
Context-Aware Programming for Hybrid

and Diversity-Aware Collective

Adaptive Systems

Hong-Linh Truong(B) and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology, Vienna, Austria
{truong,dustdar}@dsg.tuwien.ac.at

Abstract. Collective adaptive systems (CASs) have been researched
intensively since many years. However, the recent emerging developments
and advanced models in service-oriented computing, cloud computing
and human computation have fostered several new forms of CASs.
Among them, Hybrid and Diversity-aware CASs (HDA-CASs) charac-
terize new types of CASs in which a collective is composed of hybrid
machines and humans that collaborate together with different comple-
mentary roles. This emerging HDA-CAS poses several research chal-
lenges in terms of programming, management and provisioning. In this
paper, we investigate the main issues in programming HDA-CASs. First,
we analyze context characterizing HDA-CASs. Second, we propose to use
the concept of hybrid compute units to implement HDA-CASs that can
be elastic. We call this type of HDA-CASs h

2CAS (Hybrid Compute
Unit-based HDA-CAS). We then discuss a meta-view of h

2CAS that
describes a h

2CAS program. We analyze and present program features
for h

2CAS in four main different contexts.

1 Introduction

Collective adaptive systems (CASs) have been researched intensively since many
years [1–4]. For solving complex problems in business and society, new concepts
of CASs have been emerging by utilizing human-based computing and software-
based computing elements as basic building blocks of CASs. Among them, the
Hybrid and Diversity-aware CAS (HDA-CAS) has emerged as a new type of
CAS that consists of diverse machine- and human-based computing elements
[5]. HDA-CASs promise a new way to solve complex problems that requires
both human knowledge and machine capabilities, such as in simulation, urban
planning, and city management.

While CASs can be built based on computing elements from different envi-
ronments, in our research, we are particularly interested in HDA-CASs that are
built from software-based services, thing-based services, and human-based ser-
vices, following service-oriented and cloud computing models. In such models,
machine-based and human-based elements provide fundamental computation,
data, and network functions and these elements have well-defined service inter-
faces and are provisioned under cloud models. Atop diverse types of services

c© Springer International Publishing Switzerland 2015
F. Fournier and J. Mendling (Eds.): BPM 2014 Workshops, LNBIP 202, pp. 145–157, 2015.
DOI: 10.1007/978-3-319-15895-2 13



146 H.-L. Truong and S. Dustdar

in the cloud, new types of dynamic elasticity properties have emerged. First,
a huge amount of diverse types of resources are available that can be taken into
the construction of CASs on demand. Second, elasticity requirements from the
consumer for whom a CAS is provided and problems being solved by the CAS
force us to design CASs capable of handling cost and quality changes. There-
fore, we believe that utilizing dynamic, on-demand service units from clouds to
establish HDA-CASs is a promising direction.

Since HDA-CASs are designed to deal with complex problems in an adap-
tive way, examining elasticity mechanisms for building HDA-CASs using cloud
resources, offering cloud computing models for HDA-CASs, and dynamically man-
aging HDA-CASs at runtime is a very interesting but challenging problem. In
our previous work, we have described cloud models for software and people, basic
hybrid compute unit models for establishing computing systems including both
software and people, and basic programming APIs for these units [6,7]. In this
paper, we examine how such fundamental building blocks can be used to build
HDA-CASs. We advocate the form of HDA-CASs being constructed from hybrid
compute units (HCUs), which consist of software-, thing- and human-based
service units. These units are provisioned under the service concept (with well-
defined interfaces and utilization model), enabling dynamic programming features
for utilizing them. To this end, this paper presents the following contributions:

– analysis and definition of context associated with HDA-CASs
– analysis of hybridity and elasticity properties of HDA-CASs,
– analysis of the utilization of hybrid compute units for implementing HDA-

CASs, called h
2CAS,

– a meta-view of main building blocks for h
2CAS, and

– analysis of programming features for h
2CAS in four main high-level contexts.

Our contributions provide fundamental work for the development of program
specification of h

2CAS, h
2CAS provisioning services, and h

2CAS elasticity
techniques.

The rest of this paper is structured as follows: Sect. 2 defines the context of
HDA-CAS and discusses the hybridity and elasticity of HDA-CASs. Section 3
defines HDA-CASs using hybrid compute units and a meta-view of our h

2CAS
specification. Section 4 discusses issues in programming h

2CAS. Related work is
presented in Sect. 5. We conclude the paper and outline our future work in Sect. 6.

