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Abstract: With the rapid growth of internet data, knowledge graphs (KGs) are considered as efficient
form of knowledge representation that captures the semantics of web objects. In recent years,
reasoning over KG for various artificial intelligence tasks have received a great deal of research
interest. Providing recommendations based on users’ natural language queries is an equally difficult
undertaking. In this paper, we propose a novel, context-aware recommender system, based on
domain KG, to respond to user-defined natural queries. The proposed recommender system consists
of three stages. First, we generate incomplete triples from user queries, which are then segmented
using logical conjunction (∧) and disjunction (∨) operations. Then, we generate candidates by
utilizing a KGE-based framework (Query2Box) for reasoning over segmented logical triples, with ∧,
∨, and ∃ operators; finally, the generated candidates are re-ranked using neural collaborative filtering
(NCF) model by exploiting contextual (auxiliary) information from GraphSAGE embedding. Our
approach demonstrates to be simple, yet efficient, at providing explainable recommendations on
user’s queries, while leveraging user-item contextual information. Furthermore, our framework has
shown to be capable of handling logical complex queries by transforming them into a disjunctive
normal form (DNF) of simple queries. In this work, we focus on the restaurant domain as an
application domain and use the Yelp dataset to evaluate the system. Experiments demonstrate that
the proposed recommender system generalizes well on candidate generation from logical queries
and effectively re-ranks those candidates, compared to the matrix factorization model.

Keywords: domain knowledge graph; natural language query; recommendation system

1. Introduction

Recommender systems provide personalized recommendations for a set of products or
items that may be of interest to a particular user [1]. In today’s digital world, recommender
systems have shown to be extremely valuable and essential tools. Numerous applications,
ranging from e-commerce to social networks, are developed with enhanced algorithms
to make intelligent recommendations [2–4]. Although numerous efforts have been made
toward more personalized recommendations, these recommender systems remain unable
to address context and other challenges, such as data sparsity and cold start problems. Re-
cently, recommendations based on the knowledge graph (KG) have attracted considerable
interest as a source of context information. This approach not only alleviates the problems
mentioned above for a more accurate recommendation but also provides explanations for
recommended items [5–7]. The KG is a graph representation of real-world knowledge,
whose nodes represent entities and edges illustrate the semantic relation between them [8].
KGs explain the semantic and attribute relationships between concepts, in order to facilitate
reasoning about them. Moreover, node and edge vectors derived from KG embedding
(KGE), where semantics of KG are preserved, are used for training and inferencing machine
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learning (ML) models, which is useful for analytics, deeper queries, and more accurate rec-
ommendation. However, processing and making an efficient context-aware recommender
system based on user-defined complex queries, such as “Recommend best Chinese restaurants
in Toronto which serve sweet Noodles or Spicy Chicken Biryani”, on large scale incomplete
KGs still remains a challenging task. Finding candidate entities that satisfy queries can be
approached by reasoning on KG.

Reasoning is the process of consciously applying logic to draw new conclusions from
new or existing information. Logical reasoning mainly relies on first-order predicate logic
(FOL), which uses propositions as the basic unit for reasoning. Simple propositions in FOL
are declarative sentences that do not contain a connection and are represented in a simple
form of triple (h, r, t). A simple query is a one-hop triple query, in the form of (v? r, t), where
v? denotes the target entity answering the query (e.g., which restaurant has noodles on the
menu?) or (h, r, v?) (e.g., which menu does the Alps restaurant serve?). Complex queries in FOL
can be decomposed into combinations of simple queries connected by logical operations
(AND (∧), OR (∨)) with an existential quantifier (there exists; ∃) and allows negation (¬).
Link prediction on the KG embedding space can be used to locate target entities that
satisfy simple queries. Thus, complex queries consisting of any combination of simple
queries with the same target entity can be answered by set operations (intersection, union)
on sets of target entities that answer each simple query. However, complex queries that
involve intermediate unknown entities to answer target entities, such as “Which famous
dishes Chinese restaurants serves in Toronto?”, illustrated in Figure 1, cannot be handled by
link prediction.

Figure 1. FOL query and its (a) computation graph and (b) vector space representation for a domain
specific natural query “Which famous dishes Chinese restaurants serves in Toronto?”.

In this work, we propose a novel, context-aware recommender system based on user-
defined complex queries. Context-aware recommendation is accomplished by translating
natural language queries into complex logical queries, reasoning over KGE space to identify
candidate entities satisfying complex logical queries, and then re-ranking those candidates
by incorporating contextual information. As for a concrete setting of the proposed system,
we construct a KG for the restaurant domain and utilize the Yelp [9] review dataset to
perform experiments. The proposed recommender system consists of three modules: (i) the
triple generator module: generates logical triple segments from natural query; (ii) the
candidate generator module: generates candidate item set with a relevance score (z), using
the Query2Box (Q2B) model [10], which embeds logical queries, as well as KG entities, into
a low-dimensional vector space, such that entities that satisfy the query are embedded
close to the query in a hyper-rectangle boxes—candidate finder locates entities that satisfy
or closely approximate existential positive first order (EPFO) logical queries, by reasoning
over the KGE space and logical operations (∧, ∨, and ∃), which are processed by set
operations (intersection, union and projection); and (iii) the ML-based re-ranker module: to
incorporate interaction and content features for personalized recommendation—similar to
the factorization machine [11], we train a neural collaborative filtering (NCF) model [12] and
feed the contextual embeddings obtained from the GraphSAGE [13], which incorporates
user and item node and attribute information to generate contextual embedding. The
final candidate items, with relevance scores z, obtained in the second step, are further
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passed through the trained NCF model to predict a ranking score (r) between a pair of
user and candidate items and re-rank the candidates by calculating a weighted average
between ranking (r) and relevance scores (z). Since our approach considers the content
and collaborative features for recommendation, and KG provides a natural explanation of
the recommended candidates, the proposed approach is more user-friendly and produces
accurate explainable recommendations based on defined queries.

For reasoning over EPFO logical queries, we utilize the Q2B model [10]. We prepare a
domain-specific, ontology-based triple dataset, from the Neo4j graph database, for training
and reasoning over the Q2B model. However, the Q2B model does not support the conver-
sion of complex natural queries into the EPFO logical query. In this work, we provide the
generation of EPFO logical queries from user-defined queries.

