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Context-Aware Mobile Computing: Learning
Context-Dependent Personal Preferences

from a Wearable Sensor Array
Andreas Krause, Asim Smailagic, Senior Member, IEEE, and Daniel P. Siewiorek, Fellow, IEEE

Abstract—Context-aware computing describes the situation where a wearable/mobile computer is aware of its user’s state and

surroundings and modifies its behavior based on this information. We designed, implemented, and evaluated a wearable system which

can learn context-dependent personal preferences by identifying individual user states and observing how the user interacts with the

system in these states. This learning occurs online and does not require external supervision. The system relies on techniques from

machine learning and statistical analysis. A case study integrates the approach in a context-aware mobile phone. The results indicate

that the method is able to create a meaningful user context model while only requiring data from comfortable wearable sensor devices.

Index Terms—Location-dependent and sensitive, wearable computers, mobile computing, machine learning, wearable AI, statistical

models.

�

1 INTRODUCTION

OUR goal is to make the mobile computer capable of
sensing the users and their current state, exploiting

context information to significantly reduce demands on
human attention. To minimize user distraction, a pervasive
computing system must be context-aware [1]. By estimating
user context qualities such as location, activity, physiology,
schedule, and ambient context information, a human’s
current state can be determined to a level which allows
configuring the settings of a mobile device proactively.
Wrong configuration can often lead to frustrating conse-
quences, such as unwanted interruptions or additional
work to undo the system’s decisions. In addition, mobile
computing applications face challenges such as varying
resource availability. Any sensor data should be captured
by a body-worn sensor array; wearable hardware must pro-
vide enough processing capability for data analysis and
context inference.

This research focuses on how machine learning techni-
ques can make a mobile computer capable of identifying
typical user states and learning to automatically modify its
settings based on experience. The general approach is
developed and applied in a context-aware mobile phone
case study. This study shows that predefined context-
sensitive responses are not feasible and that machine
learning methods allow individual independent learning

of context-aware preferences. This case study is part of the
general question of interruptibility assessment in a mobile
scenario: Can wearable sensors be used to detect when it is
appropriate to request the user’s attention?

1.1 Prior Work

In [21], the authors propose a method for unsupervised and
dynamic identification of physiological and activity context
based on data collected from the BodyMedia SenseWear
armband; in [22], they describe an initial approach toward
the implementation of SenSay, a context-aware mobile
phone. These preliminary investigations are the foundation
of the present work.

1.2 Related Work

Microphone and video data have been used in a Wizard of
Oz Study [3] to determine when an office worker can be
interrupted. Self-reports are used to identify and evaluate a
statistical model for interruptibility assessment in this
stationary scenario. In [23], office-based sensors such as a
silence detector, phone activity, door status, and an analysis
of desktop computer usage, including keystrokes and
mouse movement, are implemented to evaluate the
proposed model.

In [4], accelerometers are used to distinguish different
movement activities such as walking, running, and climb-
ing stairs. The presented method relies on offline analysis of
labeled data to construct their classifier.

A method based on Kohonen Self-Organizing Maps
(KSOMs) and k-Nearest Neighbor classification is proposed
in [5] to identify typical motion profiles. This approach relies
on active training by pushing buttons while performing
certain activities. These sparse labels are used to construct a
supervised context transition profile based on a first order
Markov process. This approach also suffers from the
KSOM’s inflexible memorizing process [14]. To make the
KSOM training procedure converge, the neighborhood
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radius of the learning neurons must decrease over time. This
results in an inability to keep the learning process running
over a long time period [9]. In [6], an online algorithm is
given for the combination of KSOMs and k-Means cluster-
ing. This approach also requires active training by specify-
ing user labels.

Clarkson [2] uses high-level sensors such as video and
audio to identify detailed sequential scenes such as entering
a building, walking up stairs, and entering an office. This
technique requires dedicated offline statistical analysis due
to high computational complexity.

In Section 2, we describe our approach. Section 3
explains the machine learning techniques used in our
model. In Section 4, the system architecture and prototype
implementation for the context-aware cell phone case study
are described. Section 5 describes experiments and evalu-
ates results, Section 6 proposes future work, and Section 7
presents conclusions.

2 APPROACH

We believe that the user state is too manifold to be
understood and estimated in its entirety by sensor data
analysis. In our approach, we consider the user’s state to be
partially observable: A variety of different context qualities,
such as Location, Activity, Physiology, Time, and Ambi-
ence, can be estimated to a certain extent by using wearable
sensors. On the other hand, we expect that the way a user
interacts with mobile devices depends on their current
state. In constructing our statistical model, we therefore
assume that the user state is a hidden variable acting as a
cause both to the values acquired from wearable sensors
and to certain interactions with the computer system. It is
not our primary concern to identify which sensors are most
useful in determining particular states. Instead, our
machine learning approach uses statistical analyses to
dynamically identify the relation between observed con-
texts and the user’s behavior.

Our notion of a context quality is defined as a physical
attribute partially measuring the user’s state using sensors
at any given point or short interval of time. A cluster within
the values of a context quality is called context. Several
context qualities can be used in composition to expand the
perspective into the user’s state. Our approach identifies
recurring and statistically relevant locally constant contexts.
For example, the context quality “Movement Activity” uses
accelerometers to identify typical motion patterns observed
during physical activities such as walking, running, or
driving. Using the power spectrum of the acquired signal
and the dimension reduction techniques described in
Section 3.1, motion patterns can be described as locally
constant contexts due to the inherent periodicity in human
movements, as shown in Section 5.2.1.

2.1 SenSay—A Case Study

Throughout the paper, we motivate, develop, and evaluate
our general approach by investigating a case study of
SenSay, a context-aware cell phone that modifies its
behavior based on its user’s state and surroundings. It
adapts to dynamically changing environmental, physiolo-
gical, and activity states and also provides the remote caller
information on the current context of the phone user. To
acquire context information, SenSay uses several wearable

sensors. The user’s preferences we want to predict are
modifications of the ringer volume or vibrate alarm and the
acceptance or rejection of incoming calls. We assume both
of these can be considered preferences dependent on the
user’s state.

In our first approach, we built and evaluated a prototype
context-aware mobile phone by using a predefined user-
context model which consists of four states of social
importance to cell phone users. These states are: Unin-
terruptible, High-Energy, Idle, and Normal. The Uninter-
ruptible state was defined by high voice activity,
conversation level ambient noise, and infrequent move-
ments, prototypic for meeting situations. The High-Energy
state is defined by either high physical activity, i.e., running
down a street, or high ambient noise, e.g., loud outdoor
environment. The user is considered idle under little motion
and voice activity and low ambient noise. These states are
accompanied by a default state. We identified a set of
wearable sensors and performed the empirical threshold
analysis described in Section 5.1 to construct a classifier. For
each of these four states, we defined how the phone should
react in terms of selecting the attention modality (e.g.,
vibrate state, ringer tone, and volume) and acceptance of
incoming calls.