2 Analyzing Contexts of HDA-CAS

2.1 Context of HDA-CAS

Our goals to support context-aware programming HDA-CASs are to provide
(i) right constructs for specifying what constitutes a HDA-CAS, (ii) tools and
middleware for deploying, provisioning and instantiating HDA-CASs based on
their specifications, and (iii) means for programming the control and reconfig-
uration of HDA-CASs at runtime. Therefore, it is important to understand the
context in which a HDA-CAS will be formed and operated as well as possi-
ble contexts inherent in the lifetime of HDA-CASs. We define a context of a
HDA-CAS as follows:



Programming for Hybrid and Diversity-Aware Collective Adaptive Systems 147

Definition 1 (Context of HDA-CAS). Context of a HDA-CAS describes
situational information about tasks and quality of results (What), structures of
the HDA-CAS and its constituting units for computation/data/network functions
as well as for monitoring/control/management functions (Who), and the coor-
dination and elasticity mechanisms that control the operation of the HDA-CAS
(How) in a determined time frame (When).

To support context-aware programming of HDA-CASs, we need to address
several open questions of When, What, Who/Which and How characterizing
contexts in which programming features for HDA-CASs play a crucial role:

– When: When a HDA-CAS is formed and instantiated? From when to when
a HDA-CAS is in a particular context? When does a HDA-CAS switch its
context?

– What: What are the tasks that a HDA-CAS has to solve in a particular con-
text? What are the expected quality of results (QoRs) for these tasks?

– Which/Who: Which types of units are needed for performing computation/
data/network functions and for monitoring/management/control functions in
a HDA-CAS context? Which structures can be used to describe a HDA-CAS
and its units?

– How: How does a HDA-CAS work? How does a HDA-CAS coordinate its
units? How does a HDA-CAS support and control its elasticity?

Programming a HDA-CAS means that we need to be able to describe several
types of information related to the above-mentioned questions in well-defined
specifications. Based on that, via software-defined APIs, we can create, provision

Fig. 1. High-level view of context (ctx), task structure and units associated with
HDA-CAS



148 H.-L. Truong and S. Dustdar

and control HDA-CASs to enable units within these HDA-CASs to interact and
perform their tasks/roles.

Let us consider the case in which a HDA-CAS is built by using a hybrid
compute unit (HCU) [6,7]. There are complex relationships among the What
and Who/Which within a context and among contexts within the lifetime of a
HDA-CAS, as shown in Fig. 1. A HCU is provisioned from different resources
(via virtualization techniques). The HCU is the Who/Which of the HDA-CAS.
The HCU is intended for solving problems which have complex, and possibly
evolving, task structures, dependent on the context. Therefore, under a specific
context in the lifetime of the HDA-CAS, HCU structures may be changed to
assure the QoR associated with the tasks.

2.2 Hybridity in CASs

Hybridity is an intrinsic property of HDA-CASs. This property is due to the
fact that HDA-CAS is formed to address complex problems, which require us to
employ diverse and hybrid types of units and roles:

– Different types of resources, including machine-based, human-based and thing-
based resources that offer computation, data, and network functions as well
as monitoring, control and management functions.

– Different roles performed in the same collective: including performing com-
putation/data/network functions and supporting management, monitoring
and control functions. Different types of resources or a single resource might
perform different roles or the same role at different time based on different
capabilities.

Therefore, techniques for programming HDA-CASs must support fundamental
programming constructs and algorithms to deal with the hybridity of computing
models in HDA-CASs. In terms of hybridity, the following aspects are important:

– We must be able to execute, coordinate, and manage computation/data/
network functions using hybrid processing units (e.g., CPU/core for machine-
based computing, human brain for human-based computing, and sensor for
thing-based computing),

– We must be able to program hybrid architectures (e.g., the cluster of machines
for machine-based computing, the individual/team for human-based comput-
ing, and the web of things for thing-based computing), and

– We must be able to program hybrid communication protocols (e.g., TCP/IP
for machine-based computing, social network for human-based computing,
and MQTT for thing-based computing).

A HDA-CAS will consists of a mixture of these processing units, architectures
and communications.