To the best of our knowledge, there are only a few research works that address context-
aware recommendation by incorporating side features based on query expansion. However,
prior works lack in handling and providing recommendation based on user-defined natural
language queries.

The following is the demonstration of the major contributions of this work:

• We propose a novel framework for providing context-aware explainable recommenda-
tions based on domain KG by utilizing the existing model and embedding framework.

• We carefully design the domain ontology to capture the semantic meaning of entities
and relations to make relevant recommendations, in response to user queries.

• We develop a template-based framework to transform users’ natural queries into
logical triple segments and extract entity concepts and their relationships using the
knowledge base.

The remainder of the paper is structured as follows. In Section 2, we review the related
work. In Section 3, we present the implementation and techniques of the proposed system
and its components. In Section 4, we describe the data, system evaluation, and experiment
results. Finally, in Section 5, we present the conclusion of the paper.

2. Related Work

Substantial work has been conducted on contextual recommendation based on KGs.
Our system is built on a foundation of prior research and query-based logical reasoning.

2.1. Knowledge Graph (KG) and Knowledge Graph Embedding (KGE)

The knowledge graph (KG) is a graph representation of real-world knowledge, whose
nodes represent entities and edges that illustrate the semantic relation between them [8].
A KG is based on the facts that are typically represented as “SPO” triples (subject entity,
predicate (relation), and object entity) and are denoted as (h, r, t) or r (h, t). A domain
KG defines the entities and relationships of a specific domain. Constructing a domain
KG entails creating ontology, designing rules, extracting relations, and storing semantic
data. The KG has revolutionized how information is retrieved, in the traditional sense [14].
Additionally, KGs explain the semantic and attribute relationships between concepts, in
order to facilitate reasoning about them. One of the key benefits of a KG is that it can
easily integrate the newly discovered facts from the information retrieval process, which
captures more detailed facts and attributes on an ongoing basis and significantly resolves
the KGs incompleteness problem. Moreover, structured data, in the form of KG triples,
reveals numerous interesting patterns that are useful for analytics, deeper queries, and
more accurate recommendation. KG is effectively used for a variety of crucial AI tasks,
including semantic search [15], intelligent question answering [16], and recommendation
systems [5,6].

Formally, a KG is defined as follows: G = {(sub, pred, obj)} ⊆ E× R× E is a set of
(sub, pred, obj) triples, each including a subject sub ∈ E, predicate pred ∈ R, and object
obj ∈ E. E and R are the sets of all entities and relation types of G [17]. KGE models
embed entities E and relations R into a low-dimensional real or complex vector space,
while preserving the structure of the KG and its underlying semantic information [18].
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Such KGE models have proven to be extremely useful for a range of prediction and graph
analysis tasks [11]. KGE models are classified into three categories: translational distance-,
semantic matching-, and neural network-based models. Translational distance models
or additive models TransE [19], TransH [20], and TransR [21], use distance-based scor-
ing functions to calculate the similarity between the different entities and relations, thus
build the embedding accordingly [22]. On the other hand, semantic matching models, or
multiplicative models RESCAL [23], DistMult [24], and ComplEx [25], employ a similarity-
based scoring function. In translational-based models, given a triple (h, r, t), the relation
r translates the head entity h to the tail entity t. These models define a scoring function
to measure the correctness of the triple in the embedding space. However, these models
are reported to have low expressive power and do not capture semantic information [18].
The multiplicative models outperform the additive models by capturing more semantic
information [18]. The third category includes models built on graph neural networks
(GNNs), such as ConvE [26], ConvKB [27], and GraphSAGE [13]. These models consider
the type of entity or relation, temporal information, path information, and substructure
information [18]. Among these models, GraphSAGE is a framework for learning inductive
representations on large graphs [13]. Furthermore, it achieves low-dimensional vector
representations of nodes, while utilizing their attribute information, which makes Graph-
SAGE more appropriate for generating contextual embedding for recommendation and
prediction tasks than any other KGE models. Thus, we adopt this model for obtaining user
and item latent vector for training and inferencing our NCF model.

2.2. Recommendation

Two main techniques, collaborative filtering (CF) and content-based filtering (CBF)
are traditionally used for recommendation [28]. The CF approach recommends items for a
user by predicting the ranking score r̂(u, i) of item (i), based on users’ (u) profiles, common
preferences, and historical interactions. A number of research efforts have been devoted
to the CF approach for implementing efficient recommender systems that utilize user and
item side information, by transforming them into feature vectors to predict the rating
score. Matrix factorization (MF) [29] is a well-known collaborative filtering technique that
projects users and items into a shared latent space using a latent feature vector. Thereafter,
the interaction between a user and item is modelled as the inner product of their latent
vectors. However, CF techniques usually suffer from data-sparse and cold-start problems.
Numerous studies have been conducted to improve MF [12,29–33] and addressing the
cold-start problem by incorporating content (side) features to represent the user and item
in latent space. Therefore, exploiting context information has great importance in resolving
such problems and enhancing recommender systems. The conventional recommenda-
tion methods (CRMs) recommend items for a given user and utilize context information,
such as When? (day, night, weekday, weekend, etc.), What conditions? (whether, climate,
region, etc.), and with Whom? (family, lover, or friend). Given this information, the CRMs
learn more contextual prediction rating for recommendation between user and item. How-
ever, these methods are incapable of adequately capturing the context information and
are lacking in handling and providing context-aware explicable recommendations based
on user-defined natural queries. Our system is capable of capturing context information
from users’ queries and recommending by reasoning over KG, as well as employing con-
textual information, similar to that found in CRMs, to add more context and re-rank the
recommended candidates.