This approach turned out to be difficult to generalize to
larger groups of study subjects since the states and desired
phone behavior varied among individuals. As described in
Section 5.1, a user survey showed that the preferences of how
the phone should react in the aforementioned states varied
significantly and there was no agreement on which states
needed to be distinguished. The generalization of the
threshold values also proved to be difficult. Since a cell
phone is a mass-produced device, the outlined problems
render the naive preconfigured approach inappropriate.

To overcome these problems, we propose the use of
machine learning techniques to allow an automatic perso-
nalization both of the state classification and the context-
dependent device configuration. Our motivation is derived
from the observation that context does not require a de-
scriptive label to be used for adaptability and contextually
sensitive response. This makes an approach toward com-
pletely unsupervised learning feasible. By unsupervised
learning, we mean the identification of the user’s context
without requiring external supervision, i.e., by manually
annotating current user states.

2.2 A Two-Step Approach

Comparison of the quantities to be related, namely, sensor
data and observed user interactions, reveals fundamental
differences between them. Sensor data can be acquired in
abundant quantity without requiring the user’s attention.
The values are from a continuous range and carry time-
series dynamics. On the other hand, user interactions can
only be observed sparingly, i.e., when the user deems it
necessary to invest their attention. For the SenSay case
study, the variables of interest are discrete and assumed to
be temporally independent. This bias suggests a two-step
approach, as displayed in Fig. 1. To make as much use of
the unconsciously accessible sensor data as possible, typical
contexts are identified independently for each context
quality as well as from user interactions. Unsupervised
machine learning techniques are used to realize this context
identification. In general, it is difficult to detect the number
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of classes in the data. This is the challenge of context
abstraction. To keep the context identification flexible, the
proposed method allows dynamic refinement during
extended system use. Once typical contexts have been
identified, they can be used to classify acquired sensor data.

At a higher abstraction level, the use of this discretization
allows us to model observations about the user as an
assignment of discrete values to a collection of random
variables: Context variables describe evidence about the
user’s context, and preference, or system variables, describes
evidence about the user’s preferences. Each time a user
interaction is observed, it is interpreted as a labeled
example which can be used to construct a statistical model
for context-dependent preferences. This second step can
provide feedback to the context identifier: If similar user
preferences are detected for separate contexts, this could be
an indication for merging; if the user’s behavior is
inconsistent within single contexts, this would indicate the
necessity to split the context.

This collection of evidence and corresponding model

update motivates a Bayesian Statistics approach. Estimating

the joint distribution of the described model allows

predictions, even with incomplete data. For example, if

location data is not available, the remaining sensors might

still provide enough confidence to detect an ongoing

meeting. This suggests providing certain redundancy in

choosing sensors and observed context qualities. Fig. 2

provides the learning strategies involved in our approach.

3 Method

In this section, we describe the context identification and
the probabilistic reasoning strategy for learning user
preferences based on the identified contexts.

To introduce our context identification method, we first
present an offline algorithm which uses a training sample
time-series as input and constructs a classifier from it. We
then describe how we turn our offline algorithm into an
online algorithm, which can use real-time sampling data.

Our offline approach can be summarized as follows:
After certain data preprocessing, a Kohonen Self-Organiz-
ing Map is trained with the sensor values. The KSOM is a
vector quantization technique representing the training
data with a finite number of codebook vectors, optimally in
least-squares sense. Contrary to classical vector quantiza-
tion, during the training process, the KSOM not only adjusts
the best matching unit per sample, but also neighboring
units, where the neighborhood is defined by the map
topology. This enables the self-organization process. More
details can be found in [11]. A k-Means clustering is
performed on the map’s codebook vectors, where k is
chosen as guided by the Davies Bouldin index; a descrip-
tion and analysis of this clustering quality measure can be
found in [17]. After the clustering, a first order Markov
model is trained with respect to the cluster transition
probabilities. A graph reduction strategy is applied to the
resulting transition graph. This graph reduction eliminates
transient states. Codebook vectors for eliminated states are
reassigned to nontransient states by further iterations of the
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Fig. 1. Our two-step approach gathers data using wearable sensors. A Context Classifier identifies typical contexts and classifies acquired signals.

The Preference Learner relates the user’s device interactions to their current context and can provide feedback to the Context Classifier.

Fig. 2. In our Learning approach, the unobservable user’s state causes the user’s preferences and manifests in various observable context qualities

which independently identify several contexts using a set of sensors. Machine learning is used both to learn typical patterns and automatically

discretize the raw sensor data, as well as to relate the user’s preferences with the observed contexts.



k-Means algorithm. The resulting clustering is used as a
classifier for test samples; the first order Markov model on
the final clustering can serve for prediction. Fig. 3 gives a
graphical illustration of this system.

We proceed with more details on the construction of the
classifier utilizing data from the BodyMedia SenseWear
armband and the microphones described in Section 4. In the
remainder of this section, we describe how our offline
algorithm was changed into an online algorithm and
provide details on our preference learning strategy. The
method described in Sections 3.1 to 3.5 will subsequently be
referred to as the Context Identification method.

3.1 Preprocessing

For each individual context quality, a priori knowledge as
well as empirical evidence suggests the selection of sensors,
sampling rates, and feature extraction. For the physiological
sensors, polling at 1 sample per second and using running
averages (RA) and between-sample sums of absolute
differences (SAD) proved to be useful. Six data channels
of the BodyMedia device described in Section 4 have been
recorded, forming a six-dimensional feature space. These
channels comprised the RA and SAD values from the
Galvanic Skin Response, heat flux, and skin thermometer.
We also use running averages for the voice and ambient
microphone’s amplitudes, each resulting in a one-dimen-
sional feature space.

For motion classification, we calculate the Fast Fourier
Transform (FFT) power spectra of the acquired acceler-
ometer values. It turned out that a 64 point FFT (i.e., spectra
of 8 second time-frames at 8 Hz sampling rate) was a good
resolution to discern various different fine-grain movement
patterns. Since the spectra are symmetric, only the first
32 points were used. For the high data rate samples, the
spectra of the two accelerometers were recorded separately,
making it a 64-dimensional feature space. To distinguish
between a user’s speech and wind noise or whistling, we
use 256 point power spectra of the voice microphone
sampled at 8 kHz. These 256 point windows are sampled at
1 second intervals. This window size is suggested and

experimentally validated in [16]. To give each dimension

equal importance in terms of the self-organization process,

we normalized the data to unit coordinate-wise variance as

proposed in [9].
Since learning in high-dimensional feature spaces is

adversely affected by the so-called curse of dimensionality

[10], techniques for dimension reduction were evaluated.

Principal Component Analysis (PCA), which is a projection

of the data vectors to the most important eigenspaces (in

terms of eigenvalue size) of the covariance matrix, showed

good results on the accelerometer data. In our experiments,

the top five eigenspaces explained most of the sensor

variance, so the input data was projected onto the first

five principal components. For the audio samples, we cal-

culate a predefined linear transformation averaging over

16 adjacent frequency components to obtain an eight channel

subband decomposition, which is normalized to unit-length

in order to ignore intensity which is taken into account

separately, as suggested in [16]. Table 1 summarizes the

various preprocessing steps done for the different sensors.

