
Technical report

Context aware querying
Challenges for data management in ambient intelligence

Arthur H van Bunningen
October 2004

Data management group
Department of EEMCS
University of Twente

Enschede
The Netherlands

Contents

1 Introduction 3
1.1 Considerations . 3
1.2 Outline of this report . 4

2 Context 5
2.1 Introduction . 5
2.2 General overviews . 5

2.2.1 A definition of context . 5
2.2.2 Some surveys . 6

2.3 Characteristics of context . 7
2.3.1 Introduction . 7
2.3.2 Acquiring . 7
2.3.3 User related . 8
2.3.4 Consequences . 9
2.3.5 Demands . 12

3 Context and databases 14
3.1 Introduction . 14
3.2 An architecture . 15

3.2.1 Introduction . 15
3.2.2 Features of the architecture 15

3.3 Modeling context . 17
3.3.1 Introduction . 17
3.3.2 Description Logics . 18
3.3.3 Alternatives . 20
3.3.4 Relating the model to sensor data 23

3.4 Using the context model to process context aware queries 24
3.4.1 Query augmentation . 24
3.4.2 Placing triggers on context 25
3.4.3 Using the context for retrieval purposes 25

4 Scenarios 26
4.1 Introduction . 26
4.2 The scenarios . 26

4.2.1 The phone call . 26
4.2.2 The document . 28
4.2.3 Looking at pictures . 28
4.2.4 The nearest restaurant . 30

1

CONTENTS

4.2.5 A web service . 31
4.2.6 Searching a recipe . 34
4.2.7 Improving life . 36
4.2.8 At the university . 37
4.2.9 The airport . 38
4.2.10 An implementable office scenario 39

5 Future directions 41

2

Chapter 1

Introduction

1.1 Considerations

This research starts from the vision of Mark Weiser (1991), to be able to in-
tegrate computers in everyday life and by making machines that fit human
environment instead of forcing humans to enter theirs, which will “make using
a computer as refreshing as taking a walk in the woods”. Weiser considers two
points of most importance: scale and location. The first one so computers can
be invisible, the second one to let the computer know its surroundings. Fur-
thermore the computers should be connected. This vision is called Ubiquitous
computing or Ambient Intelligence (AmI). This last term we will use throughout
this report.

Another way to look at fitting human environment is to look at the word fit,
which means “to be in proper size and shape for” but also “to be appropriate
to”, to suit someone. Looking at this definition, for computers to be able to
fit human environment they should be of the right size and appropriate to the
user, which means to adapt to a user, a users context, to be context aware.

Most current context aware systems are small scaled and use only few con-
text information. As a starting point we expect here is an open field for data
management techniques; to introduce this scalability.

We want to develop a way to use the context of the user to optimize query
processing in a way that queries give more relevant (context aware) results and
are executed faster.

This research is carried out within the MultimediaN project1 in the subpro-
ject AmbientDB. For acquiring context via sensors we try to co-operate with
the Smart Surroundings project2 and furthermore we are looking at corporation
with eMAXX3, our industrial partner in the MultimediaN project, in the field
of personalization.

The goal of this report is to give an overview of the many aspects of con-
text and, by taking into account these aspects, provide pointers where data
management solutions can address the challenges of context awareness.

1http://www.multimedian.nl/
2http://wwwes.cs.utwente.nl/smartsurroundings/
3http://www.emaxx.nl

3

CHAPTER 1. INTRODUCTION

1.2 Outline of this report

To be able to see how data management solutions can address the challenges
of context awareness we first have to determine what we mean by context. We
will therefore give an overview of the different aspects of context in chapter 2.
From this overview we derive challenges for data management in chapter 3. This
chapter leads to an architecture and a suggested way of representing context.
To verify the architecture and the way of modeling and to make the theory more
concrete we will, in chapter 4, give some scenarios with their representation in
the architecture and for four scenarios, a hint how they could be modeled. We
end our report with a short summary of challenges to be addressed.

4

Chapter 2

Context

2.1 Introduction

In this chapter, we try to define what context exactly is. Because there has
already been done much research in this area we will point to previous overviews
in section 2.2. However, what we missed during our literature study was an
extensive overview of all characteristics of context which we could use to define
challenges for data management. This is the reason why we will give such an
overview in section 2.3.

2.2 General overviews

2.2.1 A definition of context

One of the most used sources for definitions of context is by Dey and Abowd
(1999). They describe in their paper some previous definitions and give the
following definitions of context and context awareness:

Context (Dey and Abowd 1999) Context is any information that can be
used to characterize the situation of an entity. An entity is a person, place
or object that is considered relevant to the interaction between a user and
application, including the user and applications themselves.