Recent studies have started to consider KGs as a source of contextual information, since
they can provide valuable context information for recommendation. For example, entities,
and their associated attributes, can be incorporated and mapped into the KG, in order to
comprehend their mutual relationships [34]. Additionally, the heterogeneous relations in a
KG help to improve the accuracy of recommender systems and increase the diversity of
recommended items. Moreover, KGs facilitate the interpretation of recommender systems.
In general, the majority of the known techniques for developing KG-based recommender
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systems can be classified into two categories: path- and knowledge graph embedding
(KGE)-based approaches. Path-based methods build a user-item graph and utilize it
to discover path-level similarity for items, either by predefining meta-paths or mining
connective patterns automatically. However, the disadvantage of these methods is that
they require domain knowledge to specify the types and number of meta-paths [35]. On
the other hand, KGE-based methods expand the representation of entities and relations
by embedding them in a continuous vector space. Hence, the representation of entities,
and their associated relations, can be obtained from KGE space. These methods typically
require a two-module approach for recommendation systems (RS) [18,22,35–37]: a KGE
module for obtaining the user and item latent vectors and recommendation module for
inferring recommendation (usually by computing candidate ranking score from user and
item latent vectors). The advantages of these methods lie in the simplicity and scalability;
however, since the two modules are loosely coupled, the approach might not be suitable for
recommendation tasks. There are a few research works that deals with recommendations
based on query context. Sitar-Tăut et al. [38] suggested a knowledge-driven product
recommendation, using a digital nudging mechanism, to tackle the cold-start problem.
They utilized a KG to integrate managerial preferences, along with product attributes
that enable semantic reasoning using SPARQL queries. Zhu et al. [39] addressed the
context of interactive recommendation in e-commerce by utilizing user interaction history
with the e-commerce site. Bhattacharya et al. [40] utilized queries as context and found
candidate items by collecting similar items while the user was searching for a target item.
For candidate items, [40] calculated recommendation rank scores via a gradient boosted
decision tree (GBDT). Both [39] and [40] dealt with query context by user interaction and
query expansion, which is different from the context defined by a user’s queries in natural
language, as proposed in this paper.

2.3. Semantic Search and Reasoning over KG

FOL queries can be expressed as directed acyclic graphs (DAGs) and reasoned over
KG to obtain a set of candidates. A conjunctive query performs a conjunction operation
(∧) between two one-hop queries, such as (v?, r1, t) ∧ (h, r2, v?). The path query, on the
other hand, needs to traverse the path in a KG, such as “∃v: (v?, r1, v) ∧ (v, r2, t)” or
“(∃v: (v, r1, v?) ∧ (v, r2, t)”, where v? denotes the target entity, v denotes an intermediate
unknown entity with a known type, and ∃ denotes the existential quantifier. One concrete
example of a path query is, “Where did Turing Award winners graduate?” (∃v: (v, Graduate,
v?) ∧ (v, Win, Turing Award). EPFL query allows disjunction (∨) of queries, in addition to
conjunction (∧) with existential quantifier ∃.

With the evolution of KGs, query-based methods for recommendations [10,16,19,41]
have become a more intriguing topic of research. These approaches decouple entities and
concepts from the query and create recommended candidates from KGs. We build our
recommender framework on the concept of semantic search and reasoning over KG, since
this enables the generation of explainable and context-aware query-based recommended
candidates. Pirro [42] developed RECAP, based on a similar concept; the tool utilizes
RDF and SPARQL for determining explainable knowledge for a given pair of entities in
KG. Zhu et al. [15], Feddoul et al. [43], and Yan et al. [44] proposed searching techniques
using query processing and expansion over KG. For an incomplete knowledge base (KB),
some real-world queries fail to answer. The purpose of query embedding (QE) on KGs is
to represent KB queries in an embedding space. A promising approach to this problem
is to embed KG entities, as well as the query, into a vector space, such that entities that
answer the query are embedded close to the query [34]. GQE (graph query embedding) [45]
embeds graph nodes in a low-dimensional space and represents logical operators (∧with∃),
modeled as learned geometric operations (e.g., translation and rotation). Ren et al. [10]
further extended the concept and proposed Q2B to represent logical queries as hyper-
rectangles, instead of points in a KGE vector space. Geometrical operations on those
rectangles allowed for answering queries with disjunction (∨), re-written in the disjunctive
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normal form (DNF). This technique of modeling the answering entities of logical queries
resolves the candidate generation problem for each incomplete triple and finds candidate
entities of a given query, without traversing the KG. Additionally, the Q2B model [10] is
capable of handling EPFO logical queries. Changing the query representation form to beta
distributions enabled Beta-E [41], which can further tackle queries with negation (¬) and,
hence, is able to handle FOL queries. However, since our recommendation framework is
constrained to a certain template for parsing natural language queries into logical triple
segments, and since the domain ontology graph lacks deeper linkages, it is not possible to
train and answer very complex and arbitrary queries. Therefore, we use the Q2B model [10]
to train the KG triples with limited query structures, as described in the original paper.

2.4. Translating Natural Language Query to Triple

In order to process users’ queries expressed in natural language, we need to convert
them into triples that reflect the semantic structures of domain KGs, based on defined on-
tology. PAROT [46] provides a dependency-based framework for converting user’s queries
into user and ontology triples to construct SPARQL queries. The framework processes
compound sentences by employing negation, scalar adjectives, and numbered lists.

3. Methods
3.1. Ontology Design

Ontologies represent the backbone of the formal semantics of a knowledge graph.
They can be seen as the schema of the KG. A well-defined ontology ensures a shared
understanding of KG entities, attributes, and their relationships. Moreover, it enables
deeper queries and reasoning over KG for efficient recommendations. Figure 2 shows
the ontology of our restaurant domain KG. We apply natural language processing (NLP)
techniques to extract information and produce KG triples. We utilized the Neo4j database
for KG storage and visualization. The description of entities, relations, and their attributes
is given in Table 1. The ‘Time’, ‘Weather’, and ‘Date’ nodes in the ontology do not exist
in domain KGs. However, by extending multi-source data acquisition and implementing
more robust rules, the KG can be extended to obtain additional knowledge.

Figure 2. Conceptual graph schema (ontology) for restaurant domain knowledge graph.
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Table 1. Description of domain KG entities and relations.