3.2 Clustering

We use a 20x23 cell hexagonal topology for the map, a size

suggested by Kohonen [11] for our data size. Training is

performed by the batch training algorithm described in [9].

Although the training of the self-organizing map is already

a clustering process, codebook vectors must be further

grouped together to reach representative cluster sizes.

Therefore, a k-Means clustering is performed on the code-

book vectors. Our approach does not require user labels for

determining the initial cluster centroid starting values; the

clustering is completely driven by the unlabeled data. We

initially perform a k-Means clustering with quite large k

(growing as the square root of the number of codebook

values is a common heuristics). Clustering is performed for

the k values lying in a certain interval proposed by this

heuristics. The Davies-Bouldin index is used as a further

guidance.
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classification is sent to a context-aware wearable device.



3.3 Context Abstraction

By this procedure, about 14 clusters are found for a typical
low data rate sample for 20 hours of training data from the
SenseWear armband. Since the chosen data preprocessing is
expected to smooth out abrupt context changes, clusters
representing these context changes are expected to be found
(i.e., switching from running to walking and back).
Although these transition states are interesting in terms of
context change prediction, they adversely affect learning
adaptive system behavior since the system must rely on
robust context state estimates as the basis for learning usage
patterns. To identify transient states, transition probabilities
are taken into account. Based on the clustering described
above, a first order Markov model is trained using the
cluster transition probabilities. Transient states can be
characterized by having a low “loop” probability, namely,
remaining in the same state for a long time is improbable. A
graph reduction algorithm is performed on the Markov
model, eliminating states with a “loop” probability (the
diagonal values in the transition matrix) below a certain
threshold. The corresponding transitive corrections, includ-
ing the update of the transition probabilities, are imple-
mented as follows: Each state v with a loop probability
below a threshold � is removed from the transition graph;
0.3 turned out to be appropriate although results do not
show dramatic changes for variations of this value between
0.2 and 0.4. The main step in the algorithm is the following
transitivity update,

Pðr; cÞ  Pðr; cÞ þ Pðr; vÞ � Pðv; cÞ=ð1� Pðv; vÞÞ;

which redistributes the probabilities of out-adjacent edges of
v to corresponding transitive out-adjacent edges of
v0s predecessors. P denotes the state transition probability
matrix, i.e., P ði; jÞ ¼ ProbðXt ¼ jjXt�1 ¼ iÞ; where Xt is the
cluster index assigned to the sensor value vector at time t and
ProbðXjY Þ is the conditional probability ofX for the prior Y .

After the elimination of the transient clusters, a few more
iterations of the k-Means algorithm are necessary to reassign
now unclustered codebook vectors to new clusters. Succes-
sively, a new transition probability Markov model is trained
on the reduced set of clusters; this model can then be used
to predict possible context changes.

3.4 Online Algorithm

The algorithm described above is offline, i.e., the entire
sensor values time-series must be available at training time.

Our online algorithm is buffer-based and it proceeds as
follows: Sensor values are recorded until a certain time
interval (i.e., some hours or days, experiments with
recorded data used four hour intervals) has passed. This
data is used to construct a classifier and context transition
probability model as described above. To refine this model,
a training sample is constructed consisting of the com-
pressed prior training sample and the newly buffered data.
The prior training sample is compressed by selecting a
certain percentage of its data vectors at equally spaced
intervals. Using these training samples, another map is
trained and the new codebook vectors are again clustered
by a k-Means algorithm with the existing cluster centers as
initial values plus a certain number of randomly initialized
cluster centers. Successively, the steps described above—
build a Markov model, do graph reduction, build another
Markov model—are applied again. By adding these
randomly initialized cluster centers, potentially, new con-
text can be identified. Fig. 4 illustrates the construction of
this online classifier.

Since the empirical covariance matrix changes as new
sensor data becomes available, PCA can only be performed
for fixed sets of data. We consider the principal component
directions as properties of the sensors and the sensor
placement. Therefore, we expect that data from a limited
time interval can determine an initial estimate of the
principal component direction. The linear transformation
determined by these directions can be used to project new
data in real-time to the previously determined principal
components. This system of linear equations is solvable if
the number of principal components remains the same.
Recalibration can be triggered as soon as the amount of
variance explained by the principal components drops
beneath a certain threshold.

By buffering a certain fraction of the past sensor data, we
can still keep track of important past clusters while
maintaining the KSOM’s ability to learn new contexts.
Since the fraction is fixed, the size of the learning data
converges. This memory decay strategy is geometric in
nature, which is the discrete version of exponential decay.
Another advantage of the buffer-based update is that the
computationally expensive training and clustering proce-
dure can be implemented in parallel to the data acquisition,
classification, and prediction algorithms.

3.5 Online Algorithm for Location Awareness

The context identification algorithm described in Sections 3.1
to 3.4 is used to recognize patterns within the data gathered
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from the sensors integrated in the sensor armband, as well as
from the microphones. These sensors provide values in a
fixed range which can be assumed constant over time. This
algorithm cannot be used for location sensing due to scaling
problems, e.g., separate rooms in buildings on different
continents should still be separable by the algorithm. Two
different, complementary technologies are used for location
awareness in the SenSay case study. For outdoor location
sensing, the Global Positioning System (GPS) is used. For
indoor location sensing, the 802.11b wireless local area
network is utilized. Each point in the range of a wireless
network can be described as a signal strength footprint (SSF), a
high-dimensional vector, where each component is asso-
ciatedwith a specificMediaAccessControl (MAC)address of
an access point and the component value is defined by the
respective signal level. Due to the limited range of access
points, SSFs are sparse vectors. MAC addresses can be
associated with their physical location, which is typically
stationary. This model is an idealization. Experience shows
that signal strength’s of adjacent access points fluctuate
heavily depending on furniture, network interference, and
other environmental influences.

Several research groups have investigated pattern
matching and signal strength triangulation algorithm for
location sensing in wireless networks. In [18], it is shown
that an accuracy of up to five feet can be achieved in the
majority of measurements within a large campus-wide
wireless network. Although these methods are very precise,
they require a large amount of training. To cover the
Carnegie Mellon campus wireless network, 1,500 training
points were needed for the CMU-TMI algorithm, described
in [18]. For the SenSay case study, this was not considered
to be a practical solution since the system should be able to
use a wireless network as a reference even without prior
training. Therefore, in analogy to the method described
above, a clustering algorithm is used. Both GPS coordinates
and SSFs are classified by their respective cluster indices; if
both the wireless network and satellites are accessible, only
the GPS coordinates are used for clustering. If the satellite
view is lost and no wireless network is available, the last
visible coordinates are considered an entrance cluster.
Entrances for which the GPS coordinates do not differ by

more than 50 meters are assigned the same index. This
allows establishing confidence in a previous location
sensing result even if both technologies are unavailable.

