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Abstract. With more and more commercial activities moving onto the
Internet, people tend to purchase what they need through Internet or
conduct some online research before the actual transactions happen. For
many Web users, their online commercial activities start from submit-
ting a search query to search engines. Just like the common Web search
queries, the queries with commercial intention are usually very short.
Recognizing the queries with commercial intention against the common
queries will help search engines provide proper search results and adver-
tisements, help Web users obtain the right information they desire and
help the advertisers benefit from the potential transactions. However,
the intentions behind a query vary a lot for users with different back-
ground and interest. The intentions can even be different for the same
user, when the query is issued in different contexts. In this paper, we
present a new algorithm framework based on skip-chain conditional ran-
dom field (SCCRF) for automatically classifying Web queries according
to context-based online commercial intention. We analyze our algorithm
performance both theoretically and empirically. Extensive experiments
on several real search engine log datasets show that our algorithm can
improve more than 10% on F1 score than previous algorithms on com-
mercial intention detection.

1 Introduction

The rapid development of World Wide Web has impacted almost every aspect of
our daily life and more and more activities happen on the Internet. Among these
activities, one important kind is commercial activities, which form an ecosystem
and attract a lot of players.In this ecosystem, the behaviors of Web users play
a critical role. The behaviors include shopping online, or conducting online re-
search for actual deals. As we are aware of, most Web users start their online
behaviors by submitting a Web query to a search engine. Therefore, accurately
understanding the intentions behind the issued queries is of great importance to
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the mentioned ecosystem. In this paper, we focus on detecting the commercial
intentions of Web queries, which is not thoroughly studied yet as the general
query intentions studied in [2,11,9,6].

Detecting Online Commercial Intention (OCI) from Web queries is not triv-
ial, considering the following three difficulties. The first difficulty is that many
queries are very short. [5] studied an Excite search-service transaction log and
showed that approximately 93% of the Web queries contained less than 4 terms.
It is extremely hard to derive user intention solely based on the queries. The
second difficulty is that a Web query often has multiple meanings and hence is
ambiguous. For example, the word “jaguar” has dozens of meanings, which can
either mean an animal or a kind of luxury cars, or others1. The third difficulty is
that the intention of a Web query can vary given different contexts. For example,
even if “jaguar” takes the meaning of being a kind of luxury car, it either encodes
a commercial intention (when the user wants to buy a car), or non-commercial
intention (where the user just wants to find some luxury car pictures).

[4] first defined the notion of OCI and provided a non-context-aware approach
to detect OCI in Web queries. The authors formalize the problem as a binary
classification problem to decide whether a search query is intended for commer-
cial purposes such as intending to buy a product or finding product information
as in the research stage. The proposed solution, based on query enrichment
through search engines and traditional text classification techniques [4], solves
the first difficulty as we discussed. However, their method cannot tackle the sec-
ond and third difficulties. In this paper, we propose a new algorithm to analyze
the commercial intention of Web queries, taking the contextual information of
the submitted queries into consideration. With these information provided, our
method can provide more accurate predictions for commercial intention of Web
users.

Figure 1 shows the workflow of our algorithm. We consider a newly asked
query and then consider two kinds of features, one is the generalized OCI in-
tention degree which extracts features from top result pages when this query is
issued to the search engine. The other is the historical similarity feature, which
takes past queries into consideration. It first detects all the similar queries in
the user’s personal query log up to a specific length. And then it computes the
semantic similarity kernel function by using query expansion techniques as exter-
nal information sources. Next these two feature functions are used in a skip-chain
conditional random field model (SCCRF). A skip-chain conditional random field
model adds possible links between non-adjacent nodes, in contrast to the more
commonly used linear chain conditional random field, where only adjacent nodes
are connected. The reason for us to use SCCRF is to grab the connection be-
tween the query labels (commercial or non-commercial) of non-adjacent nodes
since simply connecting edges between adjacent nodes would not accumulate
enough information. Finally, the queries are classified as being commercial or
non-commercial. Details are presented in Section 3.