Programming for Hybrid and Diversity-Aware Collective Adaptive Systems 149

2.3 Elasticity in HDA-CASs

One of the main issues in programming and provisioning HDA-CAS is to support
the elasticity principles, covering resource, quality, and cost/benefit elasticity.
These principles should be the core mechanisms for, e.g., managing and control-
ling the operations of HDA-CASs (thus, addressing the How aspect of HDA-CAS
contexts). The main reason is that HDA-CAS is a dynamic entity whose struc-
tures, tasks, and QoRs are dynamically changed. The type of resource elasticity
can be seen through the change, reduction and expansion of units for computa-
tion/data/network functions. Other types of elasticity can be observed through
the following aspects:

– Mixture of different QoRs from a single collective, given a specific goal: a
collective is dynamic w.r.t. structures, interactions, and performance, thus,
it can produce different QoRs, depending on different settings (e.g., time,
availability, incentives, to name just a few).

– Mixture of cost/benefit models: a collective might perform a goal (offering
a capability) with different cost/benefit models with different or the same
quality.

Such elasticity capabilities must be captured, modeled and associated with HDA-
CASs, enabling the management and control of HDA-CASs via programming fea-
tures. For example, we must be able to program the selection and
utilization of suitable units for different types of tasks and QoRs (e.g., speci-
fying expected performance, cost, and quality of data). Overall, we foresee the
following levels of elasticity:

– Processing Units: The basic mechanisms are (i) to add/remove new processing
units based on the load and (ii) to replace existing processing units with new
processing units. If units are humans, then we can search clouds of human-
based services to find relevant units. If it is software then we can find new
software based on service selection techniques.

– Architecture: the architecture reflects how different units performing computa-
tion/data/network functions and monitoring/control/management functions
can be glued. The basic mechanisms are (i) to provision different static and
runtime topologies for different types of units, and (ii) to change different
protocols/algorithms within monitoring/control/management units.

– Communications: There will be multiple communication protocols among
different types of units, e.g., communications among units performing compu-
tation/data/network functions and among monitoring/control/management
units. The basic mechanisms are (i) adding/removing communication proto-
cols, (ii) reconfiguring existing protocols, and (iii) replacing existing protocols
with new protocols.

3 h
2CAS– HDA-CAS Using Hybrid Compute Units

3.1 Hybrid Compute Units and HDA-CAS

Based on the two main properties of hybridity and elasticity of HDA-CASs,
to specify and program HDA-CAS’s structures, we rely on the hybrid compute



150 H.-L. Truong and S. Dustdar

unit (HCU) concept – a unified model that is able to capture different types of
service units and their relationships. Using service units and relationships mod-
eled in the HCU, the HDA-CAS programmer can define HDA-CAS structures,
including topologies and communications, and configure other elements, such as
algorithms for selecting units for performing computation/data/network func-
tions, for evaluating quality of results, and for controlling the elasticity of units
by considering costs and benefits. The HCU model is described in detail in [7].
Service units are associated with elasticity capabilities; each capability can be
programmed via software-defined APIs. A general concept is that the consumer
of HDA-CASs acquires a HCU representing the HDA-CAS structure. Then con-
sumer can control the elasticity of the HDA-CAS via APIs, triggering suitable
set of actions, each mapped to some primitives of units. We define a model of
HDA-CAS based on the HCU as follows:

Definition 2 (HCU-based HDA-CAS). A HCU-based HDA-CAS (h2CAS)
includes a set of service units which can be software-based services, human-based
services and thing-based services that can be provisioned, deployed and utilized as
a collective on-demand based on different quality, pricing and incentive models.

In our work, programming h
2CAS means that: (i) we are able to specify relevant

information of h
2CAS, (ii) h

2CAS specification will be compiled and executed
by some middleware, and (iii) h

2CAS operations will be controlled at runtime
by the h

2CAS itself or by external controllers via software-defined APIs. Main
programming features that a h

2CAS programming framework should support:

– Initialization: we must be able to describe the structure of h
2CAS including

units, architectures and communications. The Who/Which must be structured
based on types of the tasks and the QoRs (the What). We must be able to
initiate the h

2CAS based on the structure, deployment, and configuration.
– Elasticity Management: we must be able to understand elasticity contexts

of h
2CAS, which must be monitored. The elasticity of h

2CAS will be used to
control dynamic changes of h

2CAS structures to meet the expected QoR. Dur-
ing runtime, depending on specific contexts, we can measure/monitor/predict
QoRs and perform elasticity actions by calling elasticity APIs of h

2CAS.