The clustering algorithm currently employed solves the
scaling problem by accepting the restriction of a specified
cluster radius. Upon collection of either GPS data or SSFs,
each sample which is not within range of a previously
detected cluster is considered a hypothesis for a new cluster
center. For both vectors, the Euclidean norm is used as the
distance function. For the SSFs, only the five strongest
access points which were in range during at least 80 percent
of the last n samples are taken into account. Any hypothesis
for which 80 percent of n successive samples stay within the
predefined radius is accepted as a new cluster and assigned
an index, which is then used for classifying new acquired
location data.

3.6 Bayesian Networks for Probabilistic Reasoning

To realize the Bayesian statistics approach toward learning
context dependent user preferences, an efficient way must
be found to construct and incrementally refine the context
and system-variable model described in Section 2. This
implies the estimation of a joint distribution of many
variables. Separating this estimation from our context
identification method allows treating all variables as
discrete, which has important computational advantages.
If no assumptions can be made about the dependence of the
random variables, the number of parameters needed to
describe the joint distribution can grow exponentially with
the number of variables. If all variables are independent, the
number of parameters is linear in the number of variables
since the joint distribution function can be factored.
Independence is usually too strong an assumption, but
there is the more subtle notion of conditional independence.
Bayesian Networks [20] utilize this notion, which often
allows factoring the joint distribution into a number of local
terms with a subexponential number of parameters. Given
certain data, it is usually a difficult problem even to find a
good network structure, i.e., a factorization with as few as
possible parameters.

Since a Bayesian Network can be described as a directed
acyclic graph (DAG), an optimal structure can be found by
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Fig. 4. Online algorithm: The top row represents the buffering of the input data. In the second row, the geometric memory decay is sketched. The

third row shows the training of the KSOM, the clustering, the Markov model, and the integration of the prior clustering.



scoring all possible DAGs. Unfortunately, their number is
superexponential in the number of variables, so this
approach is not feasible. There is a fast algorithm for
structure learning called K2 [19], which—given a certain
ordering on the variables—greedily adds parents to
individual nodes until no further change increases the
likelihood of the data given the model. The strongest
limitation of this method is that the ordering of the variables
needs to be known. This is usually not the case. In our two-
step approach, we assume that the user interactions are
more directly caused by the user’s state. Therefore, we
consider system variables possible parents to context
variables but not vice versa. Thus, we assume that, in any
ordering, all system variables must appear before the
context variables. This still leaves uncertainty in the
ordering within the two classes of random variables, but
assures that any cause-effect relation discovered by the
K2 algorithm is consistent with the a priori knowledge we
invest in constructing the model. Since we are not dealing
with hidden variables in this approach, all parameter
estimation and inference can be computed efficiently in
closed form. Using our research prototype and the Bayesian
Networks for Java (BNJ) toolbox, the K2 algorithm for
100 examples with eight context variables and four system
variables executes in less than one second. One reason for
this high performance is the low fan-in. Since the system
variables we want to predict are fewer than the estimated
context variables, the expected fan-in for each variable is
smaller than if the observed context was considered as the
cause and the user’s behavior as the effect.

4 SYSTEM ARCHITECTURE AND PROTOTYPE

IMPLEMENTATION

To provide sensor input, the SenSay prototype relies on
various wearable sensors. The SenseWear armband from
BodyMedia, as shown in Fig. 5, is used to measure activity
and physiological context. Further description of wearable
sensors can be found in [7]. The small armband combines
five distinct sensors: two accelerometers, galvanic skin
response, skin temperature, and near-body ambient tem-
perature. The armband is worn on the back of the upper
arm. The sensors are described regarding this position, with
the wearer standing up, arms at his side.

A two-axis micro-electro-mechanical sensor device mea-
sures motion. These accelerometers are oriented in the
transverse (through the chest parallel to the ground) and
longitudinal (head-to-toe) planes. By taking into account
gravity, they measure orientation and motion.

Heat flux is a measure of the amount of heat being
dissipated by the body. The sensor uses very low thermally
resistant materials and extremely sensitive thermocouple
arrays. It is placed in a thermally conductive path between
the skin and the side of the armband exposed to the
environment.

Galvanic skin response (GSR) uses two hypoallergenic
stainless steel electrodes to measure electrical conductivity
between two points on the wearer’s arm. Skin conductivity
is affected by sweat from physical activity and by emotional
stimuli. GSR can be used as an indicator of evaporative heat
loss by identifying the onset, peak, and recovery of maximal
sweat rates.

Skin temperature is measured using a highly accurate
thermistor-based sensor located on the backside of the
armband. It reflects the body’s core temperature activity.

The near-body ambient thermometer uses a highly
accurate thermistor-based sensor to measure the air
temperature immediately around the wearer’s armband.
This directly reflects the change of environmental condi-
tions around the armband.

The SenseWear is worn on the back of the upper right
arm for numerous reasons. Comfort is key, as, during
normal use, it is worn day and night, only being taken off to
wash. The armband’s position and shape make it unob-
trusive and quickly “unnoticeable” [8]. Additionally, the
asymmetric heat flux sensor gives the most accurate
readings when worn in this position.

The armband can record sensor data at specified
sampling rates. Each of the integrated sensors is sampled
32 times a second, regardless of the sample interval setting.
Two measures of the sensors—the mean value and the sum
of the absolute differences (SADs)—are calculated once per
sampling period. Sensor readings recorded in the armband
are direct values from the internal analogue-digital (AD)
converter, in the range [0, 4095].

The armbands also contain a transceiver for live data
transmission using the Scientific and Medical Instruments
(ISM) license free band. The recharging and docking cradle
for the PC contains a corresponding transceiver. A contin-
uous wireless broadcasting method instructs the armband to
send out specified sensor readings as fast as possible. The
armband stops broadcasting when it is taken off-body and
no longer detects contact with skin. Data rates up to 16
samples a second can be achieved with this method.

A Bluetooth headset is used to detect if the user is
speaking. The BlueSpoon headset integrates an omnidirec-
tional microphone, a speaker, and Bluetooth transceiver
while only weighing 10 g. It acts as a server providing the
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Fig. 5. Wearable Platform for current SenSay prototype: (A) SenseWear
armband, (B) BlueSpoon headset, (C) backpack encompassing Life-
Book P-1120 with 802.11b transceiver, (D) Tungsten W smart phone,
and (E) external antenna for GPS receiver. The SenseWear armband is
worn in contact with the skin and normally hidden from view.



Bluetooth Headset Profile. Audio communication is full
duplex; the headset is also used to acoustically notify the
user about error messages or low battery life. The
microphone provides different exchangeable springs to
comfortably fit most types of human ears. To detect ambient
noise, a Sony ECM-T6 lapel microphone is used as attached
to a backpack shoulder strap at the level of the user’s chest.
The omnidirectional microphone has a frequency response
between 50 Hz and 12 kHz.

