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Abstract— Given a large graph and a set of objects, the task
of object connection discovery is to find a subgraph that retains
the best connection between the objects. Object connection
discovery is useful to many important applications such as
discovering the connection between different terrorist groups for
counter-terrorism operations. Existing work considers only the
connection between individual objects; however, in many real
problems, the objects usually have a context (e.g., a terrorist
belongs to a terrorist group). We identify the context for the
nodes in a large graph. We partition the graph into a set of
communities based on the concept of modularity, where each
community becomes naturally the context of the nodes within
the community. By considering the context, we also significantly
improve the efficiency of object connection discovery, since we
break down the big graph into much smaller communities. We
first compute the best intra-community connection by maximizing
the amount of information flow in the answer graph. Then, we
extend the connection to the inter-community level by utilizing
the community hierarchy relation, where the quality of the
inter-community connection is also ensured by modularity. Our
experiments show that our algorithm is three orders of magnitude
faster than the state-of-the-art algorithm, while the quality of the
answer graph is comparable.

I. INTRODUCTION

Graph is a powerful modeling tool for representing and
understanding objects and their relationships. Many efficient
indexes [1], [2], [3] and algorithms for the discovery of
correlations [4], [5] and frequent subgraphs [6], [7], [8] have
been proposed for graph databases that consist of a set of
small graphs. Such graph databases are popular in scientific
domains such as chemistry and bio-informatics. However, we
also observe that another type of graphs, which are stand-
alone large graphs, exists prevalently in a wide spectrum of
application domains. Typical examples of such graphs are
various social networks, in which we want to find the rela-
tionship between people within the network. Such information
is very useful in applications such as corporate cooperation
and management, law enforcement, national security, counter-
terrorism, and many others. Other examples of such graphs
include resource environment economics, ecological networks,
the Web and many more. However, efficient knowledge dis-
covery techniques for such graphs are still inadequate.

Let G be a graph in which nodes are uniquely labeled and
edges are undirected and weighted. Given a set of objects,

a typical task of knowledge discovery is to find the “best”
connection among the objects in G. We name such a task
as object connection discovery. We use objects and nodes
interchangeably in this paper and name the set of objects under
investigation as query nodes.

Object connection discovery is important to a wide spec-
trum of applications. For example, the relationship between
different business people and organizations, and how they do
business together, are important for creating new opportunities
of corporate cooperations and for designing more effective
internal management strategies; the connection between dif-
ferent terrorists and terrorist leaders/groups, and how terrorists
plan and conduct terrorist activities together, are useful clues
for counter-terrorism and national security operations; how
various social networks behave is valuable knowledge for
understanding the networks so that appropriate actions may
be taken. It can also be applied to other domains such as
resource environment economics, gene regulatory networks,
viral marketing, the Internet and the WWW, and many more.

However, object connection discovery in a large graph poses
significant challenges. First, the graph may contain millions
or even billions of nodes and edges; therefore, discovering the
best connection is difficult, especially when the query nodes
are scattered widely apart from each other. Existing work on
finding a connection between a set of query nodes [9], [10],
[11] is either not efficient enough or focuses on the query
nodes that are relatively close to each other.

Apart from computational complexity, it is also difficult to
define the “bestness” of a connection. It has been shown in [9]
that shortest paths, maximum flow and other graph distance
measures are inadequate in capturing the relation between
query nodes. Existing work measures the “bestness” by the
concepts of electrical circuits [9] and random walks with
restart [10]. However, their studies focus on computing the
connection from query nodes to some important nodes, which
may neglect the good connection from query nodes to query
nodes.

We address the problem of object connection discovery
by first observing the semantics of the objects in a large
graph. Since a large graph can contain millions of nodes, it is
extremely rare that they all belong to the same category or the



same context. In many real-life problems, we usually assign
objects to a context and we are interested in the relationship
between objects in the same context as well as that between
contexts. For example, we identify terrorists by their groups
and we want to find the internal connection within a group as
well as the external connection between the groups.

We propose context-aware object connection discovery,
which first discovers the context for the nodes in a large
graph and then discovers their best connection accordingly.
The connection is first computed for nodes within the same
context and then extended between the contexts. We illustrate
the idea further by the following example.

Example 1: Suppose we want to find the connection be-
tween {Jim Gray, Jennifer Widom, Michael I. Jordan, Geoffrey
E. Hinton} on the DBLP co-authorship graph. Our method
first identifies that the four scholars are from two different
contexts as shown by the two boxes in Figure 1: Gray and
Widom are from the database community, while Jordan and
Hinton are from the machine learning community. Then, we
compute the best connection between the scholars within each
context. After that, we compute the connection between the
two contexts with respect to the four scholars. �
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Fig. 1. Context-Aware Connection for {Jim Gray, Jennifer Widom, Michael
I. Jordan, Geoffrey E. Hinton}

Our first task is to identify the context for the objects. We
adopt the concept of modularity [12] to cluster the nodes in a
large graph into a set of communities. Modularity is used in
the area of community detection to measure the quality of the
communities discovered in networks. Thus, using modularity,
we are able to decompose a large graph into a set of high-
quality communities, which can be naturally used as the
context of the nodes. In addition, we are also able to retain the
relationship between different communities by constructing a
community hierarchy tree.

By considering the context of the objects, our algorithm
adopts a partition-and-conquer approach. First, we partition
a large graph into a set of small communities. Then, we
discover the best intra-community connection, which is far
more efficient since a community is significantly smaller than
the original graph. Finally, we extend the connection to the
inter-community level, which is also efficient by utilizing the
community hierarchy tree.

To compute the best intra-community connection, we intro-
duce the concept of information throughput within a commu-
nity. Information throughput is defined based on the concept of
electrical circuits (or equivalently random walks). Given a pair

of nodes s and t (source and target), information throughput
of a node i in the community is the total amount of currents
flowing through i from s to t. Therefore, the information
throughput of node i measures the importance of node i in
connecting s and t.

The information throughput of node i indicates the global
importance of node i in the community with respect to the
information flow from s to t. However, an answer graph is a
subgraph that displays only partial information of the original
graph; thus, we also compute the amount of information flow
in a s-to-t path through node i, which is regarded as the
local importance of the s-to-t path in the answer graph.
We propose a goodness function by integrating the global
importance of the nodes and the local importance of the s-
to-t paths in the answer graph. Then, we devise an efficient
dynamic programming algorithm to compute the best intra-
community connection that maximizes the goodness function.

When some query nodes are in different communities, we
need to find the inter-community connection. We first utilize
the community hierarchy tree to find the connection between
the communities to which the query nodes belong. Then, we
compute the actual path that connects the query nodes by
following the connection between the communities. Since the
community hierarchy tree reflects the relationship between
the communities as defined by modularity, the quality of
the inter-community connection is also ensured. As a result,
our algorithm not only achieves high efficiency through the
partition-and-conquer approach, but also guarantees the quality
of the answer at both the intra- and inter- community levels.

