and also its association with the
maintainer group of users. To define a handler in our mechanism it
is necessary to extend the Handler abstract class. This class requires
the implementation of verifyContextCondition and execute abstract
methods defined in the API of our mechanism. The first method
performs verification if the exceptional context is really appropriate
for this handler and the second one executes the handler
functionality. For instance, in our case study, each maintainer
employee is responsible for a specific university region and also for
a specific type of heating. For this reason, there is a handler for each
employee with appropriate conditions. Therefore, when an
exception is caught, the mechanism executes the
verifyContextCondition for each handler defined in that scope.
Whether this method returns true, the mechanism invokes execute,
but if not, the mechanism follows to the next defined handler. The

purpose of this approach is to promote extra flexibility that supports
the definition of context-aware handlers. After the handler
definition, Figure 5 depicts UniversityHeaterFail and the scope
group definition. The exceptional context UniversityHeaterFail
catch all UnableToHeat exception occurrences that come from
University region and has one of the two brands (A or B). To deal
with this exception, each maintainer device gets an instance of the
HeatMaintainer scope group and adds itself to this scope. Thus,
whenever UnableToHeat was propagated to the HeatMaintainer,
each device can carry out the exceptional context through its
context-aware handlers.

public class BrandSupport extends Handler {

public boolean verifyContextCondition(){
SimpleContext simple =getException().getContext().
 find("Computing Dep",
 "HeaterType = ’Ceramic’");
 if (simple != null) return true;
 else return false;
 }
 public boolean execute(){
 makeAppointment();
 }
}
 . . .
UniversityHeaterFail branduni =
 new UniversityHeaterFail(CompositeContext.OR);
branduni.addContext(“University”,
 ”UnableToHeat.Brand=’HeaterCompanyA’”)
branduni.addContext(“University”,
 ”UnableToHeat.Brand=’HeaterCompanyB’”)
BrandSupport suppCeramic = BrandSupport(branduni);
DeviceGroupScope groupScope = DeviceGroupScope.
 getInstance(“HeatMaintainer”);
groupScope.addDeviceList(this.getMyDefice());
groupScope.attachHandler(suppCeramic);
 . . .

Figure 5. Group scope definition.

To be aware of what is happening in the office, the user device need
to define the exception shown in Figure 6. This exception represents
all exception occurrences that come from its own current region. It
is and associated with a handler that informs the user about the
current problem.

BeAwareException awarex = new BeAwareException ();
Unaheat.addContext(device.getRegion());
NotifyUsers ntusers = new NotifyUsers(awarex);

RegionScope regionScope =
 RegionScope.getInstance();
regionScope.attachHandler(ntusers);

Figure 6. Region scope definition.

As we can see in Figure 4, if none of the devices that are part of the
group scope do not handle the UnableToHeat exception, it will be
propagated to the server scope. To deal with this exception, Figure 7
illustrates the exception and server scope definition. The
MakExternal handler creates an external request to fix the problem
that no internal maintainer is able to satisfy.

5. Discussions and Related Work
This section provides discussions and some lessons learned from our
experience, and compares our pub/sub-based approach with other
existing exception handling techniques for mobile systems (Section

41

5.1). It also analyzes how aspect-oriented programming approaches
(Section 5.2) can be used to address the modularity-related problems
identified in our case study (Section 3).

UnableToHeat uncatch = new UnableToHeat();
MakExternal makexternal =
 new MakExternal(uncatch);
ServerScope serverScope = ServerScope.
 getInstance(“MainServer”);
serverScope.attachHandler(makexternal);

Figure 7. Server scope definition.

5.1 Comparison with Existing Techniques
Although our current implementation (Section 4) supports a
heterogeneous set of handling scopes, their granularity may not be
always appropriate. To this end we are planning to adopt role-like
abstractions, as supported by the CAMA tuplespace-based
middleware [6], in order to allow handlers to be attached the
specific agent actions or plans. Furthermore we plan to extend our
mechanism to support code mobility in addition to physical
mobility.

Developing advanced exception handling mechanisms suitable for
multi agent systems is an area that needs serious efforts from the
research community even though there have been a number of
interesting results. A scheme in [12] supports exception handling in
systems consisting of agents that cooperate by sending
asynchronous messages. This scheme allows handlers to be
associated with services, agents and roles, and supports concurrent
exception resolution. Paper [18] identifies several typical failure
cases in building context-based collaborative applications and
proposes an exception handling mechanism for dealing with them.