Entity No. of Nodes
Relationship Types

Attributes
Incoming Outgoing

Aspect 15 [HAS_ASPECT] [IS] aspect_id, name

Attr 241 [IS] [ASPECT_ATTR_FOR,
MENU_ATTR_FOR] attr_id, name

Category 56 [HAS_CATEGORY] [] category_id, name

City 31 [LOCATED_IN] [LOCATED_IN] city_id, name

Country 2 [LOCATED_IN] [] country_id, name

Menu 624 [HAS_MENU] [IS] menu_id, name

Restaurant 102
[ASPECT_ATTR_FOR,

MENU_ATTR_FOR,
VISIT, RATE]

[LOCATED_IN,
HAS_CATEGORY, IS,

HAS_ASPECT,
HAS_MENU,

HAS_REVIEW]

rest_id, name, address,
postal_code, rating

Review 3452 [HAS_REVIEW,
WRITE_REVIEW] [] review_id, text

User 3227 [HAS_FRIEND] [VISIT, ORDER, RATE,
WRITE_REVIEW]

user_id, name, gender,
age, review_count,

avg_star, fans

3.2. Proposed KG-Based Context-Aware Recommendation

Our proposed recommender system, illustrated in Figure 3, is composed of the fol-
lowing three components: (i) triple generator module: generates template-based logical
triple segments from a natural query; (ii) candidate generator module: comprises of the
Q2B model; and (iii) machine learning-based re-ranker module: comprises of the NCF
model. The NCF model is trained to learn user-item interactions by embedding latent
vectors obtained from GraphSAGE framework. As a result, the model is capable of re-
ranking the candidates generated in the second step of the candidate generation process by
incorporating contextual features.

Figure 3. Proposed recommendation system.

3.2.1. Triple Generation from Natural Language Query

The triple generator module, illustrated in Figure 4, is a template-based framework
that employs a simple, lexical-based technique to convert natural language query into
logical triple segments. It first identifies the target word from the given user query. For our
restaurant domain, we target restaurant and menus for recommendations (i.e., recommend
best restaurant in . . . , most popular dishes of Silver Spoon restaurant, etc.). It then recognizes
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the entity concepts, i.e., ‘Category’, ‘City’, and ‘Menu’, etc., from user query, maps them to
their associated relations, using the knowledge base (KB), and generates a set of triples. The
goal is to convert natural language queries to logical triple segments that can be mapped to
Q2B query structures and are created within the scope of the defined rules and KB entity
concepts and relationships. Therefore, the framework is restricted to a specific template
and can only process any arbitrary FOL queries that satisfy the template-specific rules.

Figure 4. Triple generator module.

Table 2 illustrates the results of triple extraction, filtration, and logical query conversion
for a given user query: “Recommend best Chinese restaurant in Toronto which serves sweet
Noodles or spicy Chicken Biryani”. The extracted entity concept is mapped to its associated
incoming and outgoing relations, in order to generate triples with logical conjunction (∧)
and disjunction (∨) (AND, OR) segments. Additionally, the module eliminates extraneous
triples (in red) and filters the created triples to establish logical groupings of triple segments
for reasoning and candidate retrieval. The strategy for filtration is described below:

• We eliminate all triples that do not have a direct relation to the target word or triples
that do not describes the attribute of the entity concepts given in the user queries. The
triple, for instance, (‘Toronto’, ‘LOCATED_IN’, ?), which represents the LOCATED_IN
(‘City’, ‘Country’) triple, neither has a direct relationship to the target word nor defines
the attribute of any entity concepts given in the user query. Therefore, this triple gets
eliminated. On the other hand, the triple (‘?’ LOCATED_IN, ‘Toronto’) represents
the LOCATED_IN (‘Restaurant’, ‘City’) triple, which has a direct relation with the
restaurant concept. Similarly, the triple (?, ‘ORDER’, ‘Noodles’), which represents
ORDER (‘User’, ‘Menu’), gets eliminated.

• The triples that do not belong to the similar concept are eliminated. For example,
the ‘Attribute’ entity has two outgoing relationships, i.e., ‘MENU_ATTR_FOR’ and
‘ASPECT_ATTR_FOR’. Therefore, the attribute ‘Spicy’ generates two triples: (‘Spicy’,
‘MENU_ATTR_FOR’, ‘?’) and (‘Spicy’, ‘ASPECT_ATTR_FOR’, ‘?’). However, the
former does not fall under the ‘Menu’ concept and, hence, the triple is eliminated.

• The two triples that result in a complete triple fact are considered a true fact and
removed from the incomplete triple segments, i.e., [(‘Noodles’, ‘IS’, ‘?’), (‘?’, ‘IS’,
‘Sweet’)] or [(‘Chicken Biryani’, ‘IS’, ‘?’), (‘?’, ‘IS’, ‘Spicy’)] generates (‘Noodles’, ‘IS’,
‘Sweet’) or (‘Chicken Biryani’, ‘IS’, ‘Spicy’).

Furthermore, we transform query segments to a logical query format for querying the
Q2B model for candidate retrieval.

• The logical operations (∧, ∨) are defined between triple segments.
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Table 2. Results of user query “Recommend best Chinese restaurant in Toronto which serves sweet Noodles
or spicy Chicken Biryani” conversion to logical query.

Extracted Triples

[{‘triple_segment’: [(‘?’, ‘HAS_CATEGORY’, ‘Chinese’)], ‘concept’:
‘Category’, ‘op’: None},

{‘triple_segment ‘: [(‘?’, ‘LOCATED_IN’, ‘Toronto’), (‘Toronto’,
‘LOCATED_IN’, ‘?’)], ‘concept’: ‘City’, ‘op’: None},

{‘triple_segment ‘: [(‘?’, ‘ORDER’, ‘Noodles’), (‘?’, ‘HAS_MENU’,
‘Noodles’), (‘Noodles’, ‘IS’, ‘?’), (‘?’, ‘IS’, ‘Sweet’), (‘Sweet’,

‘MENU_ATTR_FOR’, ‘?’), (‘Sweet’, ‘ASPECT_ATTR_FOR’, ‘?’)],
‘concept’: ‘Menu’, ‘op’: None},

{‘triple_segment ‘: [(‘?’, ‘ORDER’, “Chicken Biryani ‘), (‘?’,
‘HAS_MENU’, ‘Chicken Biryani’), (‘Chicken Biryani’, ‘IS’, ‘?’), (‘?’,

‘IS’, ‘Spicy’), (‘Spicy’, ‘MENU_ATTR_FOR’, ‘?’), (‘Spicy’,
‘ASPECT_ATTR_FOR’, ‘?’)], ‘concept’: ‘Menu’, ‘op’: ‘AND’}]

Filtered Triples

[{‘triple_segment ‘: [(‘?’, ‘HAS_CATEGORY’, ‘Chinese’)], ‘concept’:
‘Category’, ‘op’: None},

{‘triple_segment ‘: [(‘?’, ‘LOCATED_IN’, ‘Toronto’)], ‘concept’:
‘City’, ‘op’: None},

{‘triple_segment ‘: [(‘?’, ‘HAS_MENU’, ‘Noodles’), (‘Sweet’,
‘MENU_ATTR_FOR’, ‘?’)], ‘concept’: ‘Menu’, ‘op’: None},

{‘triple_segment ‘: [(‘?’, ‘HAS_MENU’, ‘Chicken Biryani’), (‘Spicy’,
‘MENU_ATTR_FOR’, ‘?’)], ‘concept’: ‘Menu’, ‘op’: ‘AND’}]

Logical Query

q = R?: ∃ R: Category(R?, Chinese) ∧ Location(R?, Toronto) ∧
(((Menu(R?, Noodles) ∧

MenuAttrFor(Sweet, R?)) ∨ (Menu(R?, Butter Chicken) ∧
MenuAttrFor(Spicy, R?)))