Finally, our experimental results show that we are able to
find a set of high-quality communities and our community
partition algorithm is efficient. For connection discovery, we
compare with the center-piece subgraph (CEPS) [10]. Our
results show that our method obtains comparable high-quality
answers as CEPS, but is over three orders of magnitude faster
and also consumes significantly less memory.

The rest of the paper is organized as follows. Section II
reviews related work. Section III briefs our solution frame-
work. Section IV discusses community partition. Section V
discusses intra-community connection. Section VI discusses
inter-community connection. Section VII reports the experi-
mental results. Section VIII concludes the paper.

II. RELATED WORK

There are several studies on finding a good connection for
some given query nodes in a large graph.

Faloutsos et al. [9] propose to find the connection subgraph
for two query nodes. They model a graph as an electrical
network and use the delivered current from one query node to
the other as a goodness measure for the answer graph.

Later, Tong and Faloutsos [10] propose the center-piece
subgraph (CEPS) to deal with multiple query nodes. They
define a goodness criterion based on random walks with restart
(RWR). Their algorithm iteratively picks up a most promising
destination node based on RWR and then finds the path to con-
nect each query node to this destination node. Consequently,



their answer graph may miss some good connection that does
not first direct to a chosen destination node but directly goes
from query nodes to query nodes.

Koren et al. [11] also study the problem of finding subgraphs
that connect multiple query nodes. However, their objective is
different from that of the previous work. They aim to extract
the subgraph that retains most of the proximity between query
nodes in the original graph. Therefore, their algorithm focuses
on query nodes that are relatively close to each other.

Our work is also related to community detection. Among
the studies on community detection, there are only a few that
handle large networks. Newman [13] proposes an algorithm
that requires O((|E|+ |V |)|V |) time for a graph G = (V, E).
Around the same period, Wu and Huberman [14] propose a
method that adopts the circuit model to discover communities
in O(|E| + |V |) time. However, their algorithm requires to
input the number of communities and some seed nodes that
are in different communities, which restricts the application of
their work. In our work, we improve Newman’s algorithm [13]
to detect communities in Ω(|V | log |V |) and O(|V |2) time.

In addition to the above-mentioned work, community detec-
tion has also been extensively studied in the context of Web.
Web communities [15], [16], [17], [18], [19] are usually char-
acterized by dense bipartite subgraphs based on the assumption
that a topically focused community in the Web tends to contain
a dense bipartite subgraph. The methods developed for Web
communities may not be applicable to our problem since a
vertex in the Web graph may not be covered by any extracted
Web communities.

III. SOLUTION FRAMEWORK

In this section, we present the framework of our solution,
which consists of the following two phases.

The first phase is community partition, which partitions the
input graph into a set of communities, as well as constructs
the community hierarchy tree. This phase is done offline. We
discuss community partition in Section IV.

The second phase is object connection discovery, which is
done online whenever a user issues a query. Our algorithm,
PCquery (Partition-and-Conquer query processing), processes
a query, i.e., finds the best connection between the query
nodes, in two main steps. The first step computes the intra-
community connection for query nodes that fall within the
same community. Then, the second step of PCquery computes
the inter-community connection between the communities of
the query nodes, with the aid of the community hierarchy
tree. The intra- and inter- community connections are finally
integrated to give the final answer graph. We discuss in details
the intra- and inter- community connection in Sections V and
VI, respectively.

IV. COMMUNITY PARTITION

We discuss an effective partitioning scheme that not only
decomposes a graph into a set of high-quality communities,
but also retains the relationship between the communities.

A. Modularity

Our partitioning scheme is based on the concept of modular-
ity, which measures the quality of the communities discovered
in networks. Modularity was proposed by Newman and Girvan
[12] for community detection. We apply it to the problem of
object connection discovery on a large graph, as an initial step
to discover the contexts of the objects. For our purpose, we
re-formulate modularity in our problem as follows.

Modularity is a quality function that tests whether a par-
ticular community partition of a graph is a good partition.
A community partition, P , of a graph G is a partition
{C1, C2, . . . , Cn} on the set of vertices of G. Each Ci is called
community i. Given P , the edges in G are categorized into
two types: intra-community edges and inter-community edges,
depending on whether the two incident vertices of an edge are
in the same community or not. We denote the set of intra-
community edges in Ci as Eii and the set of inter-community
edges connecting Ci and Cj (i �= j) as Eij , respectively.

To define modularity, we need the following notations. The
fraction of intra-community edges in Ci is defined as ρii =
|Eii|
|E| . Similarly, the fraction of inter-community edges between

Ci and Cj (i �= j) is defined as ρij = ρji = |Eij |
2|E| (Note that

we have totally 2|E| edges here since we consider an edge to
be shared by ρij and ρji). Finally, the fraction of the edges
that are incident to at least one vertex in Ci (i.e., both intra-
and inter- community edges of Ci) is defined as αi =

∑
j ρij .

Now, we give the definition of modularity [12].
Definition 1: (Modularity) The modularity of a graph G

with respect to a community partition P is defined as follows:

M(G,P) =
∑

i

(ρii − α2
i ). (1)

The semantics of modularity can be interpreted as follows.
If we pick up edges at random to include them into Ci, the
expected fraction of intra-community edges in Ci, i.e., the ex-
pected value of ρii, is α2

i . In other words,
∑

i α2
i corresponds

to a community partition formed by random chance. Since ρii

represents the true fraction of intra-community edges in Ci, the
subtraction (ρii−α2

i ) indicates the deviation of the community
partition P from a randomized partition. When all the vertices
in G form a single community or the set of communities is
formed by random chance, the value of modularity is 0.

The semantics of modularity indicates that the higher the
value of M(G,P), the higher the quality of P is. Intuitively,
P is a good partition if most of the edges in G are intra-
community edges and only a few are inter-community edges.

The following example illustrates the concept of modularity.
Example 2: Figure 2 shows a graph G, where |V | = 12 and

|E| = 16. Consider a community partition P = {C1, C2, C3},
where C1 = {v1, v2, v3, v4}, C2 = {v5, v6, v7, v8, v9} and
C3 = {v10, v11, v12}, as shown by the three dotted circles in
the figure. We have |E12| = 1 since there is only one edge
(v4, v6) between C1 and C2. We also have |E11| = 5 since
there are five intra-community edges in C1. By definition, we
have ρ11 = |E11|

|E| = 5
16 , ρ12 = |E12|

2|E| = 1
32 , and ρ13 = |E13|

2|E| =
1
32 . We further have α1 =

∑
1≤j≤3 ρ1j = 5

16 + 1
32 + 1

32 = 3
8 .



Similarly, we can compute ρ22 = 5
16 , ρ33 = 3

16 , α2 = 3
8 ,

and α3 = 1
4 . By Equation (1), we calculate the modularity,

M(G,P) =
∑

1≤i≤3(ρii − α2
i ) = 15

32 . �
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Fig. 2. A Graph, G, and a Community Partition of G

B. Computing the Community Partition

According to the semantics of modularity, the optimal
community partition is defined as follows:

Popt = argmax P M(G,P). (2)

Equation (2) defines an optimization problem. However,
to find the maximal value of modularity, we need to try
all possible community partitions. This is clearly intractable
since the total number of possible partitions is the |V |-th Bell
number, which is at least exponential in |V | but G may contain
millions of nodes. We give an approximate solution to this
optimization problem by a greedy algorithm.