An approach in [20] is based on defining a specialized service fully
responsible for coordinating all exception handling activities in
multi agent systems. Although this approach does not scale well, it
supports separation of the normal system behavior from the
abnormal one as the service curries all fault tolerance activities: it
detects errors, finds the most appropriate recovery actions using a
set of heuristics and executes them. As opposed to the last three
schemes above which do not explicitly introduces the concept of the
exception handling context (scope), the CAMA framework [6]
(introduced in Section 2.1) supports the concept of (nested) scopes,
which confine the errors and to which exception handlers are
attached. However, CAMA and the other mechanisms mentioned
above do not support a fully context-aware exception handling, as
supported by our approach (Section 4). In particular, they do not
implement context-aware selection of handlers, proactive exception
handling, and the definition of exceptional contexts.

5.2 Aspectising Contextual Error Handling
The fundamental driving principle underlying the conception of
exception handling mechanisms has been the support for improved
modularity in the presence of errors [22, 23]. However, achieving
modular exception handling is hard as error detection and treatment
are widely-recognized as crosscutting concerns by their very nature
[16, 24]. Hence modular error handling in its own is still a challenge
nowadays [16, 25, 26]; context-aware exception handling just
complicates even further the scenario as it needs to be tightly
coupled to the context services in the supporting middleware.

As we can see in Section 4, to define context-aware exception
handling is necessary to spread code out all over the application in a

fashion that relates the application context specification, exception
detection, and exception handling. In our experience, the
implementation of error handling strategies has interfered and
crosscut different levels of abstractions in the context-aware mobile
system at hand: (1) the application level was affected by detection of
context-aware exceptions and dynamic handler binding (Section 4),
(2) the MoCA API was affected by inserting exception-related
interfaces for context defintions, and (3) the core structure in the
middleware level was modified to include components responsible
for managing the context-aware exceptional control flow.

In this context, aspect-oriented programming (AOP) [27] seems a
promising approach to support the implementation of context-aware
exception handling. For example, a specialized pointcut language
could be defined to quantify and explicitly specify context-aware
detections of exceptions. In a recent work, AOP has been used [15]
to modularize several parts of a context-aware application, such as
context acquisition, location/proximity context and application
specific context. This approach allows to create aspects capable to
performing context fusion/fission and adapt modeled context into
non-modeled contextual information that may be required by
application to perform some function. However, this work does not
take context-aware exceptions into account.

In order to exploit AOP to deal with context-aware error handling
issues, we are current working in two main directions: (i) identifying
scenarios where AspectJ mechanisms work (and not work) to
provide modular implementations of exception handling code; and
(ii) defining a pointcut language to support exception detection
according to contextual conditions. As part of (i), we are currently
investigating the use of AspectJ [28] to support the explicit
separation of exception handling code and normal application code
[16]. However, the general-purpose pointcut language and inter-type
declaration mechanism of AspectJ does not to work well in a wide
range of scenarios [16], which are very common in context-aware
applications. First, it is not trivial and even possible to modularize
application-specific exception detection with the AspectJ
mechanisms. Second, softening exceptions may lead to the behavior
of the system being unintentionally altered when the handlers are
extracted to aspects.

6. Final Remarks
Error handling in mobile agent-based applications needs to be
context sensitive. This paper discussed our experience in
incorporating exception handling in several prototype MoCA
applications. This allowed us to elicit a set of requirements and
define a novel context-aware exception handling model, which
consists of: (i) explicit support for specifying “exceptional
contexts”; (ii) context-sensitive search for exception handlers; (iii)
multi-level handling scopes that meet new abstractions (such as
groups), and abstractions in the underlying context-aware
middleware, such as devices, regions, and proxy servers, (iv)
context-aware error propagation, (v) contextual exception handlers,
and (vi) proactive exception handling. We have also presented an
implementation of this mechanism in the MoCA architecture, and
illustrated its use in an AmI agent-based application.

Acknowledgements. Karla and Carlos are supported by the

ESSMA Project under grant 552068/02-0. Nelio and Alessandro are
supported by the European Commission as part of the grant IST-2-
004349 for the AOSD-Europe Project. Alexander is also supported
by the European Commission as part of the IST RODIN Project.

42

7. REFERENCES
[1] A. K. Dey and G. D. Abowd. Towards a better understanding of

context and context-awareness. In Proc. of the 2000 Conference on

Human Factors in Computing Systems, The Hague, The Netherlands,
April 2000.

[2] G. Abowd et al. 1999. Towards a Better Understanding of Context and
Context-Awareness. In Proc. of the 1st Intl. Symp. on Handheld and

Ubiquitous Computing (Karlsruhe, September 1999, LNCS 1707.
Springer, 304-307.

[3] A. Dey. Understanding and Using Context. Personal Ubiquitous

Comput. 5, 1 (Jan. 2001), 4-7.

[4] B. N. Schilit, R. Adams and R. Want. Context-aware computing
applications. In Proc. Workshop on Mobile Computing Systems and

Applications. IEEE, December 1994.