1 http://en.wikipedia.org/wiki/Jaguar %28disambiguation%29
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Fig. 1. Framework of our context-based OCI detection algorithm

Detecting OCI from contextual queries may appear to be similar to the
context-aware query classification problem recently proposed in [3]. However,
how to integrate contextual information in OCI detection is completely different
from context-aware query classification. In context-aware query classification,
one can learn much knowledge from direct relationship between adjacent queries
as well as the QC taxonomy information. In OCI detection, we can only have
limited knowledge from adjacent query relationships since we only have two cat-
egories. Furthermore, we do not have a taxonomy from whose structure we can
mine useful information. Therefore, we proposed a different approach from [3]
to define context-aware features and accumulate useful information from the
surrounding queries.

The rest of the paper is organized as follows. We show some related works
on general OCI detection and query classification methods. We then present our
solution in Section 3 for detecting context-based OCI. In Section 4, we compare
our approaches against the baseline method in [4] using real query log data from
AOL and Live Search. Finally, in Section 5, we give the conclusion of this paper
and describe some possible future research directions.

2 Related Work

A machine learning-based approach for predicting OCI based on Web pages or
queries was proposed in [4]. When detecting OCI from Web pages, the traditional
approach of document classification is used, where we are given a training set
D consisting of training Web pages 〈dj , Ci〉, i = 1 or 2 and 1 ≤ j ≤ |D|, where
C1 means the Web page has commercial intention and C2 means the Web page
has non-commercial intention. The Web pages are represented by the Vector
Space Model. The keywords are extracted from both the content texts and tag
attributes of all the labeled Web pages in the training data.
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The problem of Web query classification is closely related to the OCI de-
tection problem, although current research works on query classification do not
tackle this problem. Currently, works on query classification can be split into two
groups, one is classifying queries according to query types, such as informational
or navigational or transactional[2,7]; and the other is classifying queries accord-
ing to the query topic, such as “computers/hardware” or “computers/software”
[1]. However, as mentioned in [4], OCI follows an independent dimension com-
pared to query topic classification or query type classification. Therefore, the
methodologies for these two types of query classification can not be used di-
rectly for OCI detection.

One paper that is particularly related to this work is context-aware query clas-
sification [3]. In that paper, the authors present a query classification approach
also based on conditional random fields and aiming at mining useful information
from user sessions. Our work differs from that paper in several aspects.

In [3], the authors defined several kinds of “context-aware” features based on
direct association between adjacent labels, and also taxonomy-based association
between adjacent labels. However, when we aim to detect online commercial
intention, such features cannot be simply borrowed to work in this scenario.

Firstly, in [3], they use a linear-chain conditional random field model and
simply calculate the number of occurrences of a pair of adjacent query labels
as the direct association between adjacent labels. It’s easy to see that in the
problem of OCI detection, we can only form four pairs of adjacent query labels
and therefore the knowledge we can gain from using such information is very
limited. To solve this problem, we propose to apply the skip-chain conditional
random field to better capture the information hidden between nonadjacent, but
related queries and we will also demonstrate its usefulness in the experimental
results section.

Secondly, another part of contextual features is the taxonomy-based associa-
tion, where the structure of the taxonomy is exploited to mine useful information
between “sibling” categories. In particular, some transitions between categories
may not occur in the training data and therefore simply using the number of ob-
served transitions between adjacent query labels may not reflect the distribution
in real-world applications. Therefore, in [3], the association between two sibling
categories are considered to be stronger than non-sibling categories. Neverthe-
less, in the problem of OCI detection, such a taxonomy does not exist since we
only have two categories instead of the multiple categories available in general
QC. We also cannot aim to use taxonomy based association to provide contextual
features.

Therefore, both the two parts of contextual features proposed in [3] cannot be
applied to the OCI detection problem, which makes our problem and approach
highly different from [3]. Furthermore, in our experiments section, we do not use
any information about the user clicked URLs since that information is missing
from our query log data. Such information is available and is defined as a major
part of “context” in [3], which further shows the differences between our work
and [3].
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3 Context-Based OCI Detection

3.1 Overview

In this section, we describe our algorithm for context-based online commercial
intention detection from personal query logs.

We first make the basic assumption on context-based OCI detection: a search
engine has access to the query log of a specific user, or at least the query log
from this same IP address. Here we assume that a query log (or clickthrough log
in some literature) consists of a set of queries associated with the user-clicked
search result pages or snippets. Stated formally, the query log is a set Q where
each element is at least a triple 〈U, T, Q, [C]〉, where U indicates the user ID,
or any other information (e.g. IP address) that can differentiate one user from
another, T indicates the time where this query is issued and Q indicates the
string of the Web query. Other elements may also be added to this query log so
that more information will be encoded, such as in the case of a clickthrough log
where we have C, which indicates what pages or URLs the Web user actually
clicked on or the snippets of the clicked pages. In the following, we refer to the
log data consistently as query logs, and do not consider the existence of C since
including these contents would be straightforward.