We adopt the same greedy strategy as in [13], [20] but
investigate more properties for efficient computation. The
basic idea of the greedy algorithm is as follows. We start from
a trivial initial community partition, in which each vertex in
G forms a single community. At each iteration, we first pick
up the pair of communities that achieves the greatest increase
in modularity and combine them to form a new community.
We then compute the new modularity that can be achieved
for every pair of communities, assuming that they are to be
combined in the next iteration. This process goes on to form
larger communities and the approximate optimal community
partition is obtained when the modularity decreases for every
possible pairs of communities to be combined.

The key operation in the greedy algorithm is to compute the
new modularity and retrieve the largest one at each iteration.
It has been shown in [20] that the change of modularity can
be updated incrementally. We omit the details of the update
and refer readers who are interested to [20].

We now discuss how to efficiently retrieve the largest
change of modularity, as well as to save update computations.
Let Pk−1 = {C1, . . . , Ci, . . . , Cj , . . . Cn} be the community
partition after the (k−1)-th iteration. Let ΔM ij

k be the change
of modularity, if Ci and Cj are to be combined at the k-th
iteration. To efficiently retrieve the largest ΔM ij

k , we need two
max-heaps. First, we use a local max-heap for each community
Ci to keep ΔM ij

k , for every Cj that has connection with Ci.
Then, we further use a global max-heap to keep all the local
maximum ΔM ij

k , so that we can pick Ci and Cj that have
the largest ΔM ij

k to combine at the k-th iteration.
At the k-th iteration, we first use the global max-heap

to pick Ci and Cj , which takes O(1) time. Then, we need

O(|Ci| + |Cj |) time to combine Ci and Cj into Cnew . We
also need O(|Cnew |) time to rebuild the local max-heap for
Cnew . Then, for each Cx connecting to Ci or Cj , we need
O(log |Cx|) time to update the local max-heap of Cx. Thus,
in total we need O(|Cnew | log |Cx|) = O(|V | log |V |) time to
update all Cx. Finally, we update the global max-heap with the
local maximums from the max-heaps of Cnew and of each Cx,
which requires O(|Cnew | log(|Pk|)) = O(|V | log |V |) time.

Since initially each vertex in G forms a single community, at
most we have |V | iterations. Therefore, the algorithm requires
O(|V |2 log |V |) time. However, this time complexity is still
too high in practice for large graphs. We further improve the
efficiency based on the following two heuristics.

Heuristic 1: Let clocal be a small constant. Then, the first
clocal elements in the local max-heap of a community remain
relatively stable during the entire process of community par-
tition.

Heuristic 1 states that the first few largest elements in the
local max-heap of a community remain to be the first few
largest elements most of the time, even the max-heap may be
updated frequently during the process of community partition.
This is true because a community tends to combine with only a
few of its connecting communities based on modularity, rather
than to have an even probability of combining with each of
its connecting communities.

Based on Heuristic 1, we can limit the size of the local max-
heap of a community to clocal . In this way, after combining
Ci and Cj at the k-th iteration, we can update the local
max-heap of each Cx in constant time. In the worst case,
when an element that is not one of the first clocal largest
elements becomes one of the first clocal largest elements, we
need O(log |Cx|) time to first find the element and then insert
it into the local max-heap of Cx. However, this worst case
rarely happens. According to our experiment, the majority of
the updates on the local max-heap of a community, during the
entire process of community partition, are operated on the first
clocal elements of the max-heap.

Heuristic 2: Let cglobal be a constant. Then, the first cglobal
elements in the global max-heap remain relatively stable
during the entire process of community partition.

Heuristic 2 states that the first few largest elements in the
global max-heap remain to be the first few largest elements
most of the time. This is true because the global max-heap
keeps the local maximums and, according to Heuristic 1, the
local maximums remain to be stable.

By Heuristic 2, we can further reduce the time for each
update of the global max-heap from O(log(|Pk|)) to constant
time.

Now, for each iteration, we still need O(|Ci| + |Cj |) time
to combine Ci and Cj into Cnew . We need O(clocal) =
O(1) time to rebuild the local max-heap for Cnew . We need
O(clocal |Cnew |) = O(|Cnew |) time to update the local max-
heaps of all Cx connecting to Ci or Cj . Finally, we need
O(cglobal |Cnew |) = O(|Cnew |) time to update the global max-
heap. As a result, the total running time for each iteration is
now O(|Cnew |).



Let C(Pk) be the new community formed at the k-th
iteration (i.e., Cnew in the above discussion). The overall
running time is

∑|V |
k=1 O(|C(Pk)|). In the worst case, at

each iteration we combine C with a community that has a
single vertex until C contains the set of all vertices in G;
thus,

∑|V |
k=1 O(|C(Pk)|) = (2 + 3 + · · · + |V |) = O(|V |2).

In the best case (in terms of time complexity), each itera-
tion picks the smallest two communities to combine; then,∑|V |

k=1 O(|C(Pk)|) = O(|V | log |V |). Therefore, we obtain the
running time of the algorithm as Ω(|V | log |V |) and O(|V |2).

Finally, the space requirement of the algorithm is O(|V | +
|E|), since for each community, we only need to keep the
communities that connect to it, which is similar to the structure
of the adjacency list representation of a graph.

C. Community Hierarchy Tree

In addition to the purpose of breaking a large graph into
small communities, the process of community partition by the
greedy algorithm also builds a community hierarchy tree for
computing the inter-community connection to be discussed in
Section VI. We show an example of a community hierarchy
tree, H, in Figure 3.
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Fig. 3. Community Hierarchy Tree, H, of G

The set of nodes at Level 0 of H corresponds to the
initial community partition in which each vertex of G forms
a community. Then, each level k, ∀k > 0, has only one node,
v, which corresponds to the community formed by combining
the two child nodes of v at the k-th iteration. We categorize
the nodes, which represent communities, in H into three types
as follows.

• Actual communities, which are the optimal communities
approximated by the greedy algorithm.

• Virtual communities, which are communities that are
ancestors of the actual communities in H.

• Intermediate communities, which are communities that
are descendants of the actual communities.

In order to create the community hierarchy tree, we run
the greedy algorithm until all vertices in G are combined into
a single community. Thus, the set of actual communities are
the community partition that is obtained when the modularity

reaches its peak (after this point the modularity starts to de-
crease), while the set of virtual communities is all communities
that are formed after the peak.

We discuss how each of the three types of communities is
used to facilitate object connection discovery in G. First, the
set of actual communities partitions G into small and high-
quality components so that we can compute the connection
on each component efficiently.