Context Aware (Dey and Abowd 1999) A system is context aware if it
uses context to provide relevant information and/or services to the user,
where relevancy depends on the user’s task.

Gray and Salber (2001) build upon this definition to derive a definition for
sensed context, where they note that the notion of ‘interaction’ in the definition
of context from Dey and Abowd is ambiguous. They arrive at the following
definition:

Sensed context (Gray and Salber 2001) Sensed context are properties that
characterize a phenomenon, are sensed and that are potentially relevant
to the tasks supported by an application and/or the means by which those
tasks are performed.

5

CHAPTER 2. CONTEXT

Lieberman and Selker (2000) take a broad definition from the side of application
programming were they notice that traditionally the field of computer science
has taken the opposite position: the search for context-independence. Their
definition is as follows:

Context (Lieberman and Selker 2000) Context can be considered to be
everything that effects the computation except explicit input and output.

These definitions help us to get a feeling of what context is. But also make
clear that context is a very broad concept. Dourish (2004) says it like this:
“‘Context’ is a slippery notion. Perhaps appropriately, it is a concept that keeps
to the periphery, and slips away when one attempts to define it.” Dourish in his
article mainly objects against seeing context as something which is independent
from an activity and he has a point when he for example says that during
a conversation the location of the conversation could turn from “context” to
“content” when talking about it.

In this report we see context in the broadest sense; everything which could
be related to a certain event. As this is almost everything, when you read in this
report about techniques for sensing, modeling and using context information,
you should also be able to apply these techniques for sensing and modeling the
world. What is important in our definition is the word related which suggests
that relating concepts is an important property of context.

2.2.2 Some surveys

In this report we will not give a complete survey of context and context aware
applications. The reason for this is that there are already many good ones
available.

For example Chen and Kotz (2000) give a general survey of research in con-
text awareness where definition, applications, modeling, sensing and an architec-
ture are discussed. They also point to the paper of Dey and Abowd (1999) who
next to the defining context as mentioned in section 2.2.1 also survey previous
applications and classify them based on used context types (activity, identity,
location and time) and context aware features (presentation, automatic execu-
tion and tagging). Schilit, Adams, and Want (1994) give an overview of the
influential work at Xerox Parc. They describe four categories of context aware
applications as listed in table 2.1. Mitchell (2002) surveys applications and

Manual Automatic
Getting information Proximate selection & Automatic contextual

contextual information reconfiguration
Doing a command Contextual commands Context-triggered actions

Table 2.1: Context Aware Software Dimensions of Schilit, Adams, and Want
(1994).

clusters on the different stages context goes through; context capture, context
selection and using context. Korkea-aho (2000) clusters on sorts of applica-
tions and lists some frameworks. Brown, Burleson, Lamming, Rahlff, Romano,
Scholtz, and Snowdon (2000) try to look at some killer applications for context
awareness of which they find seven types. Special attention deserves the survey

6

CHAPTER 2. CONTEXT

of Meyer and Rakotonirainy (2003) which focus on context aware homes. A
current overview of applications can be found on the website of Rehman (2001)
1.

2.3 Characteristics of context

2.3.1 Introduction

In this chapter we will give an overview of the different characteristics of con-
text information based on some previous work and own experience. With this
overview we hope to make clear where data management systems for use in AmI
scenarios would differ normal data management systems. We tried to cluster
the characteristics in three categories:

Acquiring Characteristics related to the acquisition of context.

User related Characteristics which focus on the demands of the user.

Consequences Characteristics which follow from the previous two.

We will also include a fourth category which not really encompasses char-
acteristics but some demands for context aware systems which immediately
follow from these characteristics. We will call this category Demands. The
overview is based on several sources which contain smaller overviews of which
the most extensive are by: Gray and Salber (2001) with respect to sensed con-
text, Goslar and Schill (2004) who cluster the characteristics in characteristics
of pervasive computing, characteristics of contextual data and requirements for
a representation format for contextual information and Henricksen, Indulska,
and Rakotonirainy (2002) who give the most extensive overview.

For each characteristic will give a short explanation together with some
pointers to relevant research.

2.3.2 Acquiring

The most important characteristics of context information follow from how it is
acquired (sensed). As Satyanarayanan (2001) and Strang (2004) note, Pervasive
or Ubiquitous Computing evolved from Distributed Computing to Mobile Com-
puting to its current state, from which follow naturally that this acquiring takes
place by distributed sources and should be able to deal with moving objects.