The assumption on user identification can often be satisfied in real world,
where search engine companies record the query logs of different registered users
or their IP addresses for differentiating them from each other. When the personal
query log data are available, for each incoming query, we can use the information
from the personal query log to find similar queries that has strong correlation
with the new query by the same user or user group.

3.2 Modeling Query Logs via CRF

Since we want to take a sequence of queries instead of a single query as our
input when we train the classifier, we find that the problem fits well with con-
ditional random field as our graphical model for context-based OCI detection.
Conditional Random Field, which was first proposed by Lafferty et al.[8], is
widely used in relational learning which directly models the conditional distri-
bution p(y|x). In this paper, we use a variant of the widely used linear-chain
CRF model, the skip-chain CRF proposed in [12], to model the context-based
OCI issue for the following reasons. Firstly, skip-chain CRF has deep roots in
natural language processing area (NLP). In NLP, the problem of Named En-
tity Recognition (NER) has similarities with the context-based OCI detection
problem, which needs to model the correlation between non-consecutive identi-
cal words in the text. Secondly, being a probabilistic graphical model, skip-chain
CRF has its advantage in modeling uncertainty in a natural and convenient way.
Thirdly, the key issue in skip-chain CRF is how to add skip edges. Semantic sim-
ilarities, which represents how similar two queries are in terms of their intended
meaning such as category of targeting pages or products, are the major issues we
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consider when creating skip edges in the CRF model. Based on the above reasons,
we believe that skip-chain CRF would be a model appropriate for handling
context-based OCI detection.

The main advantage of a skip-chain CRF (SCCRF) model over the com-
monly used linear-chain CRF models is that the skip-chain CRF model has an
additional type of potential, which is represented using long-distance edges. For-
mally, we build a SCCRF model as follows. Assume that the original personal
query log length is N . In order to acquire training data consisting of personal
query logs with each length as L, we can build a training set with cardinality
(N − L + 1), where each data instance consists of L consecutive queries in the
original personal query log, i.e. each personal query log starts with the query
item 1, 2, . . . , N − L + 1 and has a length of L. In our experiments of Section 4,
we will empirically evaluate the classifier performance with different values of L.

Graphical models like CRF or skip-chain CRF directly represents the condi-
tional distribution p(y|x), where in our context-based OCI detection problem, y
indicates the target label of each query as being commercial or non-commercial
and x states an observed personal query log of length L. We let xt be the ob-
served tth query in the personal query log, and let yt be a random variable to
indicate the OCI value inferred from the tth query, in the final setting if the
yt inferred is larger than 0.5, we assume that the given query has commercial
intention. This parameter setting of threshold follows that of [4].

The conditional random field model is represented by a factor graph, which is a
bipartite graph G = (V, F, E) in which a variable vs ∈ V is connected to a factor
node ΨA ∈ F if vs is an argument to ΨA. For skip-chain CRF, it is essentially a
linear-chain CRF with additional long-distance edges between queries xi and xj

such that f(xi, xj) > θ (Refer to Figure 2 for an illustration). θ is a parameter
that can be tuned to adjust the confidence of such correlations between different
queries. In our experiments, we will evaluate the effect of changing the parameter
θ on the classifier accuracy.

y1 y6y5y4y3y2 y7

x1 x6x5x4x3x2 x7

ψt(y4,y3,x)
ψuv(y3,y1,x)

Ford ACML
2009NanjingACMLS-TYPJaguarS-MAX

Fig. 2. Illustration of the SCCRF model
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For an observation sequence x, let I = {u, v} be the set of all pairs of
queries for which there are skip edges (all edges except edges connecting ad-
jacent queries) connected with each other. The probability of a label sequence y
given an observation activity sequence x is:

p(y|x) =
1

Z(x)

n∏

t=1

Ψt(yt, yt−1,x)
∏

(u,v)∈I

Ψuv(yu, yv,x). (1)