Second, the set of virtual communities keeps the relationship
among the actual communities. Each virtual community C
keeps a set of community edges. A community edge of C is an
edge (Ci, Cj), where both Ci and Cj are actual communities
that are descendants of C, such that Ci and Cj are connected
in G, i.e., there is at least one edge between Ci and Cj in G.
To avoid (Ci, Cj) being kept duplicately at all the common
ancestors of Ci and Cj , we keep (Ci, Cj) at an ancestor C
if and only if Ci is in the left subtree of C and Cj is in
the right subtree of C. The community edges are essential for
computing the inter-community connection between the query
nodes that are in different actual communities.

Each (Ci, Cj) indicates that there exists at least one edge
(vi, vj) in G, where vi ∈ Ci and vj ∈ Cj . Since (vi, vj)
connects Ci and Cj in G, we call (vi, vj) a connecting edge.
We also associate the set of connecting edges with (Ci, Cj).

The following example illustrates the various concepts dis-
cussed above.

Example 3: In Figure 3, we have two virtual communities,
C4 and C5. The set of community edges kept at C4 is
{(C1, C2)} since there is only one actual community at either
side of C4 as its descendants. The set of connecting edges
associated with (C1, C2) is {(v3, v11)} since C1 and C2 are
connected by the edge (v3, v11) in Figure 2. The set of
community edges kept at C5 is {(C1, C3), (C2, C3)}. The set
of connecting edges associated with (C1, C3) is {(v4, v6)} and
that with (C2, C3) is {(v10, v8)}. �

We do not use intermediate communities in this paper;
however, intermediate communities are useful when the user
wants to know more about each query node itself in addition
to the relationship between query nodes. This is particularly
necessary when a query node is in an isolated component, in
which case we want to return some useful information to the
user rather than the query node itself. For this purpose, we
can define groups as intermediate communities, since small
groups present the most relevant (local) information to a query
node. The community hierarchy tree provides the flexibility of
allowing the user to specify the group size, as well as the fast
retrieval of the groups.

V. INTRA-COMMUNITY CONNECTION

After decomposing the large graph G into a set of much
smaller communities, we can now process the query nodes
that fall within each community to obtain the context-aware
connection. In this section, we first propose the notions of
information throughput and information flow to measure the
importance of a node and a path in connecting the query
nodes within the community. Then, we integrate the two



concepts to define a goodness function, by which we measure
the quality of the intra-community connection. Finally, we
propose a dynamic programming algorithm to compute the
best connection between the query nodes within a community.

A. Information Throughput and Information Flow

Let G be the induced graph of a community C in G, and
W = {wij} be the adjacent matrix of G. We can model G as
an electrical circuit, where each edge in G is a resistor whose
conductance is the edge weight.

Our circuit model is source-target dependent; that is, given
a source node s and a target node t, we inject one unit of
current into the circuit at s and extract one unit at t. Let V st

i

be the voltage of node i in the circuit and Ist
i be the current

flowing through node i. Since the current going into a node
is equal to that going out of the node (by Kirchhoff’s law
of current conservation), Ist

i is defined as half of the absolute
amount of all the currents flowing through node i. The concept
of information throughput is then formally defined as follows.

Definition 2: (Information Throughput) Given a connected
graph G, the information throughput of a node i with respect
to a pair of source-target nodes {s, t} is defined as follows:

T st
i = Ist

i =
{

1
2

∑
j wij |V st

i − V st
j |, if i �= s, t

1, otherwise.
(3)

Intuitively, T st
i indicates the importance of node i in con-

necting s and t.
In order to compute T st

i , we only need to obtain the voltage
values by the following equation:

(WD −W) · V = IC , (4)

where WD is a diagonal matrix with entries wD
ii =

∑
j wij ,

V = {V st
i } is the voltage vector of all nodes, and IC = {IC

i }
is the cumulative current vector of all nodes (IC

s = 1; IC
t =

−1; and IC
i = 0 for i �= s, t).

Information throughput T st
i measures the total amount of

information flow from s to t through i in G. Since there may
be many paths from s to t passing through i, we also want
to know the exact amount of information flow through each
path. Let pst = 〈s = i1, i2, . . . , in−1, t = in〉 be a simple path
from s to t. We define the information flow of pst as follows:

T (pst) = T (〈s = i1, i2, . . . , in−1, t = in〉)

=
n−1∏
k=1

wikik+1(V
st

ik
− V st

ik+1
)

Ist
ik

. (5)

Note that information throughput T st
i is equal to the sum

of the information flow of all the paths passing through
i. We illustrate the concepts of information throughput and
information flow by the following example.

Figure 4 shows a weighted graph, where the weight of each
edge is represented by the associated integer. Assume that s
and t are two query nodes. The information throughput of
each node with respect to s and t is given as the value below
each node in Figure 4 and the information flow of each path
is given in Table I.
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Fig. 4. An Example Graph

TABLE I

INFORMATION FLOW AND VALUE OF PATHS IN FIGURE 4

Path, pst T (pst) val(pst)

p1=〈s, v4, t〉 0.46 0.267
p2=〈s, v5, v6, v7, t〉 0.18 0.032
p3=〈s, v1, v4, t〉 0.04 0.014
p4=〈s, v4, v3, t〉 0.04 0.014
p5=〈s, v1, v4, v3, t〉 0.04 0.011
p6=〈s, v10, v11, v12, t〉 0.03 0.006
p7=〈s, v1, v2, v3, t〉 0.05 0.005
Any one of the remaining 8 paths 0.02 0.003

Example 4: Node v4 has the highest information through-
put since it directly connects s and t with the highest weight
10. Moreover, v4 also serves as a bridge to connect v1 and
v3, which forms several paths from s to t. Therefore, v4 plays
a very important role in connecting s and t and it is well
indicated by the high value of its information flow.

The nodes v10, v11 and v12 are also of high information
throughput since they form a number of s-to-t paths. How-
ever, the number of these paths is large and the paths are
relatively long, which weakens the significance of these nodes
in connecting s and t. Although this point is not indicated
by information throughput of the nodes, it is captured by
information flow of the paths. As shown in Table I, all the
paths formed by these nodes are of low information flow. �

Given a community C, we only need to compute the corre-
sponding matrix (WD − W)−1 once. Afterwards, regardless
of which query nodes are asked, the information throughput of
all nodes and the information flow of all paths with respect to
any pair of query nodes can be computed by Equations (3-5).

Computing (WD − W)−1 takes O(|C|3) time for a com-
munity C. However, a community C is significantly smaller
than the original graph G and hence computing the matrix
inversion on C is much more efficient than on G. Since we
only need to compute (WD − W)−1 once and then use it
to answer any queries, it is also reasonable to pre-compute
it offline. Afterwards, the time complexity of computing the
vectors of voltage and information throughput with respect
to any pair of source and target is O(|C|2), which can be
processed efficiently for online querying since C is not large.

B. The Goodness Function

We now define the goodness function, by which we de-
termine which nodes and paths should be used to connect



the query nodes within a community. Then, we show how
to compute the best connection between query nodes that
maximizes the goodness function.