3.2 Meta-Program for h
2CAS

To specify h
2CAS, we need to determine the types of units needed for performing

computation/data/network functions and for performing management/control/
monitoring functions, possible coordination and communication protocols/models
among different types of units and elasticity capabilities of these units to control
the elasticity of h

2CAS. They can be determined before the initialization of a
h

2CAS or during the lifetime of a h
2CAS, based on specific contexts of h

2CAS.
In this section, we discuss h

2CAS meta-view and leave the detailed design and
implementation of the meta-view specification for the future work.

Figure 2 presents a meta-view of h
2CAS programs describing possible service

units and interactions. h
2CAS includes four main building block specifications:



Programming for Hybrid and Diversity-Aware Collective Adaptive Systems 151

– Task Management: three main types of units should be specified for task man-
agement. InputTaskStorageUnit is used to manage input tasks (e.g., from the
consumer of h

2CAS) that need to be solved by h
2CAS. TaskMatchingUnit

and TaskControlUnit are used to match tasks to units performing computa-
tion/data/network functions and to manage tasks performed by such units,
respectively.

– Result Management: at least three main types of units should be specified.
OutputResultStorageUnit is used to manage results of h

2CAS that will
be sent to the consumer. QoREvaluationMatchingUnit and QoREvaluation

ControlUnit are used to find units for performing the QoR evaluation and
manage QoR evaluation tasks.

– Computation/Data/Network Task Execution and Control: types of possible
units used for performing computation/data/networks should be specified.
Three main units for managing computation/data/network units (CDNElas
ticityControlUnit), for supporting communications (CDNCommunication
Unit and for interacting with clouds of services (CloudConnectorUnit) should
be specified.

– Elasticity Monitoring and Control: two main units should be specified. First,
MonitoringUnit is used for performing different monitoring activities, includ-
ing monitoring task management, result management, computation/data/

Fig. 2. h
2CAS meta-view



152 H.-L. Truong and S. Dustdar

network functions, etc. Second, ElasticityControlUnit is specified for per-
forming elasticity controls, such controlling units for performing computation/
data/network functions, communication units, task management units, etc.

In terms of programming, these types of units are “class” and when ini-
tialized, we can have different instances of these units based on different imple-
mentations and configurations. Each building block will require different ways to
specify and program units, architectures and protocols. Among different building
blocks, there will be protocols for their interactions. Similar to the types of
units, these protocols can also have different instances. It is important to note
that these units can be software-based, thing-based, or human-based. For exam-
ple, TaskControlUnit or CDNElasticityControl can be human-based services.
Therefore, h

2CAS operations are not fully automatically managed and con-
trolled. Instead, these operations are carried out through a combination of human
and machine activities.

4 Context-Aware Programming Features for h
2CAS

In the following, we discuss programming features for h
2CAS that are centered

around four main specific contexts:

– consumer-generated independent continuous task context: in this context, a
h

2CAS is established and used for solving independent tasks sent continu-
ously by the consumer of the h

2CAS.
– consumer-generated dependent task context: in this context, a h

2CAS is
established and used for solving a task graph sent by the consumer of the
h

2CAS.
– evolving independent task context: in this context, a h

2CAS is established
and used for solving a set of independent tasks but during the problem solving
time, several new independent tasks are created by the h

2CAS.
– evolving dependent task context: in this context, a h

2CAS is established and
used for solving a set of dependent tasks and during the problem solving
several dependent tasks are created newly by the h

2CAS.

They are high-level contexts which can be subdivided into different types of
sub-contexts based on the What aspect (e.g., a sub-context in which only the
same type of tasks is solved), the Who/Which aspect (e.g., a context in which all
tasks are solved by human-based compute units), and/or the How aspect (e.g.,
a context in which only cost elasticity is needed).

4.1 Consumer-Generated Independent Continuous Task Context

Context Description. In this context, a h
2CAS is provisioned for solving

a flow of independent tasks from its consumers. All the tasks are atomic and
the tasks are created by the consumer of the h

2CAS. QoR is associated with
individual tasks. It is possible to have different types of tasks, which require



Programming for Hybrid and Diversity-Aware Collective Adaptive Systems 153

different types of units performing computation/data/network functions. Tasks
are continuously given to h

2CAS. This kind of task delivery is highly related to
works in crowdsourcing tasks [8]. However, the main difference is that the task
flow is continuous.