In the above Equation 1, Ψt are the potential functions for linear-chain edges and
Ψuv are the factors over the skip edges (Also refer to Figure 2 for illustration).
Z(x) is the normalization factor. We define the potential functions Ψt and Ψuv

in Equation 2 and Equation 3 as:

Ψt (yt, yt−1,x) = exp

(
∑

k

λ1kf1k (yt, yt−1,x, t)

)
(2)

Ψuv (yu, yv,x) = exp

(
∑

k

λ2kf2k (yu, yv,x, u, v)

)
(3)

λ1k are the parameters of the linear-chain template and λ2k are the parameters
of the skip-chain template. Each of the potential functions factorize according
to a set of features f1k or f2k. We will describe our choice of feature functions
later.

Learning the weights λ1k and λ2k for the skip-chain CRF model can be
achieved by maximizing the log-likelihood of the training data, which requires
the computation of calculating partial derivative and optimization techniques.
We omit the detailed algorithm of inference and parameter estimation of the
skip-chain CRF model. Interested readers can consult [8,12] for technical de-
tails.

3.3 Modeling Semantic Similarities between Queries

We now specify how to calculate the feature functions in our CRF settings. Two
kinds of feature functions must be computed. One is the “query-intention” pair,
the other is the “query-query” pair. For the first function, it is easy to follow
the traditional IR techniques, where we can first choose some keywords from the
query snippets or the top landing pages, count the occurrence of these words
and then learn the corresponding weight. In this paper, we used the OCI value
of top 10 result pages calculated from the baseline method2 [4] as the features
representing the “query-intention” pair.

The remaining issue is how to define a good “query-query” similarity function
that can measure the semantic similarity of different search queries. An accurate
function that can reflect the inherent semantic similarity or correlation between

2 http://adlab.msn.com/OCI/OCI.aspx
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different queries will substantially improve the overall accuracy. Due to the in-
herent feature of the length of queries, the traditional method of word-based
similarity metric cannot be used. Therefore, we use an approach, based on the
idea of query expansion, to measure the similarity of short text snippets the
considered query pairs.

Our first expansion, called the “first-order” query expansion, is to compute
the cosine similarity of query snippets. Given two queries Q1 and Q2, we first
issue these two queries into the search engine and then retrieve the result pages of
the corresponding two queries and the m query snippets. Then we combine these
m query snippets as one document and consider the cosine similarity between
them. In other words, we first compute the TFIDF vector of the two documents,
denote them as A and B, and then compute: θ = arccos A·B

‖A‖‖B‖ .
However, although cosine similarity is a traditional similarity metric, it may

not satisfy our need to measure the semantic similarity between different queries
since the query snippets are rather short and the document pairs will not contain
common terms. Also even if we consider the cases of the two snippets containing
the same terms, it may not mean that these same terms mean the same thing in
different contexts of different query snippet documents. So measuring similarity
based on word terms is not a good choice for our problem. In our experiment
section 4, we will show that our “first-order” query expansion does not perform
very well, compared to the “second-order” query expansion we used.

Our second expansion goes a step further, compared to the “first-order” query
expansion, and we call the idea of “second-order” query expansion based on the
pages we get when we issue the query snippets again into the search engine. In
this way, the information we get from this particular query snippet is increased.
This step is similar to the solution given in [10]. We consider the maximum
similarity between these query snippets and take the value as the value of feature
function between “query-query” pairs in the SCCRF model.

Stated formally, we have f(yu, yv, x) = max1≤i≤m,1≤j≤m g(Sui, Svj)),
g(Sui, Svj) is defined as the value of similarities between query snippet Sui and
Svj , where Sui is the ith query snippet when we issue the uth query into the
search engine, Svj is defined similarly.

We use a kernel function to compute the semantic similarities of given query
pairs based on the query expansion framework. Let Sx represent a query snip-
pet. First, we get more expanded information of Sx by using the idea of query
expansion. We input this query snippet Sx into the search engine and the top
n returned Web pages are retrieved, say, p1, p2, . . . , pn. Then we compute the
TFIDF term vector vi for each Web page pi. For each vi, it is truncated to
only include its m highest weighted terms, where m = 50, is used as a balance
between evaluation efficiency and expressive power.

Then we let C(x) be the centroid of L2 normalized vectors: C(x)= 1
n

∑n
i=1

vi

‖vi‖2
.