[5] O. Davidyuk et al. Context-aware middleware for mobile multimedia
applications. In Proc. of the 3rd international Conference on Mobile

and Ubiquitous Multimedia (College Park, Maryland, October 27 - 29,
2004). vol. 83. ACM Press, New York, NY, 213-220.

[6] A. Iliasov and A. Romanovsky. CAMA: Structured Communication
Space and Exception Propagation Mechanism for Mobile Agents.
ECOOP-EHWS 2005, 19 July 2005, Glasgow.

[7] V. Muthusamy et al. Publisher Mobility in Distributed
Publish/Subscribe Systems, Fourth International Workshop on

Distributed Event-Based Systems (DEBS) (ICDCSW'05), 2005.

[8] G. Cugola and J. E. M. Cote. On Introducing Location Awareness in
Publish-Subscribe Middleware. Fourth International Workshop on

Distributed Event-Based Systems (DEBS) (ICDCSW'05), 2005.

[9] V. Sacramento et al, MoCA: A Middleware for Developing
Collaborative Applications for Mobile Users. IEEE Distributed

Systems Online, vol. 5, no. 10, 2004.

[10] S. Sharples, V. Callaghan and G. Clarke, A Multi-Agent Architecture
for Intelligent Building Sensing and Control. International Sensor

Review Journal, May 1999.

[11] N. Shadbolt, Ambient intelligence. IEEE Trans. Intell. Transp. Syst.,
vol. 18, no. 4, pp. 2-3, Jul. – Aug. 2003.

[12] F. Souchon et al. Improving exception handling in multi-agent systems.
In C. Lucena et al (Eds), Software Engineering for Multi-Agent

Systems II, number 2940. Feb. 2004.

[13] A.F. Garcia, C. M. F. Rubira, A. Romanovsky, J. Xu. A Comparative
Study of Exception Handling Mechanisms for Building Dependable
Object Oriented Software: Journal of Systems and Software. 59(2001),

197-222.

[14] J. B. Goodenough. Exception handling: issues and a proposed notation.
Commun. ACM 18, 12 (Dec. 1975), 683-696.

[15] N. Loughran et al. A domain analysis of key concerns – known and
new candidates, Katholieke Universiteit Leuven, Leuven, AOSD-
Europe Deliverable D43, AOSD-Europe-KUL-6, 27 February 2006, pp
87-130. Available at www.aosd-europe.net

[16] F. C. Filho, C. M. F. Rubira and A. Garcia. A Quantitative Study on
the Aspectization of Exception Handling. In ECOOP'2005 Workshop

on Exception Handling in Object-Oriented Systems, Glasgow, UK,
2005.

[17] R. Laddad. AspectJ in Actions. Manning, 2003.

[18] A. Tripathi, D. Kulkarni and T. Ahmed. Exception Handling Issues in
Context Aware Collaboration Systems for Pervasive Computing. In
Developing Systems that Handle Exceptions. Proc. ECOOP 2005
Workshop on Exception Handling in Object Oriented Systems. TR 05-
050. LIRMM. Montpellier-II University. 2005. July. France.

[19] L. Capra, W. Emmerich and C. Mascolo. CARISMA: Context-Aware
Reflective Middleware System for Mobile Applications. IEEE

Transactions on Software Engineering 29(10): pp. 929--944, Oct
2003.

[20] M. Klein and C. Dellarocas. Exception Handling in Agent Systems.
Proc. of the 3rd Int. Conference on Autonomous Agents, Seattle, WA,
May 1-5, 1999. Pp. 62-6.

[21] T. Anderson and P. A. Lee. Fault Tolerance: Principles andPractice.
Prentice-Hall, 2nd edition, 1990.

[22] D. Parnas and H. Wurges. Response to Undesired Events in Software
Systems. Proc.2nd ICSE, S.Francisco, USA, 437-446, 1976.

[23] F. Cristian. A Recovery Mechanism for Modular Software. Proc. 4th

ICSE, Munich, Germany, pp. 42 – 50, 1979.

[24] M. Lippert and C. Lopes. A Study on Exception Detection and
Handling using Aspect-Oriented Programming. Proc. 22nd ICSE,
Limerick, Ireland, pp. 418 – 427, 2000.

[25] M. Robillard and G. Murphy. Designing Robust Java Programs with
Exceptions. Proc. 8th FSE, San Diego, USA, 2 – 10, 2000.

[26] M. Robillard and G. Murphy. Static analysis to support the evolution
of exception structure in object-oriented systems. ACM Trans. Softw.

Eng. Methodol., 12(2): 191-221 (2003).

[27] G. Kiczales et al. Aspect-Oriented Programming. Proc. ECOOP’97,
pp. 220-242.

[28] G. Kiczales et al. An Overview of AspectJ. Proc. ECOOP’01, pp. 327-
353.

43