The resultant logical query shows the converted output of the framework from the
user query. To simplify logical query triples, the relationship aliases are converted to their
simple form (i.e., HAS_CATEGORY to Category, LOCATE_IN to Location, HAS_MENU to
Menu, MENU_ATTR_FOR to MenuAttrFor, etc.).

3.2.2. Query2Box (Q2B) Model

In KG, the entity that answers a query (e.g., {v?; (v?, r1, t) = True}) is typically a
set, not a point. If we take a query to be equivalent to a set of answer entities, then logical
operations on queries are equivalent to operations on set of answer entities. A set of answer
entities is embedded in a hyper-rectangle (box), formed by vectors corresponding to the
entities in the KGE space. The Q2B [10] model is an embedding-based framework for
reasoning over KGs that is capable of handling arbitrary existential positive first-order
(EPFO) logical queries (i.e., queries having any set of ∧, ∨, and ∃) in a scalable manner. It
embeds queries as hyper-rectangles (boxes) in a KGE space and logical operations, such as
existential quantifier (∃), conjunctive (∧), and disjunctive operations (∨), as box operations
over queries (projection, intersection, and union).

The Q2B operations are illustrated in Figure 5, which is accomplished by defining
a box with its center and offset b = (Cen(b), O f f (b)) ∈ R2d (d is the dimension of KGE
space) as:

Boxp ≡
{

v ∈ Rd : Cen(p)−O f f (p) ≤ v ≤ Cen(p) + O f f (p)
}

where≤ is an element-wise inequality, Cen(p) ∈ Rd is the center of the box, and O f f (p) ∈ Rd
≥0

is the positive offset of the box, representing the size of the box. Then, it describes the
box projection and intersection operations, as well as the entity-to-box distance distbox
(box distance).
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Figure 5. The geometric intuition of the projection and intersection operations in Q2B.

Q2B represents each entity v ∈ V as a single point (zero-volume box): v = (Cen(v), 0)
and relation (r) as an embedding in R2d and performs relation projection and box intersec-
tion, i.e., P : Box× Relation→ Box and J : Box× . . .× Box→ Box in the embedding
space, respectively.

Each relation (r) takes a box and produces a new box. The projection operation (P)
(Figure 5a) takes the current box as input and uses the relation embedding to project and
expand the box. The geometric intersection operation (J ) (Figure 5b) takes the multiple
boxes {p1, . . . , pn} as input pinter = (Cen(pinter), O f f (pinter)) and produces the intersec-
tion box. The center of the new box should be close to the centers of the input boxes,
accomplished by shrinking the offset of the input boxes. The center of the new box (in blue
Figure 5b) is a weighted sum of the input box centers, given as follows:

Cen(pinter) = ∑
i

wi � Cen(pi), ∴ wi =
exp(MLP(pi))

Σj exp
(

MLP
(

pj

))
O f f (pinter) = Min({O f f (p1), . . . , O f f (pn)})� σ(DeepSets({p1, . . . , pn}))

where � is the dimension-wise product, wi ∈ Rd is calculated by a multi-layer perceptron
(with trainable weights), and wi represents a self-attention score for the center of each input
Cen(pi). It takes the minimum of the offset of the input box and makes the model more
expressive by introducing a DeepSets(.) function to extract the representation of the input
boxes with a sigmoid function to guarantee shrinking.

The entity-to-distance (Figure 5c) function defines the scoring function, in terms of
distance. Given a query box (q) and entity embedding (box) (v), the distance is defined as:

distbox(v, q) ≡ distout(v, q) + α · distin(v, q) ∴ 0 < α < 1

If the point is enclosed in the box, the distance should be downweighted. Q2B handles
conjunctive queries in a natural way by taking projection and intersection. However,
allowing disjunction (union) over arbitrary queries requires high-dimensional embeddings,
as it cannot be embedded in a low-dimensional vector space. To handle EPFL queries that
contain disjunction, it makes use of a well-known fact—any FOL query may be translated
into its corresponding disjunctive normal form (DNF), which has a form of disjunction
of conjunctive queries. Thus, in order to answer to an EPFO queries, Q2B first applies
box projection and intersection to calculate the intersected box for each conjunctive and
compute the final answer entities by utilizing the aggregated distance function to a set of
intersected boxes. The aggregated distance function between an EPFO query (q) and an
entity (v) utilizing the box distance distbox and the fact that a complex query (q) in FOL is
logically equivalent to q(1) ∨ ··· ∨ q(N), as follows:

distagg(v, q) ≡ Min
({

distbox

(
v, q(1)

)
, ···, distbox

(
v, q(N)

)})
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As long as v is the answer to one conjunctive query (qi), it should also be the answer
to q, and as long as v is the close to one conjunctive query (qi), it should also be close to q in
the embedding space.

For the purpose of learning entity embeddings, as well as geometric projection and
intersection operators, Q2B optimizes a negative sampling loss, in order to successfully
optimize the distance-based model. During optimization process, Q2B randomly samples
a query (q) from the training graph (Gtrain), answer (v ∈ [|q|]train), and a negative sample
(v′ /∈ [|q|]train). The negative sample entity (v′) is the entity of same type as v but not the
answer entity. After sampling, the query is embedded into the vector space and calculates
the score distbox(v; q) and distbox

(
v′i; q

)
and optimizes the loss (L) to maximize distbox(v; q),

while minimizing the distbox
(
v′i; q

)
;

L = −logσ(γ− distbox(v; q))−
k

∑
i=1

1
k

logσ
(
distbox

(
v′i; q

)
− γ

)
where σ is the sigmoid function, γ represents a fixed scalar margin, v is a positive entity
(answer to the query q), v′i is the i-th negative entity (non-answer to the query q), and k is
the number of negative entities.