Finally, we compute QE(x), QE(x) is the L2 normalization of C(x): QE(x) =
C(x)

‖C(x)‖2
. The kernel function of query snippets K(x, y) = QE(x) · QE(y). It can

be observed that K(x, y) is a valid kernel function.
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Therefore, after defining the corresponding feature functions between “query-
intention” pairs and “query-query” pairs, we have enough information to build the
SCCRF model from the training data. When testing, a new query arrives, and we
take the past L−1 query into consideration,which forms together a personal query
log with L subsequent queries, and then label the query sequence y and take the
last element from the vector yL as the label: commercial / non-commercial of this
query. We further describe our algorithm workflow in Algorithm 1.

Algorithm 1. Algorithm description for context-based online commercial
intention
Input: N is the length of a query log, where each query item is represented by {xi, yi},
where xi is the ith query and yi is the corresponding ith label for xi. Q, which is a
newly asked query.
Output: P , which is the probability for Q as being commercial intended.
Assumption: Assume all the queries in the personal query log we considered here are
issued by the same user or user group.
Parameters: θ and L, which suggests the confidence parameter for us to add
the skip edges and the length of the personal query log training data, correspond-
ingly.

1: for i = 1 to N − L + 1 do
2: Initialize the ith training data as empty.
3: for j = 0 to L − 1 do
4: Add the (i + j)th query xi+j to the ith training data.
5: end for
6: end for
7: for i = 1 to N do
8: Issue the query xi to the search engine to get the top P landing pages. P can

be tuned to reflect more information from landing pages. To simplify, we set
P = 10 in our experiments.

9: Compute the corresponding OCI value of these landing pages from the baseline
method [4].

10: Use these values as features for f1.
11: end for
12: Train the corresponding SCCRF model from the training set created.
13: for i = N − L + 2 to N do
14: Add the query xi to the test personal query log.
15: end for
16: Add the query Q to the test personal query log. Now it contains L terms.
17: for i = 1 to L do
18: for j = 1 to i − 1 do
19: Compute the semantic similarity of Ti and Tj , i.e. K(Ti, Tj) = QE(Ti) ·

QE(Tj) as defined.
20: if K(Ti, Tj) > θ then
21: Add a skip edge between yi and yj , corresponding to the feature

function f2(yi, yj ,x).
22: end if
23: end for
24: end for
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4 Empirical Evaluation

In order to validate the effectiveness of our algorithm, we compare our algorithm
to the baseline method proposed in [4]. Several parameters occur in our algo-
rithm, θ, which appears in the skip-chain Conditional Random Field model to
mark the confidence of the nonadjacent edges we created. The larger the θ is, we
are more confident of the semantic similarity of the edges. Furthermore, another
parameter is the parameter L, which is the length of each personal query log
in the training data set, also it means when two queries have a distance more
than L, we will not consider their semantic similarities because otherwise if the
two queries have distances larger than L, they may not be in the same search-
ing session and have no temporal correlation between each other, even though
they may have high semantic similarities. In our experiment, we will empirically
evaluate how our classifier performance will be affected when we tune these two
parameters.

4.1 Description of Datasets

We use two datasets in our experiment, the first is a publicly released AOL
query log dataset3. The AOL query log data consists of around 20M Web queries
collected from around 650,000 Web users, where the data is sorted by anonymous
User ID and sequentially arranged. Another query log data we acquired is from
Live Search and the original query log data is collected in March 2008. The Live
Search query log data consists of around 450M distinct web queries from around
2.5M different query search sessions.

The dataset format of the two querylog datasets are rather similar. Each
item of the query log datasets includes {AnonID, Query, QueryTime, ItemRank,
ClickURL}. AnonID is an anonymous user ID number. Query is the query issued
by the user, case shifted with most punctuation removed. QueryTime is the time
at which the query was submitted for search. ItemRank was the rank of the item
on which they clicked, if the user clicked on a search result. ClickURL is the
domain portion of the URL in the clicked result, if the user had clicked on a
search result.

In this paper we do not use the clicked URL information (ClickURL), since
this information is often relatively sparse in the query log. Another reason for us
not to consider clickthrough information in computing the semantic similarities
of the SCCRF model is the infeasibility of getting the clicked URL in most cases.
For example, in the AOL query log dataset we only have access to the clicked
domains, not the clicked webpages. Therefore we settled on expanding the query
information by a “second-order” expansion instead.