Let Q be a set of query nodes in a community C. We
compute a connected subgraph GQ = (VQ, EQ) such that
Q ⊆ VQ ⊆ C and GQ maximizes a goodness function g.
We first define g based on information throughput as follows:

g(GQ) =
∑

s,t∈Q

∑
i∈VQ

T st
i . (6)

Equation (6) indicates the total degree of importance of all
the nodes in GQ. However, according to Equation (6), g(GQ)
is maximum when we include all nodes of C into GQ. To avoid
obtaining this trivial answer graph, we set a budget b such that
our objective is now to maximize g(GQ) with |VQ| ≤ b. The
budget is commonly used to control the size of the answer
graph for clear visualization [9], [10].

Although the information throughput of a node indicates
its importance in connecting s and t, simply summing up the
information throughput of the nodes as in Equation (6) has a
problem. Given a node i in GQ, T st

i actually represents the
total amount of information flow from s to t through i in C.
Thus, T st

i may be high only because there are many paths
from s to t going through node i. We illustrate this problem
of Equation (6) by Example 5.

Example 5: Consider the graph in Figure 4. Based on
Equation (6), if we set the budget b = 6 nodes, then the best
connection from s to t is shown in Figure 5. The problem
is obvious since the path 〈s, v10, v11, v12, t〉 has very low
information flow of only 0.03. The three nodes v10, v11 and
v12 are chosen only because there are many paths passing
through them, while all these paths have very low information
flow and thus only show weak connection from s to t. �
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3
7 3 7

Fig. 5. Answer Graph for Example 5

To address the problem of Equation (6), we attempt to define
the goodness function based on an s-to-t path directly instead
of on individual nodes as follows:

g(GQ) =
∑

s,t∈Q

∑
pst∈GQ

T (pst). (7)

Equation (7) indicates the total amount of information
delivered by all the s-to-t paths in GQ. However, Equation
(6) is not totally meaningless in the sense that a node i having
a higher information throughput is indeed more important
than another node j with a lower information throughput,
because the total amount of information delivered from s to
t through node i is indeed higher than that through node j.
Thus, considering the information flow of a path alone may
also miss some important connection, as illustrated by the
following example.
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Fig. 6. Answer Graph for Example 6
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Fig. 7. Answer Graph for Example 7

Example 6: Consider again the graph in Figure 4. Based
on Equation (7), the best connection from s to t is
shown in Figure 6, which are the two paths that have the
highest information flow. However, there are three paths,
〈s, v1, v4, t〉, 〈s, v4, v3, t〉 and 〈s, v1, v4, v3, t〉, all passing
through the most important node v4 in the s-to-t connec-
tion. The overall information flow of these paths, together
with the path 〈s, v1, v2, v3, t〉, is only 0.01 lower than the
path 〈s, v5, v6, v7, t〉. Thus, if we consider both the strong
connection of these paths with the important node v4 and
the comparable overall information flow, then Figure 7 gives
a better answer graph than Figure 6. More importantly, the
combination of the paths contributes to a network of significant
connection from s to t, which is far more informative than a
single path 〈s, v5, v6, v7, t〉. �

To address the problems of Equations (6) and (7), we take
the merits of both information throughput and information
flow by integrating them to define a new goodness function
as follows.

val(pst) =

{
T (pst), if pst = 〈s, t〉
T (pst)

∑
i∈pst,i�=s,t T st

i

|pst|−2 , otherwise.

g(GQ) =
∑

s,t∈Q

∑
pst∈GQ

val (pst). (8)

Equation (8) first defines the value of a path pst, denoted as
val(pst), based on which the goodness function of an answer
graph is further defined. According to Equation (8), g(GQ) is
high when both the information flow of the s-to-t paths and
the average information throughput of the nodes on the paths
are high. We can interpret Equation (8) as follows. T (pst)
in Equation (8) quantifies the local information flow in the
answer graph, while (

∑
i∈pst,i�=s,t T st

i )/(|pst|−2) governs the
choice of a node i to be included in the answer graph according
to its global importance in the community (with respect to s
and t).

Example 7: Based on Equation (8), the best connection
from s to t is shown in Figure 7. The value of each path
pst is shown in Table I. The goodness score of the answer
graph in Figure 7 is 0.311, while those of Figure 5 and Figure
6 are 0.273 and 0.299, respectively. �

C. Computing the Optimal Intra-Community Connection

Computing the best connection for query nodes within a
community can be defined as an optimization problem as



follows:
Gopt

Q = argmax GQ g(GQ). (9)
To solve this optimization problem, we first attempt to

apply a dynamic programming (DP) solution similar to the
0-1 knapsack problem, by setting the budget b as the total
capacity of the knapsack, the set of “pst” paths as the set of
items, |pst| as the item weight, and val(pst) as the item value.

Let PathSet be the set of “pst” paths and |PathSet | be the
number of paths in PathSet . The knapsack problem can be
solved in O(|PathSet |b) time. Unlike the knapsack problem,
b here is small, since b is defined as the size of a graph that
a human user is able to visualize clearly. However, there are
still two problems that need to be solved. First, we need to
obtain PathSet . Second, the nodes on the paths may overlap,
while the items in the knapsack problem do not share their
weights. We address each of the problems as follows.

1) Path Selection:
Clearly we cannot use the set of all “pst” paths within a

community because the number of such paths is too large. We
select a set of high-value paths by the following strategy.

We start a breath-first-search (BFS) from s to collect a set
of “pst” paths. The BFS does not visit all nodes but only
explores a node j from a node i if (V st

i −V st
j ) > 0, since we

require val (pst) > 0. To control the number of paths, for each
s-t pair, we stop a new iteration of BFS when the number of
distinct nodes on the collected paths is greater than b.

Example 8: Consider the graph in Figure 4. If b = 6, the set
of s-to-t paths is selected as follows. First, the second iteration
of BFS selects 〈s, v4, t〉. Then, the third iteration of BFS
selects 〈s, v1, v4, t〉 and 〈s, v4, v3, t〉. The fourth iteration of
BFS selects 〈s, v1, v2, v3, t〉, 〈s, v1, v4, v3, t〉, 〈s, v5, v6, v7, t〉,
and 〈s, v10, v11, v12, t〉. Now, the number of distinct nodes is
greater than b; thus, we stop the BFS path selection and none
of the other paths in Figure 4 are selected. �

The BFS strategy has the following three advantages. First,
it controls the length of the paths, because we do not prefer
long paths due to the limited budget b. Second, the paths
collected by BFS tend to have common nodes, thereby giving
a higher val(pst) within a fixed b. Third, the BFS strategy also
collects high-value paths, because T (pst) decreases for each
node added to the path as reflected by Equation (5).

2) Dynamic Programming:
After we select the set of “pst” paths, PathSet , we can

construct a (|PathSet | × b) table for the DP solution. We
first sort PathSet in descending order of the values of the
paths to facilitate the DP process, since we prefer high-value
paths to low-value ones. However, the fact that paths may
share common nodes significantly complicates the problem.
We address this problem as follows.