3.2.3. ML-Based NCF Re-Rank Model

Our ML-based collaborative re-ranking model, illustrated in Figure 6, provides a
ranking score function r̂ (u, i) for recommendation between the user (u) and candidate
items (i) obtained from the Q2B model. The ranking score (r) is used to re-rank the obtained
candidate items, based on user and item interaction and side (auxiliary) information.

Figure 6. NCF-based re-rank model.

The NCF model leverages both the bipartite interaction and side information of users
and items, as shown in Figure 7. We utilized the GraphSAGE framework to obtain the con-
textualized latent vectors from the domain KG. GraphSAGE generates node embeddings,
while incorporating side features. The auxiliary features of user and restaurant nodes are
given in the ‘Attributes’ column in Table 1. By combining content information and bipartite
interactions into the NCF model, on top of the Q2B model, we can not only recommend
candidates based on user-defined queries but also re-rank the recommended candidates to
provide more contextual recommendations and address the cold-start problem.
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Figure 7. Example of bipartite interaction between user and item. The brackets represent the side
features of users and items.

We leverage the Graph Data Science (GDS) library, provided by Neo4j, to generate
GraphSAGE embeddings for nodes with context features from the domain KG. GraphSAGE
is a framework for learning inductive representations on large graphs [13]. It generates
low-dimensional vector representations of nodes, while utilizing their attribute information,
making GraphSAGE more appropriate for training and learning KG representation for
recommendation and other tasks than any other KGE model. Furthermore, it preserves
the latent structural information of the network. Previous matrix factorization-based
embedding frameworks, which are transductive in nature and computationally expensive,
due to the fact that they can generate embeddings only for a single fixed graph and do not
generalize well on unseen nodes. GraphSAGE performs sampling on the neighboring nodes
and aggregates their feature representations to generate node embedding. GraphSAGE
generates node embeddings using the pool aggregator function, which performs element-
wise max-pooling operations to aggregate information across neighbor nodes [13].

AGGREGATEpool
k = max

({
σ
(

Wpoolhk
ui
+ b
)

, ∀ui ∈ N(v)
})

The learned contextual embeddings are used to train the NCF model for re-ranking
the candidates. We process the final candidates, returned by the Q2B model, by utilizing
user and restaurant node and attribute information to predict a rating score (r). The final
recommendation score (s) for each candidate restaurant is calculated by the weighted
average between relevance score (z) of the Q2B model and predicted rating score (r) of the
NCF model to re-rank the final restaurant candidates.

s = (αz + (1− α)r) ∴ 0 < α < 1

The α factor is the weight that determines the importance of model results to be
considered for final ranking of the candidates. The relevance score (z) of the generated
candidate items is obtained from the Q2B model, based on the given user query. On the
other hand, the NCF model predicts the rating score (r) between the user and generated
candidate items by incorporating the interaction and side information. Therefore, assigning
a higher weight (α) to the rating score (r) leads in re-ranking candidates, based on more
accurate contextual information.
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4. Evaluation

In this part, we describe the dataset and experiments. We conducted experiments
to evaluate the candidate generation and re-ranking, using the proposed recommenda-
tion framework.

4.1. Dataset

We utilized the YELP dataset [9] and stored it in the MongoDB database. We fil-
tered out only restaurant categories to make a restaurant domain dataset. We considered
100 restaurants, with at least 20 reviews and extract entities (User, Category, Reviews,
City, etc.), associated with those restaurants. For instance, we stored only those users who
had left a review for those restaurants. We extracted entities and their relations that consti-
tuted a KG triple. First, we processed the structured data to extract the factual information
(entity and relation), based on the defined ontology, shown in Figure 2. For example, the
restaurant data contains information about location, category, etc., while the review data
contains information about reviewer (i.e., ID, name), review_for, review_text, and date. Then,
we manipulated this structured data, based on domain ontology, and stored it in our Neo4j
graph database. Then, we applied different NLP techniques to process unstructured text,
in the form of review text. Table 3 shows the data description of the restaurant domain KG.

Table 3. No. of nodes and relation in the restaurant domain KG.

Total No. of Nodes Total No. of Relations

7750 39,158

4.2. Evaluation on Natural Query Conversion

The triple generator module was evaluated on domain-specific user queries. For
evaluation settings, we defined the natural query, corresponding to the query structures
used to evaluate the Q2B model on the domain KG. We also evaluated the conversion of
user-defined natural queries, corresponding to the arbitrary FOL query (having any set of
∧, ∨, and ∃) that satisfied the template-specific rules. The results depict that the framework
generalizes well on the queries that adhere to the template rules.

Failure case analysis: The framework generated an incorrect query that lacked a valid
target word (restaurant or menu). The natural query with the ‘pi’ structure (Table 4 (6))
does not contain a valid target word. As a result, the framework produced an incorrect
query. Additionally, the query (Table 4 (10)) also failed to convert to the valid logical
query segments. The ‘Aspect’ node in the domain KG contains ‘Delivery’ and ‘Service’
as two distinct aspects of a restaurant. Therefore, the framework extracted two aspects
and produced the wrong result, containing an extra triple: ‘Aspect (R?, Service)’, which
is invalid.

4.3. Evaluation on Query2Box (Q2B) Query and Candidate Generation

To train our system on the restaurant domain KG build from the Yelp dataset, we
simulated [10] the construct of a set of queries and their answers during training time and
then learned the entity embeddings and geometric operators, in order to enable accurate
query response. The model examines nine distinct types of query structures, as seen in
Figure 8. The first five query structures were used to train the model and were evaluated
on all nine query structures. The technique demonstrates a high degree of generalization,
when applied to queries and logical structures not seen during training.
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Table 4. Results of natural query conversion to logical triple segments. R? denotes the restaurant
target entity, and M? denotes the menu target entity.