The algorithms for data processing described in Section 3
run on a Fujitsu P-1120 Life-Book, an ultralight laptop
weighing only 2.5 lbs. It is powered by a Transmeta Crusoe
processor running at 800 MHz and is equipped with
256 Megabytes of main memory. A BlueTake Poke 2
Bluetooth transceiver is connected to the USB port. The
second USB port connects to the armband’s wireless
receiver. The laptop integrates an 802.11b receiver with an
Intersil Prism chipset which is used for indoor location
awareness using signal strength triangulation. It is con-
nected to an Electrovaya 160 Wh external battery pack. A
TripNav 202 PCMCIA GPS card is used for outdoor location
sensing. The laptop and all attached devices are packaged in
a comfortable backpack, which has been custom designed
for wearability and convenient access to the laptop.

SenSay’s user interface is implemented on a palmOne
Tungsten W PDA and GSM cell phone hybrid device which
provides both voice communication and wireless internet
access using GPRS technology. This device uses a Bluetooth
transceiver connected to the PDA’s Secure Digital Input/
Output (SDIO) interface.

Although the sensors presently used cannot be found in
any cell phone, they are realistic for the cell phone scenario.
Instead of the armband, accelerometers would have to be
integrated in the cell phone, as well as an ambient
microphone. The headset is a common accessory and PDAs
with built in Bluetooth and WLAN are already available.
Battery life of all the components exceeds 10 hours, except
the Bluetooth headset, which needs to be recharged after
5 hours. It can be placed next to the user and still collect
voice data while placed in the cradle.

The software prototype is implemented in Java. An
important focus was on modeling extensibility of the
framework in order to allow the easy integration of
additional sensors and modification of algorithms. Another
goal was to prove that the proposed method can run on a
computationally weak platform; a highly abstract Java
implementation is generally less efficient than highly
optimized native code.

The complex sensor fusion setup integrating the various
data sources is modeled as a directed acyclic graph; sensors
and user interfaces are sources and the learning algorithms
act as sinks. The complete setup can be configured using
XML. To allow sampling at different frequencies from
different sensors, push semantics is used. Events are
propagated through the sensor fusion graph with special
gating nodes handling timing issues. All events can be
streamed into a database which allows playback at different
speeds to experiment with various settings for the algo-
rithms. Events can also be distributed over the network to
allow convenient maintenance and potentially incorporate
stationary sensor infrastructures.

To provide feedback in case of a component failure, the
CMU Festival-Lite speech synthesis software (Flite) is used
to communicate error messages to the user even while they
are wearing the backpack. Fig. 6 displays the system
architecture.

5 EXPERIMENTS, RESULTS, AND EVALUATION

In this section, we describe three studies performed to
evaluate our approach. In Section 5.1, we first present that
the predefined context-aware responses used in the original
SenSay application do not generalize to larger groups of
subjects, which both a user survey and threshold analysis
indicated. We do not claim that pretrained, factory-default
context-aware behavior is impossible to realize in general,
but, considering our experience, we conjecture that a
machine-learning-based approach is the more promising
alternative. In Section 5.2, we present results about the
Context Identification method. We show that, for our study
subjects, the clustering results correspond to manual
annotation and that it is possible to use our method for
unsupervised construction of a motion classifier. In
Section 5.3, experiments are described which evaluate the
performance of the Bayesian Networks approach for
learning individual user’s preferences on top of the Context
Identification method. The studies and experiments as well
as their results are summarized in Table 2.

To relate the different sets of labels used for the self-
report experiments (Sections 5.2 and 5.3), it should be
remarked that these self-reports are merely considered to be
partial measurements of the user state, manifesting them-
selves in system variables—analogously to the sensor
measurements, which manifest themselves as context
variables. They are not short verbal descriptions of the
user’s state in its entirety. For the definition of context and
system variables, please refer to Section 2. In each of the
experiments, a different system variable is measured to
evaluate how the proposed method performs in predicting
its values. Table 3 presents an overview on which system
variable is investigated in which experiment.

5.1 Study 1—Motivation of the Machine Learning
Approach

To argue in favor of our conjecture that machine learning
techniques for learning preferences are superior to a thresh-
old-based approach, we performed two experiments, de-
scribed in Sections 5.1.1 and 5.1.2. This part of our evaluation
should point out difficulties in generalizing the naive
threshold-based approach, while, on the other hand, trying
to identify a set of factory default states and associated phone
behavior. These defaults could be used as a starting point for
the machine learning algorithms to accelerate the desired
individualization process and overcome instability issues
until the learning algorithms stabilize.

5.1.1 User Survey

A survey was performed among college cell phone users to
identify a set of states important with respect to cell phone
usage. College students have been chosen as our test group
since they exhibit ultimate mobility in their use of electronic
devices. In [1], they were termed nomads for this reason.
Ten students, averaging 21.3 years, were interviewed, each
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interview lasting between 30 and 60 minutes and comprised

three main components.
For the survey’s first component, we asked the

participants to fill in a table describing their daily activity
and corresponding phone usage from the previous day.
Subjects were given a sample template as a guideline. In
the second component, the experimenter reviewed the
table together with the participants and probed for
additional detail. In the third component, the participants
were asked to group their activities using any subjective
criteria they deemed appropriate. The rationale of this
categorization was then discussed together with the
experimenter. Several users categorized their day accord-
ing to what actions they were taking: working, socializing,
eating, etc. Others categorized their day by how they dealt
with their phone in each particular activity (phone off,
speaking on the phone, charging the phone). Still others

categorized their day according to how interruptible they
were during a particular activity.

The number of states varied between four and nine states,
averaging 5.8 states. Comparing the 10 collected categoriza-
tions, a set of six consensus states was identified, encompass-
ing“Relaxation,” “Importantwork/meeting,” “Unimportant
work,” “Transit/Commuting,” “Social,” and “Daily rou-
tine.” For more details on the definitions of these states, see
the report in [15]. This experiment indicated that there is
relatively high variability in the assessment which abstract
states should be detected and on how the phone should react
to state changes, even in the narrowly defined group of
college cell phone users.

5.1.2 Threshold Analyses

The default states suggested by the survey are very abstract
and might be defined differently from person to person.
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TABLE 2
Summary of the Conducted Experiments and Results

Fig. 6. System architecture is comprised of three major components which are communicating wirelessly: a laptop, PDA, and wearable sensor array.

Acquired sensor data are propagated through a preprocessing and sensor fusion graph which is configured using XML.



Proceeding as discussed in Section 2, in the following, we do
notmake an attempt towardpredicting such kinds of abstract
states, but rather describe an experiment to distinguish
simple, well-defined contexts. Eleven more subjects, includ-
ing undergraduate and graduate students as well as research
faculty, were asked to perform various activities while data
was recorded from themicrophones andmotion sensors. The
activities comprised of: sitting, walking, running, silence,
conversation, and listening to music.