Because both the AOL dataset and the Live Search dataset are rather huge
and do not contain any label of commercial intention, we had randomly chosen
100 users who had submitted at least 100 queries from both AOL and Live Search
datasets and had manually labeled 100 consecutive queries for each of the 100

3 http://www.gregsadetsky.com/aol-data/
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users we had selected. Three labelers labeled the 20K queries we had chosen.
Each labeler is told to take the surrounding queries as well as clicked URLs
into account to determine the commercial intention degree of the labeled query.
Each query is labeled as being “commercial”, “non-commercial” or “unable to
determine”. A query is labeled as “commercial” if and only if at least two out
of three labelers mark it as “commercial” and it’s similar for “non-commercial”
queries. We also delete some invalid queries in the query log. The distribution
of commercial intention in the queries of the Web users we’ve chosen above is
shown is the following Table 1. In all we had acquired 9,553 queries in AOL
dataset, where 1,247 queries are labeled as commercial and the rest labeled as
non-commercial; also we labeled 9674 queries in Live Search dataset, where 936
queries are labeled as commercial and 8,738 queries as non-commercial.

Table 1. OCI distribution of the selected datasets

Labeler AOL Commercial AOL Non-commercial Live Commercial Live Non-Commercial

1 1238 8627 919 8819

2 1430 8435 1025 8713

3 1117 8748 973 8765

Sum 1247 8306 936 8738

In the query log data, we first performed preprocessing to remove all invalid
queries. We then divide each user’s query into ten pairs of training and test data,
by first choosing a random number between a certain size interval as the size
of the training data while keeping the rest of the data for the user as the test
data. We repeat this process ten times so as to obtain average results. For all
the experiments in this section, we use precision, recall and F1-measure as the
evaluation metric.

4.2 Performance of Baseline Classifier

For the baseline method, we use the classifier which is now currently available
on the Web4, following the work in [4], The parameter chosen in the Website is
the best-tuned so we just compare the performance of our algorithm with this
result. The classification result is in the following Table 2.

Table 2. Baseline Classifier Performance

Dataset Precision Recall F1-Measure

AOL 0.817 0.796 0.806

Live Search 0.802 0.836 0.809

4 http://adlab.msn.com/OCI/OCI.aspx
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4.3 Varying the Confidence Parameter θ

We then analyze how different parameters of θ and l will affect our algorithm per-
formance. When we vary the confidence paramter θ, another important objective
is to verify the usefulness of skip edges created between non-adjacent queries and
that skip-chain CRF beats the linear chain CRF in the OCI detection scenario.

We first set l = 1000 and tune different parameters on θ, we get the following
result in Table 3. We run the experiments 10 times with different values of p,
accuracy and variance are recorded in the following table. Column with header
“AOL (Variance)” is the accuracy and variance of our algorithm performance on
our selected AOL query log dataset and “Live Search (Variance)” is the accuracy
and variance of our algorithm performance on Live Search dataset. Here we first
set L, which is the length of the CRF model, as 50.

Table 3. Algorithm performance with varying parameter θ

θ AOL (Variance) Live Search (Variance)

θ = 0.01 0.863 (0.002) 0.872 (0.003)

θ = 0.02 0.887 (0.005) 0.878 (0.003)

θ = 0.04 0.892 (0.003) 0.881 (0.004)

θ = 0.08 0.901 (0.005) 0.893 (0.002)

θ = 0.1 0.913 (0.002) 0.901 (0.004)

θ = 0.2 0.912 (0.005) 0.908 (0.003)

θ = 0.4 0.902 (0.004) 0.883 (0.006)

θ = 0.8 0.871 (0.003) 0.852 (0.008)

Baseline 0.806 0.809

From Table 3, it is noteworthy to see that our proposed algorithm for context-
based online commercial intention always performs better than the baseline ap-
proach, suggesting that taking contextual information, especially surrounding
queries in a query session would possibly help. We can see that for different user
queries, different values of θ may lead to best generalization ability. Also it’s
reasonable that the generalization ability will be best when θ is neither too big
nor too small.