# User Query Query
Structure Logical Query Segments Result

1 Recommend best
Chinese restaurants 1p Category (R?, Chinese) Correct

2
What special menus
Chinese
restaurants serve?

2p Category (R?, Chinese) ∧
Menu (R?, M?) Correct

3 Recommend best Indian
restaurant in Toronto 2i Category (R?, Indian) ∧

Location (R?, Toronto) Correct

4

Recommend best Indian
restaurant in Toronto
which serves
Butter Chicken.

3i

Category (R?, Indian) ∧
Location(R?, Toronto) ∧
Menu (R?,
Butter Chicken)

Correct

5
What special menus
Indian restaurants serve
in Toronto?

ip
Category (R?, Indian) ∧
Location(R?, Toronto) ∧
Menu (R?, M?)

Correct

6
Who visited Indian
restaurant and ordered
Butter Chicken?

pi
Category (R?, Indian)
∧Menu (R?, Butter
Chicken)

Wrong

7

Recommend restaurants
which serve Butter
Chicken or
Chicken Biryani

2u
Menu (R?,
Butter Chicken) ∨Menu
(R?, Chicken Biryani)

Correct

8

Which restaurants in
Toronto serves Butter
Chicken or
Chicken Biryani

up

(Menu (R?, Butter
Chicken) ∨Menu (R?,
Chicken Biryani)) ∧
Location (R?, Toronto)

Correct

9

Recommend best Chinese
restaurant in Toronto
which serves sweet
Noodles or spicy
Chicken Biryani

arbitrary

Category (R?, Chinese) ∧
Location (R?, Toronto) ∧
(((Menu (R?, Noodles) ∧
MenuAttrFor (Sweet, R?))
∨ (Menu (R?, Butter
Chicken) ∧MenuAttrFor
(Spicy, R?)))

Correct

10
Which Chinese
restaurants in Toronto
have delivery service?

3i

Category (R?, Chinese) ∧
Location (R?, Toronto) ∧
Aspect (R?, Delivery) ∧
Aspect (R?, Service)

Wrong

11
Which Chinese
restaurants in Toronto
have delivery?

3i
Category (R?, Chinese) ∧
Location (R?, Toronto) ∧
Aspect (R?, Delivery)

Correct

Figure 8. Query structures for experiments, where ‘p’, ‘i’, and ‘u’ stand for ‘projection’, ‘intersection’,
and ‘union’, respectively.

We follow a similar evaluation protocol to that presented in [10], which is briefly
stated here; the data preparation required splitting the KG edges into training, test, and
evaluation sets and began by augmenting the KG to include inverse relations, thus dou-
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bling the amount of edges in the graph. Following that, we constructed three graphs:
Gtrain ⊆ Gvalid ⊆ Gtest. While Gtrain, contains only training edges and is used to train
node embeddings, as well as box operators, Gvalid contains Gtrain, as well as the validation
edges, and Gtest includes Gvalid, as well as the test edges. Considering the nine query struc-
tures presented in [10] for training the graphs, 80% of generated queries were utilized for
training, 10% were used for validation, and the remaining 10% were used for testing. For
a given query (q), the denotation sets (answer entities sets) [|q|]train, [|q|]valid, and [|q|]test
were obtained by running subgraph matching of q on Gtrain, Gvalid, and Gtest, respectively.
[|q|]train were utilized as positive samples for the query during training, while negative
samples were generated from other random entities. However, for testing and validation,
the method was validated against only those answers that have missing relations, instead
of validating against whole validation [|q|]valid or test [|q|]test sets of answers. Table 5
summarizes the results of the Q2B model simulation on a restaurant domain dataset for
different query structures. As stated in [10], the complex logical queries (particularly 2p,
3p, ip, pi, and up) require modeling a significantly greater number of answer entities (often
more than 10 times) than the simple 1p queries do. Therefore, it is expected that the box
embeddings will perform well when handling complex queries with a large number of
answer entities; this was also observed in our experiments, particularly for queries with 2i,
3i, ip, and pi. According to our restaurant domain ontology triple dataset, queries with 2i
3i, ip, and pi structures are frequently observed with a greater number of entities than other
query structures and, therefore, produced better results on the Yelp (domain-KG) dataset
than other datasets. The model performs comparably to FB15k-237 and NELL995 but is
inferior to FB15k on our generated restaurant domain KG.

Table 5. Results of Q2B on restaurant domain dataset for different query structures. The other dataset
results are illustrated from the original paper for comparison.

Query Avg 1p 2p 3p 2i 3i ip pi 2u up

Yelp (domain-KG) dataset

MRR 0.286 0.309 0.164 0.144 0.402 0.604 0.234 0.38 0.171 0.168
Hits@1 0.188 0.19 0.062 0.05 0.334 0.545 0.143 0.26 0.012 0.099
Hits@3 0.347 0.392 0.234 0.207 0.429 0.627 0.287 0.46 0.289 0.201
Hit@10 0.44 0.46 0.362 0.303 0.498 0.699 0.399 0.535 0.393 0.308

FB15k

MRR 0.41 0.654 0.373 0.274 0.488 0.602 0.194 0.339 0.468 0.301
Hits@3 0.484 0.786 0.413 0.303 0.593 0.712 0.211 0.397 0.608 0.33

FB15k-237

MRR 0.235 0.4 0.225 0.173 0.275 0.378 0.105 0.18 0.198 0.178
Hits@3 0.268 0.467 0.24 0.186 0.324 0.453 0.108 0.205 0.239 0.193

NELL995

MRR 0.254 0.413 0.227 0.208 0.288 0.414 0.125 0.193 0.266 0.155
Hits@3 0.306 0.555 0.266 0.233 0.343 0.48 0.132 0.212 0.369 0.163

Our recommendation system enables generating results for the user-specific queries
in an explainable way, based on user and query context.

“Recommend best Indian restaurant in Toronto which serves sweet Butter Chicken”
Query (1)

Q2B produces set of candidate restaurant for a given logical query. An equivalent illustra-
tion of the Q2B result for the Query (1) is given in Figure 9, using cypher in Neo4j.
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Figure 9. Visual explainable equivalent cypher query result from user Query (1).