Two threshold analyses to differentiate between low,
medium, and high physical activity were performed in the
first test. The two-axis accelerometer integrated in the
BodyMedia armband was used to capture movement
intensity, while 11 subjects were asked to perform the
following test. After walking for 40 seconds, they were
asked to sit down for 10 seconds. They were then asked to
run for 30 seconds and walk again. After walking for
20 more seconds, they sat down again for an additional
25 seconds, concluding the experiment. Thresholds for
differentiating between low, medium, and high activity
were found and annotated on Fig. 7.

In the second test, the running average of the BlueSpoon
wireless microphone’s amplitude was analyzed to identify a
threshold for a binary classifier constructed to detect
whether the user is speaking. After 50 seconds of silence,
the study subjects were engaged in a conversation with
varying intensity. Fig. 7 shows the results of this experiment.
A threshold value was found and annotated in the diagram.

Although appropriate threshold values could be found
valid for most subjects, the constructed classifier can only
distinguish very simple activity contexts and might be
heavily influenced by environmental properties such as
high ambient noise. Depending on different anatomy of the
subjects and wearing position of the sensors, it turned out
that, even for these simple contexts and limited number of
subjects, threshold values were hard to find—i.e., medium-
high thresholds conflicted with low-medium thresholds of
other participants. The identified thresholds can still be
used as a starting point for the machine learning algorithms
proposed to accelerate the initial learning phase. This phase
is assumed to be critical for the acceptance of the proposed
application in mass-produced devices such as cell phones.

For other context qualities, especially for location or
schedule, it is clear that no threshold-based approach can
work for all users.

5.2 Study 2: Evaluation of the Context Identifier
Method

To investigate our unsupervised machine learning ap-
proach toward context identification, we performed
two experiments.

In the first experiment, two subjects wore the BodyMedia
armband over the duration of several days, personally
annotating their state—i.e., working in the office, being in a
meeting, commuting, relaxing in the sun—by use of the
armband button and additional note-taking. Subject A is
one of the authors, a graduate student in his mid-twenties
leading a moderately active lifestyle. Subject B is a graduate
student in her mid-twenties, leading an active lifestyle. The
subjects were required to mark time stamps close to their
personally felt state change and verbally classify the
corresponding state. In summary, over 240 hours of studies
were done by recording one sample per minute (low data
rate). For both subjects, the labeling and granularity of
manual annotation corresponded to the clustering results
and granularity of the automatic classification. The granu-
larity is consistent with the results of Section 5.1.1.

The second experiment investigates the performance of
our classifier to determine motion patterns. The movement
identification data set was sampled at eight samples per
second. All data samples were recorded at specified
sampling rates on the armband’s onboard storage. As an
improvement upon related work on motion classification,
our results indicate that the models can be viably con-
structed in an unsupervised manner. Additional results,
such as influence of the geometric buffer size on the
clustering performance, have been published in [21].

5.2.1 Self-Report Study

In this experiment, Subject A collected data over four days
for an overall recording time of 74 hours and subject B
gathered data during daytime for 22 days with a total
recording time of 168 hours. Both subjects wore the
SenseWear armband on the back of their right upper arm.
The collected data were comprised of the running average of
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the GSR, heat flux, both thermometers, and both acceler-
ometers as well as the SAD values of both accelerometers.
The sampling rate was set to one sample per minute. Data
was analyzed in blocks of varying lengths, including a
variety of different contexts. An initial clustering with, on
average, 15 clusters was done per block. After the elimina-
tion of transient states, an average of five clusters was
identified for subject A, who continuously wore the device
for four days, and an average of four clusters was identified
for subject B, who had varying recording time ranges. All
recordings were done during weekdays.

The data was processed by our classifier and the
resulting clustering was manually compared with the data
annotation. It was examined whether equally annotated
states correspond to single or separate clusters. Fig. 8
displays the performance of our method on a 20 hour data
sample. Our method could compete with the subjective
context classification. The study shows that—consistent
with the results described in Section 5.1.1—both subjects
only identified a small number of personally typical states;
the number of states annotated is only slightly higher than
the number of clusters found by our classifier. The frequent
use of the armband’s timestamp button by subject B to
subjectively annotate context changes indicates the exis-
tence of a number of minor contexts, e.g., short interrup-
tions of the current activity which were not deemed
important enough to annotate and accounting for too little
data to justify the creation of new clusters due to the
one sample per minute sampling rate. The number of state
transitions determined by our classifier closely matches the
number of timestamps taken by both subjects, so the
nonidentified clusters might have been eliminated by a
too strict context abstraction threshold as described in
Section 3.2.

Table 4 shows the results of the first experiment. Column 1
is the sample number, column 2 denotes recording duration
and involved days, column 3 lists abbreviations for major
contexts identified bywearer, column 4 shows the number of
clusters found, column 5 gives the absolute number of time
stamps, and column 6 shows the number of stable (only
one transition per five minutes) transitions. Column 7 gives

the offline map training quantization error, i.e., the average
squared distances between the training vectors and their best
matching codebook vectors. The data from the experiment
was input to the offline and online algorithm which showed
comparable classification performance for the number of
clusters and the transition locations.

5.2.2 Movement Identification

Amovement study at eight samples per second was used to
test the quality of our method to discern fine grain
movement patterns. Subject A performed six distinct kinds
of movements over a period of about three minutes
(1,632 samples in total), in the following order: walking,
running, walking, sitting, knee-bends, walking, waving his
arms, walking, and climbing up and down stairs (one stair a
step). Six clusters were identified, clearly corresponding to
the trained movement patterns. Projection of adjacent
values of the sensor time-series onto the map exhibited
close locality while the subject performed movements
corresponding to a certain activity.

The map constructed by the offline training algorithm
was evaluated by testing its performance as a classifier on
test data, which consisted of recorded movement patterns
of four minutes, 2,204 samples in total. Movements were
recorded in the following order: walking slowly, knee-
bends, running, climbing up and down stairs (two stairs a
step), walking, and sitting. All movements were correctly
classified. The algorithm was very successful even in
discerning the transition from running to climbing stairs;
the classification of walking slowly was wrong only in the
first few seconds, when it was misclassified as correspond-
ing to the “sitting” cluster. Since the FFT is calculated from
an eight second time frame, the transition lag varied
between 0 and 4 seconds, 1 second being the average
classification lag.

5.3 Study 3: Evaluation of the Preference Learner

To assess the performance of our Bayesian Networks
approach toward learning context-dependent personal
preferences, we conducted two experiments, described in
next two sections.
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Fig. 7. Identification of threshold values for (a) low-medium and medium-high motion and for (b) silence and voice activity. A representative subset of

the collected data is shown.



In the first experiment, the BodyMedia armband sensor
was accompanied by the BlueSpoon headset in order to
train SenSay to react appropriately in a variety of scenarios.
For five participants, all graduate and undergraduate
college students, training and testing data were collected
as described in Section 5.3.1, and the time required to
achieve a clear distinction among several context dependent
user preferences was measured.