Initialization. For independent tasks, h
2CAS will receive a flow of indepen-

dent tasks which are put into InputTaskStorageUnit by the consumer of the
h

2CAS. We can safely assume that there is only one service unit working on a
specific task at a given time. If the QoR of a task does not match the requirement
(e.g., the task cannot be finished by a unit), the task should be reassigned and
performed by another unit. For this reason, we can also decide not to include
CDNCommunicationUnit for units performing computation/data/network func-
tions. Thus, h

2CAS could be programmed by forming h
2CAS based on general

task descriptions without CDNCommunicationUnit.
A minimum set of units for performing tasks can be established by program-

ming/configuring suitable (pre-)runtime/static unit formation algorithms within
CDNElasticityControlUnit. The h

2CAS can coordinate task execution based
on different coordination models programmed in TaskControlUnit.

Elasticity. Depending on the task types, h
2CAS could be deployed to use

only clouds of human-based services or clouds of hybrid services. At runtime,
based on monitoring information, especially QoR (e.g., higher or lower QoR than
expected), ElasticityControl and CDNElasticityControlUnit can apply
elasticity controls to individual units performing computation/data/network
functions, to change coordination protocols within task management and output
management units, or to interact with other clouds to negotiate pricing models
and acquire/release resources. Elasticity controls can be performed via different
control algorithms and can be also programmed via elasticity APIs.

4.2 Consumer-Generated Dependent Task Context

Context Description. This context is quite similar to the previous context in
Sect. 4.1, except a complete task graph is given to the h

2CAS. The task graph
includes dependent tasks, e.g., in terms of data or control dependencies.

Initialization. Similarly to the previous context, a h
2CAS can be estab-

lished with a minimum cost and a limited number of units performing compu-
tation/data/network functions. Thus, initially the h

2CAS can be just enough
for solving a sub-graph and then eventually be extended to solve other tasks,
e.g. followed the strategies in [6]. Although tasks are dependent, communications
among h

2CAS units performing tasks may or may not be established. When
CDNCommunicationUnit is not needed, the dependencies among tasks can be
managed by TaskManagementUnit. All task results have to be routed back to the
TaskControlUnit. Otherwise, the dependencies can also be managed by units per-
forming tasks and using CDNCommunicationUnit to send/receive messages about
task results to other units. Another benefit of using CDNCommunicationUnit



154 H.-L. Truong and S. Dustdar

is to facilitate the discussion among units performing tasks, when these units
are human-based.

Elasticity. The elasticity in this context is similar to the previous context in
Sect. 4.1. However, the elasticity of units performing computation/data/network
functions could be relied on different strategies, such as expanding and reducing
units by considering Business-as-Usual and corrective action cases [6].

4.3 Evolving Independent Task Context

Context Description. In this context, a set of independent tasks needs to be
solved by a h

2CAS; each task has its own expected QoR. However, solving an
independent task might lead to the creation of sub-tasks. This requires two ways
of interactions among a unit performing a task in h

2CAS, TaskControlUnit
and QoREvaluationControlUnit to decide how sub-tasks should be assigned,
executed and evaluated.

Initialization. We could start with a common strategy of initializing a h
2CAS

with a minimum capability (e.g., based on costs) and later on we can use elastic-
ity mechanisms to expand or reduce the h

2CAS. Since a unit performing a task
needs to interact with TaskControlUnit to decide how to assign, execute and
evaluate sub-tasks, two different possibilities can be configured: (i) the unit per-
forming a task returns the outcome – either sub-tasks or the result of the task – to
management units in TaskManagement and let them to manage the outcome and
(ii) the unit performing a task coordinates the execution of sub-tasks it creates.
In the latter, the initialization requires CDNCommunicationUnit and another
protocol to allow the unit to call TaskMatchingUnit and CDNElasticityUnit

to assign and manage its sub-tasks.

Elasticity. When a unit performing computation/data/network functions or
QoR evaluation is not responsible for its newly-created tasks, the typical elas-
ticity mechanisms in previous contexts (Sects. 4.1 and 4.2) could be utilized.
Otherwise, different elasticity mechanisms can be performed by the unit by
calling CDNElasticityControlUnit. When the unit is a human-based compute
unit, the elasticity actions are manually done by the human. In case, the unit
is a software-based compute unit, we need to program suitable algorithms for
executing, managing and evaluating sub-tasks. Note that when a unit utilizes
elasticity controls to acquire other units to perform its sub-tasks, it is possible
that the newly acquired units are the core elements for a new h

2CAS. In other
words, a unit can create a new h

2CAS to solve its sub-tasks.