The cypher query approach produces actual candidates from the domain KG. It cannot
recommend candidates if no match is found. However, Q2B aims to recommend the item,
not to perform a search from the database. Therefore, it produces top-K, the semantically
similar and closest candidates for each query triple. Hence, it can recommend items, even
if there is no match found in the KG. Table 6 depicts the Q2B results for the input Query (1).
The resultant restaurant candidates in bold (Rank 1, 2, and 3) are the actual restaurants
that satisfy the result for input Query (1) from the stored KG, as shown in Figure 10. The
candidate restaurants with Ranks 4 and 5, on the other hand, missed some entities or
relationships to match exact candidates based on the given query. However, because the
recommender system’s task is to recommend the top-K candidates, we consider the top five
results, based on the semantic and contextual similarity of the query and KG. Additionally,
this approach of producing candidates enables the generation of explainable findings. We
define explainability, in terms of KG paths, for recommended candidates.

Table 6. Q2B results for input Query (1).

Rank RestID Q2B (z)

1 4873 7.478498
2 4641 7.431061
3 3744 3.110984
4 3926 1.378697
5 5324 0.376228

The result of the Q2B model can be defined for the explainable recommendation. We
demonstrate the visual explainability of each generated restaurant candidate for input
query (1) in Figure 11. The projection of the resulting restaurant candidates with connected
paths determines the applicability of the recommendation. From the explicable approach,
we show that candidate 4 does not match the attribute ‘Sweet’, while candidate 5 does not
match the menu, as well as attribute entity (Butter Chicken, Sweet). However, the other
facts of these candidates are matched with higher semantic and structural similarity and
obtained a relevance score lower than the exact match candidates of the query from the KG.
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Figure 10. Comparison of Q2B results with native cypher query results for user Query (1).

Figure 11. Visualization of explainable results from the domain KG for candidates, obtained from the
Q2B model.

4.4. Evaluation of Neural Collaborative Filtering (NCF)-based Re-Rank Module

The scope of our recommender system is not only limited to domain KG-based explain-
able recommendation. It is a two-stage procedure, in which, similar to other factorization
approaches, we employ a ML-based NCF model to re-rank the generated candidates from
the previous stage, in order to incorporate user and candidate restaurant context infor-
mation. We train a NCF model by leveraging contextual GraphSAGE embedding. We
generate contextual GraphSAGE embedding by employing the entities and attributes from
the domain KG, stored in the Neo4j database. The dataset for training the model is shown
in Table 7.

Table 7. Dataset for model training.

Train Test

30,000 4524

The proposed approach of utilizing GraphSAGE, embedding with the NCF net-
work model, outperforms the classic matrix factorization method on the domain KG.
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Table 8 shows the ablation study for model training, while in Table 9, we compare our
proposed approach with the matrix factorization model.

Table 8. Ablation results of the NCF model training with GraphSAGE features.

Epochs MAE RMSE

5000 1.0690 1.5949
10,000 1.0674 1.5925
20,000 1.0673 1.5917

Table 9. NCF model comparison with matrix factorization technique.

Method MAE RMSE

MF 1.169 1.994
NCF Model 1.0673 1.5917

As discussed earlier, the NCF model processes candidates from the Q2B results and
predicts a rating score (r) for the user and candidate restaurant pair. The final score (s)
is then taken as a weighted average between the relevance score (z) of the Q2B model
and predicted rating score (r) of the NCF model. The demonstration of the model results,
between generated restaurant candidates in Table 6 and two users (UserID:3178, and
UserID:17), pair is shown in Table 10. To calculate final score (s), we consider α = 0.3 to
assign more attention to r. The final candidate items (restaurants) are re-ranked, based on
the final score.

Table 10. Re-rank model results.

Rank RestID Q2B (z)
UserID: 3178 UserID: 17

NCF (r) Score (s) Re-Ranking NCF (r) Score (s) Re-Ranking

1 4873 7.478498 4.3 5.25 2 4.2 5.18 2
2 4641 7.431061 4.7 5.52 1 4.5 5.38 1
3 3744 3.110984 4.8 4.29 3 3.9 3.66 3
4 3926 1.378697 4.2 3.35 4 4.0 3.21 4
5 5324 0.376228 4.1 2.98 5 3.5 2.56 5

We further validate the NCF model results by applying cosine similarity on the
GraphSAGE embeddings, learned using the Neo4j GDS framework. The cosine similarity
computes the similarity between two vectors, which could be then utilized in a recommen-
dation query. For instance, to obtain restaurant recommendations based on the preferences
of users who have previously given similar ratings to other restaurants visited by the user.
We measure the similarity between user (UserID: 3178) and resultant restaurant candidate
pairs from the Q2B. The results in Table 11 show that the restaurant with (RestID: 4641)
and (RestID: 3744) had the first and second highest similarity, respectively, which the NCF
model also predicted as higher.

Table 11. NCF model results comparison, with the cosine similarity algorithm applied on GraphSAGE
embedding, using the Neo4j GDS framework.

RestID RestName Similarity NCF (r)

4641 Bombay Palace 0.99996 4.7
3744 Tamarind—The Indian Kitchen 0.99993 4.8
3926 OM Restaurant 0.99988 4.2
4873 Waterfalls Indian Tapas Bar & Grill 0.99985 4.3
5324 Pakwan Indian Bistro 0.99903 4.1
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5. Conclusions

We proposed a novel, domain-specific, context-aware, explainable recommendation
framework, based on a domain knowledge graph (KG) and machine learning model. Our
proposed recommender system deals with user-defined natural language query. It consists
of three modular stages: (1) decompose a complex natural language query into segments of
logical triples that reflect the semantic and structural mapping over the domain knowledge
graph; (2) find the final set of candidate restaurants with relevance score (z) by performing
logical conjunction and or disjunction operations, using the Q2B model; and (3) predicts
the rating score (r) for the final candidate items, through the neural collaborative filtering
model, by incorporating user and candidate items latent vectors. Through the evaluation
of its application to the restaurant domain, with Yelp data, it is shown that the proposed
approach works effectively for a domain-specific system. We have shown that combining
KG techniques with the traditional collaborative filtering approach can solve data sparsity
cold-start problems and provide a content-aware explainable recommendation. Careful
design of domain ontology is important for the decomposition of natural queries into triples
for a domain KG. However, extending domain ontology with additional parameters and
developing more robust rules for natural query processing could result in complex query
answering and parsing. Moreover, replacing the candidate generation and re-rank processes
with a single GraphSAGE framework could enable inductive learning and does not require
the use of two distinct models for reasoning over KG and learning its representation (nodes,
relation, and attributes) for creating latent vector separately.
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