In a second experiment, three subjects wore the complete
hardware platform described in Section 4, each for several
hours. Participant A is one of the authors, the same as for the
Context Identification study, and wore the system for three
days and an overall data collection time of 25 hours.
Participants C and D, both female graduate students in
their mid-twenties, wore the platform for 8 and 5 hours,
respectively. The experiment was an experience sampling
technique [13], sometimes referred to as a beeper study. The
PDA asked the subjects to answer three multiple choice
questions at irregular time intervals and recorded the time it
took the subjects to answer the questionnaire. This experi-
ment shows that, even during short system usage, for all
subjects, activity and location contexts could be identified
consistent with their self-reports. Furthermore, it provides
insight into the structure of the Bayesian networks obtained.

5.3.1 SenSay Preference Training Test Cases

In this experiment, different context-dependent preferences
as listed in Table 5 were taught to the SenSay implementa-
tion, only using the armband and Bluetooth microphone.
The system was trained by the participants, who repeatedly

performed different activities, such as walking, working at
the computer, doing driving movements, and talking while
they were wearing the system. Within about one hour of
training, enough examples were given to reliably distin-
guish the activities “Working,” “No motion,” “Walking,”
and “Driving” as well as “Talking” and “Silence.” The
examples realistically varied in intensity, shape, and pace.
At that time, the “Activity” context quality had identified
four clusters; the “Voice” context quality describing the
running average of the voice amplitude had identified
three clusters according to different intensities of the user’s
voice and the “VcSpect” context quality mapped into
two different labels. These cluster counts are averaged
across the subjects. Afterward, the preferences were trained
by successively giving examples for all the rows listed in
Table 5 and changing the AttnMode system variable,
namely, the phone’s attention intensity setting which
comprises the values “Silent,” “Vibrate,” “Low,” “Med-
ium,” “High,” and “Maximum,” as depicted in Fig. 9.

After a further 30 minutes of training and 48 assigned
labels (six per case), the model state was frozen to evaluate
its performance as a classifier. This training consisted of
clicking on the PDA’s attention intensity selection buttons,
which are displayed in Fig. 9, while performing the same
activities which were used to train the context identification
method. The mobile computer was instructed to initiate a
preference change on the PDA every three seconds if the
value assignment surpassed a probability of 70 percent.

Within another 30 minutes, the participants tested the
system online by providing examples for all test cases,
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Fig. 8. Analysis of the clustering—annotation correspondence. The graph shows the five first principal components of a 20 hour data sample with

manual annotations (top row) and clustering results (bottom row and numbers). Each shade of gray relates to a cluster and the black lines denote

cluster transitions.

TABLE 4
Results of the Context Identification Experiment

Abbreviations used for manual annotations: B - Busy, C - Commute, D - Driving, E - Eating, F - Fitness, H - at Home, L - Social, M - Meeting, N - Not
Busy, O - Office, R - Relaxing, S - Sleeping.



performing three trials separate from the training data. For
each scenario, the time was taken until the desired
preference change was initiated. If the right setting was
not assigned within 20 seconds or the correct assignment
did not remain stable for at least 60 seconds, the attempt
was counted as a failure; otherwise, it was counted as
successful. Table 6 shows the results, no failure occurred
during the experiment.

Fig. 10a displays the structure of the learned Bayesian
Network model. From this training study, the Attention
Intensity setting apparently was described best by both the
activity and the voice spectrum, which has been used to
distinguish between talking and whistling. For visualiza-
tion of the transition graphs, the GraphViz package [12] was
used. This experiment indicates that—at least for the
five participants—the system is able to reliably determine
contexts and learn preferences online, without supplying
any pretrained model.

5.3.2 Self-Report Study

To analyze how the addition of more context variables such
as Location, Physiology, the hour of the day, and ambient
noise influence the structure of the Bayesian Network, we
performed a beeper study. The first question asked was:
“What is your current interruptibility?” The available
answers were: “Idle,” “Available,” “Busy,” and “Uninter-
ruptible.” This question was asked first to get the conscious
classification of the user’s interruptibility as close to the
actual point of interruption as possible. This consideration is
based on observations mentioned in [3], which suggests that
people experiencing an interruption undergo a certain task
change which might forfeit precise measurements with
increased delay. To normalize different individual inter-
pretations of interruptibility and to more specifically target
the cell phone case study, a second, closely related question
was asked: “Which phone calls would you accept in your
current state?” The allowed answers had amore fine-grained

scale, encompassing “any calls,” “most calls,” “most calls,
but I’d be annoyed,” “only calls from close friends,” “only
calls from close family,” and “only dire emergency calls.” To
also collect a conscious annotation of the user’s state, we
asked: “What is your current state?” The participants were
required to choose from “working,” “meeting,” “relaxing,”
“walking,” “exercising,” “eating,” and “socializing.” The
selection of this set of states was motivated by self-reports
obtained from experiments de-scribed in Section 5.2. Ques-
tions were asked at random time intervals every 8 to
15 minutes, averaging to 30 labels per 5 hour recording.
Although [3] suggests using voice recording for collecting
the self-report to guarantee minimal intrusiveness and
quicker response, having to get access to the PDA more
closely resembles having to accept or decline a phone call on
a cell phone.

Several hours of data were recorded to prove that
important activity and location contexts can be learned
and consistently related to self-reports even during short
system usage. A “walking” state was identified for all
subjects and always consistently related with their state self-
report. For Subject B, 13 indoor and two outdoor locations
were learned. The recording spanned both working and
social hours; two components, each consisting of several
indoor locations and separated by external locations,
attributed to this fact. During working hours, interrupt-
ibility annotation appeared to be mostly dependent on the
location, where one location seemed to be associated with a
meeting room. For Subject C, seven locations were learned,
one related to 78 percent of the recording, which appeared
to be the office; self-report mostly indicated a working state
and the call acceptance was mostly set to “close friends.”

For subject A, nine indoor locations and four outdoor
locations have been learned during 25 hours of data
collection. Of the indoor locations, one is clearly attributed
to the subject’s office, assigned to over 80 percent of the
recording time. Five other indoor locations were assigned
each to at least 0.7 percent which is about 8 minutes of the
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TABLE 5
Example Preferences Trained in Study 3

Fig. 9. User interface on the PDA displaying the automatically configured
setting of the AttnMode system variable.

TABLE 6
Results of Recalling the Scenarios from Table 5



collected data. Apart from the office location, the subject
spent about 2 hours in the institute’s conference room and
an additional hour in a separate meeting room which both
have been assigned indoor locations. The remaining
three locations are associated with not more than one min-
ute of recording and are apparently caused by signal
strength fluctuations in the wireless network. Of the four
outdoor locations, one is associated with the campus food
trucks, one with a place were the subject had lunch, and
one with a bench in front of the institute on which the
participant had coffee. A fourth location is only related to
one minute of recording time and was probably learned
while the participant was briefly talking to some person on
his way back from lunch before entering the institute’s
building again. Fig. 10b shows the graph structure obtained
from 176 self-reports of Subject A. Analysis of the graph
structure obtained from the K2 structure learning algorithm
suggests several observations since edges are only intro-
duced if the model change significantly increases the
likelihood of the data given the model [20]. Apparently,
the “Calls” variable indicating the user’s willingness to
accept incoming calls is dependent upon many context
qualities and closely related to the other two queried
variables “Interruptibility” and “State.” The close relation
to the state annotation indicates that the user’s state greatly
influences the decision to accept or decline incoming phone
calls. On the context variable side, this preference depends
most closely on the user’s movement activity (Activity
variable) and the voice spectrum (VcSpect variable),
analogous to the results obtained from the SenSay training
experiments. Additionally, the location and physiology
contexts play an important role in deciding which incoming
calls to accept.