Let Tab be the DP table and px be the x-th path in
PathSet . In the 0-1 knapsack setting, Tab[x, y] gives the
optimal solution for the sub-problem with x paths and the
capacity y, where Tab[x, y] is given as follows.

Tab[x, y] = MAX {Tab[x − 1, y],
val(px) + Tab[x − 1, y − |px|]}. (10)

Equation (10), however, has a problem. If some nodes on
px also appear on some paths processed previously, then it
is no longer correct to use Tab[x − 1, y − |px|] to compute
Tab[x, y].

Let PathSet [1 · · · (x−1)] be the set of paths in PathSet that
are processed by DP before we process px. We may have z
nodes on px that are also on some paths in PathSet [1 · · · (x−
1)], where 0 ≤ z ≤ |px|. Therefore, we need to check
Tab[x − 1, y − (|px| − z)], for 0 ≤ z ≤ |px|, in order
to compute Tab[x, y]. However, we cannot simply take the
maximum Tab[x − 1, y − (|px| − z)] for some z, since we
need to make sure that there are indeed z nodes being repeated
on the set of paths from which Tab[x − 1, y − (|px| − z)] is
computed. Let PathTab[x − 1, y − (|px| − z)] be the set of
paths from which Tab[x− 1, y − (|px| − z)] is computed. We
compute Tab[x, y] as follows.

Tab[x, y] = MAX {Tab[x − 1, y],
val(px)+MAX {Tab[x−1,y−(|px|−z)]}}, (11)

where 0 ≤ z ≤ |px| and there are at least z nodes on px that
also appear on some paths in PathTab[x− 1, y − (|px| − z)].

We give the pseudo-code of the DP algorithm in Algorithm
1. The algorithm is self-explanatory except the handling of
the common nodes on different paths. In Lines 8-17, we find
the number of nodes on px that also appear on some paths in
PathTab[x − 1, y − (|px| − z)] as follows.

Algorithm 1 IntraConnection
Input: PathSet, b.
Output: GQ.
1. Sort PathSet in descending order of the path values;
2. Create Tab with (|PathSet |+ 1) rows and (b + 1) columns;
3. Initialize the first row, Row 0, of Tab to be all ‘0’s;
4. for each x = 1, . . . , |PathSet |, do
5. for each y = 0, . . . , b, do
6. Tab[x, y]← Tab[x− 1, y];
7. PathTab [x, y]← PathTab[x− 1, y];
8. Let px be the x-th path in PathSet ;
9. for each z = 0, . . . , |px|, do
10. z′ ← 0;
11. for each node v on px do
12. if(PathSet(v) ∩ PathTab[x− 1, y − (|px| − z)] �= ∅)
13. z′ ← z′ + 1;
14. break if z′ ≥ z;
15. if(z′≥z and Tab[x, y]<(val(px)+Tab[x−1, y−(|px|−z)]))
16. Tab[x, y]← (val(px) + Tab[x− 1, y − (|px| − z)]);
17. PathTab[x, y]←(PathTab[x−1, y−(|px|−z)] ∪ {px});
18. Combine the paths in PathTab[|PathSet |, b] to give GQ;

Let PathSet(v) be the set of paths in PathSet that contain
a node v. For each v on px, we intersect PathSet(v) with
PathTab[x − 1, y − (|px| − z)]. If the intersection is not an
empty set, then v is repeated on some path in PathTab[x −
1, y− (|px|−z)]. We use z′ to keep the total number of nodes
being repeated. If there are z′ ≥ z nodes on px that also appear
on some paths in PathTab[x − 1, y − (|px| − z)], we update
Tab[x, y] according to Equation (11).
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Fig. 8. Answer Graph for Example 10

Finally, GQ is computed by combining the set of path in
PathTab[|PathSet |, b]. We show how the algorithm works by
the following example.

Example 9: Consider the graph in Figure 4 and two query
nodes s and t. We set b = 6 and after sorted, PathSet =
{p1, p2, p3, p4, p5, p6, p7} as given in Table I. Table II gives
the value of each Tab[x, y] and the set of paths in each
PathTab[x, y]. To save space, we omit Columns 0-2 and Row
0, which are all 0’s.

Recall that PathTab[x, y] = {pi, . . . , pj} can be regarded
as a subgraph consisting of the set of paths {pi, . . . , pj}, where
the number of distinct nodes in the subgraph is y. Thus, we
can construct PathTab[3, 4] = {p1, p3} from PathTab[2, 3] =
{p1}, since all the nodes on p3, except v1, appear already
on p1. In Row 5, PathTab[4, 6] = {p1, p2} was replaced
by PathTab[5, 6] = {p1, p3, p4, p5}, since Tab[5, 6] is now
greater than Tab[4, 6]. For Row 6, since p6 consists of three
new nodes and hence we need to update Tab[6, 6] from
Tab[5, 3]. However, (Tab[5, 3] + 0.006) < Tab[5, 6]; thus, p6

is not added and Row 6 remains the same as Row 5. For
Row 7, there is only one new node on p7; thus, we add p7

to PathTab[6, 5] to give PathTab[7, 6] = {p1, p3, p4, p5, p7},
which is the final answer. �

TABLE II

VALUES OF Tab AND PathTab IN EXAMPLE 9

3 4 5 6
1 0.267 {p1} 0.267 {p1} 0.267 {p1} 0.267 {p1}
2 0.267 {p1} 0.267 {p1} 0.267 {p1} 0.299 {p1, p2}
3 0.267 {p1} 0.281 {p1, p3} 0.281 {p1, p3} 0.299 {p1, p2}
4 0.267 {p1} 0.281 {p1, p3} 0.295 {p1, p3, p4} 0.299 {p1, p2}
5 0.267 {p1} 0.281 {p1, p3} 0.306 {p1, p3, p4, p5} 0.306 {p1, p3, p4, p5}
6 0.267 {p1} 0.281 {p1, p3} 0.306 {p1, p3, p4, p5} 0.306 {p1, p3, p4, p5}
7 0.267 {p1} 0.281 {p1, p3} 0.306 {p1, p3, p4, p5} 0.311 {p1, p3, p4, p5, p7}

Example 9 shows how to find the answer graph of only two
query nodes. The following example further illustrates the case
when the number of query nodes is more than two.

Example 10: Figure 8(a) shows a graph with three query
nodes. Assume that all paths have the same value. If we set b =
9, we can either output Figure 8(b) or Figure 8(c). Figure 8(b)
shows strong pair-wise relationship between any pair of query
nodes, while Figure 8(c) shows strong relationship among all
query nodes and pair-wise connection is included only because
the budget still allows. Our algorithm gives Figure 8(c), which
reveals another advantage of our method that it values strong
relationship among all or the majority of query nodes higher
than pair-wise relationship. �

We now analyze the time complexity. To compute each

Tab[x, y], we need to check |px| number of “Tab[x − 1, y −
(|px| − z)]” entries. For each entry, we need to perform z
intersections of PathSet(v) and PathTab[x−1, y−(|px|−z)].
Thus, we need O(|px|2|PathSet |) time to compute each
Tab[x, y]. Note that we can terminate the intersection as soon
as we find one path in both sets. Thus, in many cases, the
intersection terminates earlier.