4.4 Evolving Dependent Task Context

Context Description. In this context, a set of dependent tasks is given to
h

2CAS. Usually the number of tasks is small but the complexity of the task is
high. Furthermore, QoR is associated with the whole set of tasks. While solving



Programming for Hybrid and Diversity-Aware Collective Adaptive Systems 155

tasks, new tasks, also dependent on other tasks, could be created. Overall, the
task graph will be expanded and reduced until the h

2CAS completes all the
tasks in the graph.

Initialization. A h
2CAS could be formed based on the task graph using

strategies similar to thos in Sect. 4.3.

Elasticity. The elasticity can be carried out in a similar way to the context in
Sect. 4.3. Since the QoR is associated with the whole task and tasks are strongly
dependent by each other, elasticity control mechanisms need to be programmed
in such a way that takes into account these strong dependencies.

5 Related Work

In [1], a formal model for socio-technical CAS is discussed. It discusses how to
specify CAS using different formal models. Generally, there is no software frame-
work for programming h

2CAS as we describe in this paper. In the state-of-the
art, typically a specific CAS is built with several components and it is used
for different purposes by varying inputs into the CAS. Another way to solve
complex problems by using human-based services and software-based services is
to design a specific middleware/platform to manage and distribute tasks to differ-
ent resources, which can be software or humans. An example of such platforms is
Jabberwocky [9] which allows specifying types of people based on personal prop-
erties and expertise and route tasks and combing humans with machines. These
platforms are not systems for HDA-CAS. Our work actually aims at generalizing
these platforms by providing techniques for programming and provisioning such
specific CASs or middleware using service units.

Software architectures describing the interactions between humans and other
software service units have been discussed, e.g. in [10]. They aim at supporting
design techno-social software systems that allow people to work with machines.
Our work is different as, in the programming perspective, we support the devel-
oper to write h

2CAS program of which, in addition to other types of informa-
tion, some architectures of software-based and human-based units are specified
by the developer.

Several task management models, coordination and communication protocols
for collaborative complex problem solving have been developed. For example, two
approaches in designing task processes for humans are studied in [8] but manag-
ing task processes is just one feature that influences the design and operation of a
collective in our work. In fact a major related work in human computation focus
on designing task processes and distributing tasks to different human compute
units [11,12]. Our work differs from them as we focus on programming systems
that enable the execution of different task processes and on the elasticity of these
systems to deal with elasticity requirements of tasks. In [13] several researchers
have discussed several issues for supporting collaborative, dynamic and complex
tasks performed by crowds. In general, they analyze several research challenges



156 H.-L. Truong and S. Dustdar

and we believe that certain types of collectives built atop human units should
address these challenges. Our h

2CAS model built for elasticity and based on
hybrid compute units could be used to program platforms to support some of
these mentioned challenges.

In our previous work, we focus on HCU and service unit models [6,7]. We
have presented the hybridity and elasticity of different types of units in HCU
in general. In this paper, we examine how to implement h

2CAS using HCUs,
therefore, our hybridity and diversity analysis of h

2CAS is bound to the context
from/in which h

2CAS is formed and operates.

6 Conclusions and Future Work

HDA-CAS is a new form of collective adaptive systems (CASs) built for solv-
ing complex problems by utilizing diverse and hybrid service units offering
well-defined cloud provisioning models. However, we need to support the right
programming features to simplify the creation, provisioning and execution of
HDA-CAS. In this paper we analyze possible contexts associated with HDA-CAS
and propose the utilization of hybrid compute units to program HDA-CAS. In
doing so, we focused on context aspects – such as When, What, Who/Which and
How – in programming HDA-CASs. We presented h

2CAS as one way of imple-
menting HDA-CASs as well as outlined a meta-view for specifying h

2CAS and
programming features for h

2CAS in some general contexts.
Currently, we are working on a specification of programming constructs and

models that can be used to specify h
2CAS in detail. Furthermore, we are work-

ing on tools and middleware for compiling h
2CAS specification and deploying,

controlling and provisioning techniques for h
2CAS.

Acknowledgments. We thank Muhammad Z. C. Candra, Mirela Riveni, Ognjen
Scekic and Vincenzo (Enzo) Maltese for fruitful discussions on hybrid compute units,
elasticity, and collective adaptive systems. The work mentioned in this paper is partially
supported by the EU FP7 SmartSociety project under grant N

◦ 600854.