6 FUTURE WORK

To prove the ability to achieve personalization in the
described method, extensive studies are planned, involving
more subjects than in our current self-report study. On the

modeling side, we are also experimenting with more
complex Bayesian Network structures; the introduction of
hidden variables might give a better understanding of the
relations between the context and system variables. The use
of Dynamic BayesianNetworkswould allow capturingmore
complicated patterns of user interactions since they do not
assume temporal independence among the observed evi-
dence. The mobile computing challenges, such as limitation
of computational power, impose restrictions on the available
algorithms which need to be explored in more depth.

Furthermore, we intend to investigate the proposed
method in applications other than the cell phone scenario;
among them are an application for personal health and
wellness monitoring and an application mediating between
the importance of a request, the user’s interruptibility, and
the modality which is used to request the user’s attention.

7 CONCLUSIONS

We have presented a method for learning context-depen-
dent personal preferences from wearable sensors and
evaluated our approach in a cell phone case study. We
developed, implemented, and evaluated a system which
can identify a set of context states without requiring
supervision, based on data from a comfortable wearable
sensor armband, microphones, and location sensors. Our
improvements in wearability and usability for context-
awareness are advances toward making context-aware
wearable computers feasible for real life applications.
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Starner, “SoundButton: Design of a Low Power Wearable Audio
Classification System,” Proc. Seventh Int’l Symp. Wearable Compu-
ters, Oct. 2003.

[17] D.L. Davies and D.W. Bouldin, “A Cluster Separation Measure,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 1, no. 2,
pp. 224-227, 1979.

[18] A. Smailagic and D. Kogan, “Location Sensing in a Context-Aware
Computing Environment,” IEEE Wireless Comm., Oct. 2002.

[19] G. Cooper and E. Herskovits, “A Bayesian Method for the
Induction of Probabilistic Networks from Data,” Machine Learning,
vol. 9, pp. 309-347, 1992.

[20] D. Heckerman, “A Tutorial on Learning with Bayesian Net-
works,” Learning in Graphical Models, M.I. Jordan, ed., pp. 301-354,
Dordrecht: Kluwer, 1998.

[21] A. Krause, D.P. Siewiorek, and A. Smailagic, “Unsupervised,
Dynamic Identification of Physiological and Activity Context,”
Proc. Seventh Int’l Symp. Wearable Computers, Oct. 2003.

[22] D.P. Siewiorek, A. Smailagic, J. Furakawa, A. Krause, N. Moraveji,
K. Reiger, J. Shaffer, and F.L. Wong, “SenSay: A Context-Aware
Mobile Phone,” Proc. Seventh Int’l Symp. Wearable Computers, Oct.
2003.

[23] S.E Hudson, J. Fogarty, C.G. Atkeson, D. Avrahami, J. Forlizzi, S.
Kiesler, J.C. Lee, and J. Yang, “Examining the Robustness of
Sensor-Based Statistical Models of Human Interruptibility,” Proc.
SIGCHI Conf. Human Factors in Computing Systems (CHI 2004),
submitted.

Andreas Krause graduated in computer
science and mathematics from the Technische
Universität Münchenis. He is now a doctoral
student in the Computer Science Department at
Carnegie Mellon University, where he is inves-
tigating a machine learning approach toward
context-aware mobile computing. His research
interests include machine learning theory, clus-
tering methods, probabilistic reasoning, and
efficient algorithms with applications to wearable

computing and biomathematics.

Asim Smailagic is a research professor at the
Institute for Complex Engineered Systems, the
College of Engineering, and the Department of
Electrical and Computer Engineering at Carne-
gie Mellon University (CMU). He is also the
director of the Laboratory for Interactive and
Wearable Computer Systems at CMU. This lab
has designed and constructed more than two
dozen generations of novel mobile/wearable
computer systems over the last 12 years. He

received the Fulbright postdoctoral award at Carnegie Mellon Univeristy
in computer science in 1988, has been a program chairman of seven
IEEE conferences, and was program chairman of the Cambridge
Conference on High Performance Distributed Computer Systems ’89.
He has acted as guest editor and associate editor in many leading
archival journals, is one of the cofounders of the IEEE Symposium on
Wearable Computers, and is a new chair of the IEEE Technical
Committee on Wearable Information Systems. He was a recipient of the
1992 Tempus European Community Award for scientific cooperation
resulting in new curriculum development, the 2000 Allen Newell Award
for Research Excellence from Carnegie Mellon’s School of Computer
Science, the 2003 Carnegie Science Award for Excellence in Informa-
tion Technology, and the 2003 Steve Fenves Award for Systems
Research from CMU’s College of Engineering. He has written or edited
several books in the areas of computer systems design and prototyping,
mobile computers, and VLSI system design. His research interests
include pervasive context aware computing, wearable computers,
human centric computing, and rapid prototyping of computer systems.
He has made major contributions to several projects that represent
milestones in the evolution of advanced computer systems: from CMU’s
Cm* Multiprocessor System and Edinburgh Multi-Microprocessor
Assembly (EMMA) to CMU’s current projects on wearable computer
systems, smart modules, Communicator, Aura pervasive computing,
and the RADAR Personal Cognitive Assistant. He is a senior member of
the IEEE.

Daniel P. Siewiorek received the BS degree in
electrical engineering from the University of
Michigan and the MS and PhD degrees, both
in electrical engineering, from Stanford Univer-
sity. He is now a professor of electrical and
computer engineering at Buhl University, a
professor of computer science at Carnegie
Mellon University, and director of the Human-
Computer Interaction Institute. He helped to
produce the Cm* multiprocessor system and

contributed to the dependability design of 24 commercial computer
systems. He has published more than 450 technical papers and
eight textbooks. In 1981, he was elected as an IEEE fellow for
contributions to the design of modular computer systems and, in 1988,
he received the Eckert-Mauchly Award for his contributions to computer
architecture and was elected as a member of the 1994 Inaugural Class
of ACM fellows. He was elected a member the National Academy of
Engineering in 2000. His memberships include the IEEE Computer
Society, ACM, Tau Beta Pi, Eta Kappa Nu, and Sigma Xi.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KRAUSE ET AL.: CONTEXT-AWARE MOBILE COMPUTING: LEARNING CONTEXT-DEPENDENT PERSONAL PREFERENCES... 15