In total, we need to compute b|PathSet | table entries
and hence the total running time is O(b|px|2|PathSet |2). In
practice, this running time is very small since |px|, |PathSet |
and b are all small.

The space required for PathSet and Tab is O(b|PathSet |).
We also keep PathTab[x−1, y−(|px|−z)] with each Tab[x−
1, y− (|px|−z)], but only for the (x−1)-th row and x-th row
of Tab. Thus, the extra space needed is at most (2b|PathSet |).
In most cases |PathTab[x−1, y− (|px|−z)]| is much smaller
than |PathSet |.

However, there is a potential problem in the DP solution
that GQ may not be connected or may not contain all query
nodes, since the DP only picks up paths according to their
values. Since we select paths for all s-t pairs, ∀s, t ∈ Q, we
simply make GQ connected with all query nodes by adding
the corresponding path(s) with the highest value. Thus, this
process may output slightly more than b nodes but should not
affect clear visualization.

VI. INTER-COMMUNITY CONNECTION

In Section V, we discuss the intra-community connection
between a set of query nodes that are in the same community.
In this section, we discuss the inter-community connection for
a query that contains nodes from different communities.

We give the algorithm for computing the inter-community
connection between the query nodes in Algorithm 2.

Algorithm 2 InterConnection
Input: H and the query Q.
Output: The answer graph GQ.
1. Let C be the set of all communities that contain at least

one query node;
2. Let A be the common ancestor of all communities in C;
3. Let Ecom be the set of all community edges of each virtual

community on the path from each Ci ∈ C to A;
4. Construct a graph, Gcom , from Ecom ;
5. for each pair of communities, Ci and Cj , in C do
6. Compute the shortest path between Ci and Cj in Gcom ;
7. Let P be the set of all shortest paths obtained in Steps 5-6;
8. Sort P in ascending order of the path length;
9. for each path 〈Ci, . . . , Cj〉 ∈ P do
10. if(Ci and Cj are not yet connected in GQ)
11. Find the actual path between Ci and Cj , and add it to GQ;
12. if(All query nodes in Q are connected)
13. Return GQ;

We describe Algorithm 2 as follows. In Section IV-C, we
construct the community hierarchy tree H that shows the
relationship between the communities. For example, if two
communities are siblings in H, then they are the closest
to each other since they are to be joined as one single



community as measured by modularity. Algorithm 2 utilizes
this relationship between two communities Ci and Cj to first
find the connection between Ci and Cj at the community level
(Lines 2-6); then, we find the actual path in G that connects
the query nodes in Ci to those in Cj (Line 11).

We first discuss how we find the connection between Ci and
Cj at the community level. Let p = 〈Ci, . . . , Cj〉 be the simple
path that connects Ci and Cj in H (i.e., the path from Ci to
A and that from Cj to A in Lines 2-3 of Algorithm 2). Since
all nodes on p, except Ci and Cj , are virtual communities,
we need to first convert p into a path of actual communities.
Recall from Section IV-C that at each virtual community in H,
we keep a set of community edges. Let Ecom be the union of
the set of community edges at each virtual community on p.
From Ecom , we can construct a graph, Gcom . Note that Gcom

must contain at least one path of actual communities from Ci

to Cj , because Ci and Cj are reachable to each other in G.
Thus, the path that connects Ci and Cj at the community level
can be computed as the shortest path from Ci to Cj in Gcom .

It has been shown in [9] that shortest path is inadequate
in capturing the relation between query nodes. We also do
not use shortest path to find the relation between query nodes
within a community. However, here the context in which we
apply shortest path is different, because the distance between
two communities in the community hierarchy tree does show
how close they are to each other. For this reason, the weight of
each community edge in Gcom is defined as the level at which
the community edge is kept in the hierarchy tree, since the
level of the hierarchy tree shows the time the communities are
combined. The higher the level (the greater the edge weight),
the later are two communities combined and so the further
away is their relationship. We further illustrate the concept by
the following example.

Example 11: Consider the graph in Figure 2 and the hier-
archy tree in Figure 3. For clear illustration, let us assume
that we obtain the set of actual communities at Level 7
instead of Level 9; that is, the set of actual communities is
{C1, C2, C6, C7, C8}. The set of community edges at each
virtual community is as follows: we have {(C7, C8)} at Level
8, {(C6, C7), (C6, C8} at Level 9, {(C1, C2)} at Level 10,
and {(C1, C6), (C2, C8)} at Level 11. Suppose that the query
nodes are in C1 and C7. We collect the community edges
along the two paths from C1 and C7 to their ancestor C5, and
construct Gcom accordingly as shown in Figure 9.

There are four simple paths connecting C1 and C7 but the
shortest path is 〈C1, C6, C7〉. It can also be seen from Figure
2 that this shortest path can indeed capture the relationship
between the two communities. �
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Fig. 9. Gcom for Example 11

We now discuss how to find the actual path to connect two

communities Ci and Cj based on the discovered community
path (Line 11 of Algorithm 2). Let p = 〈Ci, Cx, . . . , Cy, Cj〉
be the shortest path between two communities Ci and Cj in
Gcom . We utilize p to find the actual path connecting the query
nodes in Ci and Cj . A conceptual view of how we apply p is
depicted in Figure 10.

Ci

qi u

Cx

v w ...

Cy Cj

qj

Fig. 10. A Conceptual View of Inter-Community Connection

Recall that each community edge is associated with a set
of connecting edges. Thus, we start from Ci and find the
highest-value path from a query node to some u, where (u, v)
is a connecting edge. We find this highest-value path using
the BFS strategy in Section V-C but we do not run dynamic
programming since we only need to pick one path. Then, we
find the highest-value path from v to w in Cx. This process
goes on until we reach Cj , where we connect a query node
in Cj with the highest-value path to a connecting edge from
Cy . In the same way, we find the actual path from Cj to Ci

because the connection is direction-aware. We then select the
path with higher overall value to connect the query nodes in
Ci and Cj in the answer graph.

The overall connection between Ci and Cj is controlled
by both inter- and intra- community concepts. As depicted
in Figure 10, the quality of the connection at the community
level is ensured by the community hierarchy tree based on
modularity. When the connection goes inside a community,
we apply the concepts of information throughput of nodes
and information flow of paths to compute the highest-value
intra-community path.

Finally, in Algorithm 2, we first sort the shortest paths in
Line 8 and terminate the process when all query nodes are
connected in Lines 12-13. This is a greedy algorithm that
computes a connected answer graph by selecting the best
inter-community path at each step. Since the inter-community
connection is at a much coarser level than the intra-community
connection, connecting all query nodes by the greedy strategy
suffices, though computing the connection between all com-
munities in C is also possible and incurs only little overhead.