When θ is too small, different queries that may not be so relevant will be linked
towards each other and hence noise is added to the edges between “query-query”
pairs. When θ is large enough, classification accuracy will drop rapidly. This is
due to the fact that large values of θ will be a too strict criteria between different
queries, in that merely no skip link will be created. Therefore, large values of
θ would create too few skip edges and then we cannot model the interleaving
processes of user search behaviors through a CRF model which is very similar
to a linear chain. This verifies our claim in Section 2 that using a linear-chain
conditional random field and simply model the relationship between adjacent
queries cannot effectively model the commercial intention of queries as a skip-
chain CRF will do.
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4.4 Varying Training Data Length L

In the next experiment, we test whether different parameters of L will lead to
large variance in classification accuracy. From the result in the earlier experi-
ment, here we empirically set θ as 0.1. We get the following result in
Table 4.

Table 4. Algorithm performance with varying parameter L

L AOL (Variance) Live Search (Variance)

L = 5 0.872 (0.010) 0.871 (0.013)

L = 10 0.893 (0.011) 0.878 (0.010)

L = 15 0.882 (0.009) 0.891 (0.005)

L = 20 0.901 (0.005) 0.891 (0.003)

L = 25 0.910 (0.004) 0.897 (0.007)

L = 30 0.913 (0.002) 0.901 (0.004)

L = 40 0.909 (0.003) 0.903 (0.005)

L = 50 0.905 (0.003) 0.902 (0.003)

Baseline 0.806 0.809

Again, our experimental results show that the algorithm performance is rather
steady although it typically suggests that it’s better to set the history length L
at around 30, which would achieve the best performance so far. And even if we
only set L as 5, i.e. consider the history submitted queries up to 5, it would still
perform better than the baseline approach.

4.5 Analysis of Training Time

In this subsection we will show the training time of our proposed approach with
varying lengths of L. Since we have calculated the accuracy as well as variance
from a “ten-fold wise” appoach, we would show the total time for us to train the
model. Thus, the average time to train a CRF model of length L would be the
time shown divided by 10. The result is shown in the following Table 5. Time is
measured in seconds.

The result is rather promising. Even when we consider history length up to
50, the computational time is rather quick, only around 15 seconds to train a
CRF model for ten times. Such a model is undoubtedly a good fit for real-world
usage.

4.6 Comparison between Query Expansion Methods

Finally, we verify our claim that our way of “second-order” query expansion
will perform better than “first-order” query expansion. We choose the settings
θ = 0.1 and L = 30 in “second-order” query expansion and test them against
the “first-order” query expansion. The result is shown in Table 6.
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Table 5. Training time with varying lengths of L on a Pentium Core 2 Dual 2.13GHz
CPU

L AOL Time Live Search Time

L = 5 1.7s 1.7s

L = 10 3.0s 4.1s

L = 15 4.9s 5.2s

L = 20 6.2s 6.8s

L = 25 9.0s 10.2s

L = 30 11.1s 11.7s

L = 40 14.0s 14.1s

L = 50 15.3s 16.3s

Table 6. Comparison of first-order query expansion vs. second-order query expansion

Dataset Baseline First-Order Second-Order

AOL 0.806 0.825 (0.007) 0.913(0.002)

Live Search 0.809 0.826 (0.006) 0.901(0.004)

The above table shows our use of “second-order” query expansion can sub-
stantially improve the quality over “first-order” query expansion alone. However,
due to the fact that computing the semantic similarities through the “second-
order” query expansion approach might be slow. It would be a tradeoff to use
first-order query expansion instead, i.e. decrease the computational time while
sacrifice some prediction accuracies.

5 Conclusion

In this paper, we have presented a new algorithm based on contextual informa-
tion to solve the problem of context-based online commercial intention detection.
Our work follows from the intuitive motivation that in the same session of a per-
sonal query log, semantic similarities and the correlation between surrounding
queries can help improve the overall classification accuracy. Similar assumptions
are also made in [3]. However, the context-aware features defined in that paper
cannot be simply borrowed to tackle the OCI detection problem. Therefore, we
exploited a skip chain CRF model to model the problem as a collective clas-
sification problem. We use an algorithm based on query expansion to consider
the semantic similarity between queries, using query snippets as a major source
of information. Our experiment on the AOL query log dataset as well as the
Live Search Clickthrough Log Dataset shows that our algorithm can effectively
improve the accuracy of context-based OCI detection.
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