References

1. Coronato, A., Florio, V.D., Bakhouya, M., Serugendo, G.D.M.: Formal model-
ing of socio-technical collective adaptive systems. In: Proceedings of the 2012
IEEE Sixth International Conference on Self-Adaptive and Self-Organizing Sys-
tems Workshops. SASOW 2012, pp. 187–192. IEEE Computer Society, Washing-
ton, DC, USA (2012)

2. Fundamentals of collective adaptive systems. http://focas.eu/
3. Andrikopoulos, V., Saez, S.G., Karastoyanova, D., Weiss, A.: Towards collabora-

tive, dynamic and complex systems (short paper). In: SOCA, pp. 241–245. IEEE
(2013)

4. Bruni, R., Corradini, A., Gadducci, F., Lafuente, A.L., Vandin, A.: Modelling and
analyzing adaptive self-assembly strategies with Maude. Sci. Comput. Program.
99, 75–94 (2015)

http://focas.eu/


Programming for Hybrid and Diversity-Aware Collective Adaptive Systems 157

5. Hybrid and diversity-aware collective adaptive systems. http://www.
smart-society-project.eu/

6. Truong, H.L., Dustdar, S., Bhattacharya, K.: Conceptualizing and programming
hybrid services in the cloud. Int. J. Coop. Info. Syst. 22, 1341003 (2013)

7. Truong, H.-L., Dam, H.K., Ghose, A., Dustdar, S.: Augmenting complex problem
solving with hybrid compute units. In: Lomuscio, A.R., Nepal, S., Patrizi, F.,
Benatallah, B., Brandić, I. (eds.) ICSOC 2013. LNCS, vol. 8377, pp. 95–110.
Springer, Heidelberg (2014)

8. Little, G., Chilton, L.B., Goldman, M., Miller, R.C.: Exploring iterative and paral-
lel human computation processes. In: Proceedings of the ACM SIGKDD Workshop
on Human Computation. HCOMP 2010, pp. 68–76. ACM, New York, USA (2010)

9. Ahmad, S., Battle, A., Malkani, Z., Kamvar, S.: The jabberwocky programming
environment for structured social computing. In: Proceedings of the 24th Annual
ACM Symposium on User Interface Software and Technology. UIST 2011, pp. 53–64.
ACM, New York, USA (2011)

10. Dorn, C., Taylor, R.N.: Coupling software architecture and human architecture for
collaboration-aware system adaptation. In: Notkin, D., Cheng, B.H.C., Pohl, K.
(eds.) ICSE, pp. 53–62. IEEE / ACM, San Francisco (2013)

11. Quinn, A.J., Bederson, B.B.: Human computation: a survey and taxonomy of a
growing field. In: Tan, D.S., Amershi, S., Begole, B., Kellogg, W.A., Tungare, M.
(eds.) CHI, pp. 1403–1412. ACM, New York (2011)

12. Kulkarni, A.P., Can, M., Hartmann, B.: Turkomatic: automatic recursive task and
workflow design for mechanical turk. In: Proceedings of the 2011 Annual Confer-
ence Extended Abstracts on Human Factors in Computing Systems. CHI EA 2011,
pp. 2053–2058. ACM, New York, USA (2011)

13. Kittur, A., Nickerson, J.V., Bernstein, M., Gerber, E., Shaw, A., Zimmerman,
J., Lease, M., Horton, J.: The future of crowd work. In: Proceedings of the 2013
Conference on Computer Supported Cooperative Work. CSCW 2013, pp. 1301–
1318. ACM, New York, USA (2013)

http://www.smart-society-project.eu/
http://www.smart-society-project.eu/

	Context-Aware Programming for Hybrid and Diversity-Aware Collective Adaptive Systems
	1 Introduction
	2 Analyzing Contexts of HDA-CAS
	2.1 Context of HDA-CAS
	2.2 Hybridity in CASs
	2.3 Elasticity in HDA-CASs

	3 h2CAS-- HDA-CAS Using Hybrid Compute Units
	3.1 Hybrid Compute Units and HDA-CAS
	3.2 Meta-Program for h2CAS

	4 Context-Aware Programming Features for h2CAS
	4.1 Consumer-Generated Independent Continuous Task Context
	4.2 Consumer-Generated Dependent Task Context
	4.3 Evolving Independent Task Context
	4.4 Evolving Dependent Task Context

	5 Related Work
	6 Conclusions and Future Work
	References