We now analyze the complexity of the inter-community
connection. First, finding the shortest path in Gcom takes
O(|Ecom | log |Vcom |) time and (O(|Ecom | + |Vcom |) space.
Since the sets of community edges kept by the virtual commu-
nities are disjoint and we only require the virtual communities
on the simple path from Ci to Cj in H, |Ecom | is small and
so is |Vcom |. In total we need to find (|C|(|C|−1)/2) shortest
paths, but |C| ≤ |Q| and in general a user does not ask a query
with many query nodes.

Computing the actual path from the shortest path p =
〈Ci, . . . , Cj〉 takes

∑
Ck∈p O(|Ck|2), where O(|Ck|2) is the

time for computing the voltage and information throughput of
the nodes in Ck. Note that the time taken for the BFS path



selection is dominated by O(|Ck|2). Finally, the space require-
ment is O(MAX {|Ck|2}). Since the size of a community is
small, both the time and space are also small.

VII. EXPERIMENTAL RESULTS

We now evaluate the performance of our algorithm for
object connection discovery. We run all experiments on an
AMD Opteron 248 with 1GB RAM, running Linux 64-bit.

We use the DBLP co-authorship dataset modeled as a graph.
The graph has approximately 316K nodes and 1,834K edges,
where a node represents an author and the edge weight is the
number of papers co-authored between two authors.

A. Performance of Community Partition

We first evaluate the performance of community partition by
our greedy algorithm. We test three settings of clocal (10, 50
and 100) and four settings of cglobal (10, 100, 1000, 10000).
We also compare with Newman’s algorithm [13].

Figure 11(a) shows that our algorithm is about an order of
magnitude faster than Newman’s when clocal = 10. The result
also shows that when clocal increases, the efficiency decreases,
which demonstrates the effectiveness of Heuristic 1.
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Fig. 11. Performance of Community Partition

For the effect of Heuristic 2, i.e., cglobal , the performance is
the best when cglobal = 1000. When clocal = 10, the running
time is 682, 613, 570, and 667 seconds for cglobal = 10, 100,
1000, and 10000, respectively. The result can be explained as
follows. When cglobal is too small, many items are not kept in
the global max-heap and hence we need to rebuild the heap
more often. When cglobal is too large, there are too many items
in the heap and hence the update of the heap takes longer.

Figure 11(b) shows that the peak memory consumption of
our algorithm increases when clocal increases, since the size of
the local max-heaps increases when clocal increases. Increasing
cglobal , i.e., the size of the global heap, from 10 to 10000 only
increases the memory usage for less than 1 MB since we have
only one global heap. However, in all cases, our algorithm
consumes considerably less memory than Newman’s.

We also record that the value of the modularity of the opti-
mal community partition obtained by the greedy algorithm is
0.71 (note that all the algorithms compute the same partition).
According to Newman [13], a modularity value of greater than
0.3 indicates a significant community structure. Therefore,
0.71 is a very high value of modularity and indicates a high-
quality community partition.

B. Semantics of Answer Graph: A Case Study

We conduct a case study to compare our answer graph
with the center-piece subgraph (CEPS) [10]. This study aims
to first provide a more intuitive view on the answer graphs
obtained by our algorithm and CEPS. Then, we perform a
more systematic comparison in the following subsection.

We use the query {Jim Gray, Jennifer Widom, Michael I.
Jordan, Geoffrey E. Hinton}. The four scholars are from two
different communities: Gray and Widom are from the database
community, while Jordan and Hinton are from the machine
learning community. This is clearly captured by our answer
graph as shown in Figure 1, which is displayed in Section I.

Figure 12 shows the answer graph of CEPS, which is very
similar to our answer graph. The similarity is because both our
algorithm and CEPS find nodes that are closely related to the
query nodes in order to connect them. Thus, the result shows
that both algorithms are able to capture important nodes and
paths related to the query nodes. However, our method not
only finds a good connection between all query nodes, but
also for query nodes that are in the same context, we put
more emphasis on their connection than the existing methods.
Compare Figure 1 with Figure 12, we clearly see a stronger
connection between Gray and Widom through both Ceri and
Hellerstein in our answer graph than CEPS.
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Fig. 12. The Answer Graph of CEPS

Although the quality of the answer graphs is comparable,
our algorithm significantly outperforms CEPS: we take only
0.33 seconds to compute our answer graph, while the com-
putation of the CEPS takes 925 seconds. We further compare
the two methods using more systematic measures as follows.

C. Performance of Object Connection Discovery

We compare the performance of our algorithm, PCquery,
with CEPS [10]. We set the budget to be twice of the
query size. We also verify that the answer graphs obtained
by PCquery and CEPS are of roughly the same size. Other
settings of CEPS are as its default.

We generate two types of queries: in-community queries and
random queries, which are abbreviated as cq and rq in the
figures. For in-community queries, the nodes in a query are
randomly selected from a randomly selected community. For
random queries, the nodes in a query are randomly selected
from the set of all nodes in the dataset. We generate 100
queries for each type and test the query size from 2 nodes
to 20 nodes.

Figure 13(a) reports the average running time of finding the
connection for a query. The result shows that PCquery is more



than three orders of magnitude faster than CEPS for both query
types. We find that PCquery takes more time to process an in-
community query than a random query. This is because the
computation of the intra-community connection by dynamic
programming is more costly than that of the inter-community
connection by tracing the community hierarchy tree.
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Fig. 13. Efficiency of PCquery and CEPS

Figure 13(b) reports the peak memory consumption during
the entire running process. The result shows that PCquery also
consumes significantly less memory than CEPS in all cases.

In addition to the comparison on efficiency, we also compare
the quality of the answer graphs obtained by PCquery and
CEPS. For the fairness of comparison, We use the quality
metrics proposed in CEPS [10], NRatio and ERatio, which
indicate the percentage of important nodes and edges that are
captured by an answer graph, respectively. We report the result
in Figure 14.
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Fig. 14. Quality of Answer Graph

Figure 14 shows that both PCquery and CEPS obtain
high-quality answer graphs. Both NRatio and ERatio of our
answer graphs are comparable to those of CEPS, although
on average those of CEPS are slightly better. Considering
our algorithm is three orders of magnitude faster and also
consumes significantly less memory, we can conclude that our
method is both efficient and effective.

VIII. CONCLUSIONS

We propose context-aware object connection discovery in
a large graph. We adopt a partition-and-conquer approach to
achieve both high performance efficiency and high quality
results. Our method first partitions a large graph into a set
of communities. The concept of community not only naturally
defines the context of the nodes, but also significantly improves
the efficiency of connection discovery since a community

is much smaller than the original graph. We compute the
connection between query nodes first at the intra-community
level by maximizing the information throughput of the nodes
and the information flow of the paths in the answer graph,
and then at the inter-community level by retaining the close
relation between the communities as defined by modularity.
The quality of both the intra- and inter- community con-
nection is thus controlled by the integration of information
throughput/flow and modularity. We verify by experiments
that our community partition algorithm is efficient and the
set of communities obtained has high quality. We also show
that our method obtains comparable high-quality answers as
the state-of-the-art algorithm, but is more than three orders of
magnitude faster and consumes significantly less memory.
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