Sensed

The first characteristic as mentioned by Henricksen, Indulska, and Rakotoni-
rainy (2002) and Gray and Salber (2001), is that much context is sensed through
sensors or sensor networks, for example location or temperature. Data manage-
ment solutions in this field focus on seeing the sensor network as a database for
which Lazaridis, Han, Yu, Mehrotra, Venkatasubramanian, Kalashnikov, and
Yang (2004) list some architectural requirements. The most notable existing
systems are Cougar (Bonnet, Gehrke, and Seshadri 2001) and TinyDB (Mad-
den, Hong, Hellerstein, and Franklin 2004).

1http://www-lce.eng.cam.ac.uk/∼kr241/html/101 ubicomp.html

7

CHAPTER 2. CONTEXT

Cheap, constrained devices (energy costs)

What adds to the challenge is that this sensing is done by cheap and (there-
fore) constrained devices. Cherniack, Franklin, and Zdonik (2001) mention the
limited computing power of such devices, the difficulty to run applications on
this low level and their unreliability. Satyanarayanan (2001) goes in more detail
about energy costs and energy management.

Distributed sources

As an important aspect mentioned among others by Henricksen, Indulska, and
Rakotonirainy (2002), Dey, Abowd, and Salber (1999) and Goslar and Schill
(2004) is that contextual data will come from distributed sources. To get from
these distributed sources, Dey (2001) used aggregators to gather context about
an entity (e.g. a person) but sensor querying techniques, as mentioned before,
also deal with this characteristic. This characteristic is one of the sources of the
high interrelatedness discussed in section 2.3.4.

Continuous

As a crucial property of many sorts of context, Jones and Brown (2004) considers
continuance, the constantly changing of the user’s context which may lead to
new actions (proactiveness).

Mobile, moving

Very related to this last property is the final characteristic of context acquire-
ment, also mentioned by Jones and Brown (2004); the mobility of the objects for
which context is acquired. This leads among others to techniques for indexing
moving objects as mentioned by Cherniack, Franklin, and Zdonik (2001), the
importance of spatial properties, as we will discuss in section 2.3.4, and dynamic
connections (also in section 2.3.4). More information about mobile information
access is given by Satyanarayanan (1996).

2.3.3 User related

The following characteristics can be seen as requirements of a user, things which
users expect from a context aware system, some of which are listed as “other
requirements” by Cherniack, Franklin, and Zdonik (2001). Most of them fall
under the so-called “ilities”, which are reliability, availability, maintainability,
security, responsiveness, manageability, scalability etc. We will not discuss all
of them but list five important ones for context aware systems.

Privacy and security sensitive

The most mentioned requirement in discussions about context with other re-
searchers was about the privacy of the user. But also Newman, Eldridge, and
Lamming (1991) did notice that during their experiments with tracing users
during the day with badges, users did not wear them because of privacy issues.
More research about the perceptions of users to these issues has been done by
Kindberg, Sellen, and Geelhoed (2004). A very inspiring way of dealing with

8

CHAPTER 2. CONTEXT

this issue is mentioned by Gandon and Sadeh (2004), who use both access rules
and obfuscation rules to deliver different context information to different users
of context, such as other people or applications. Previous work on this, focused
on the location of the user, has been done by Leonhardt and Magee (1998).

Proactiveness

Proactiveness means to process information on behalf of the user so an action
can be taken without requiring their attention. This means knowing what a
user would want to do with this information and to detect patterns in his or
her behavior. It is one of the most important requirements for the ambient
to be intelligent. Among other it is discussed by Jones and Brown (2004) and
Tennenhouse (2000) even coins the new term proactive computing which stands
for “the movement from human-centered to human-supervised (or even unsu-
pervised) computing”. We will discuss our approach to deal with proactiveness
in section 3.2.2.

Tractability

Tractability means that a user can see why something (proactive) happened.
Ideally we would like the proactiveness to be understandable and controllable
by the user as suggested by DeVaul and Pentland (2000). Also from the ubiqui-
tous computing point of view, it could be argued that a human should be able to
know what is happening in the background. Chalmers (2004) makes this clear
by saying that, in ubiquitous scenarios, it should also be possible to focus on
the tool (the computer) to have it “present-at-hand”. An example here could
be the dashboard of a car, at which, in case something goes wrong can have
the car present-at-hand. Another example is the network signal indicator of a
mobile phone. Some research about how users would be able to do this config-
uration using natural language techniques is described by Weeds, Keller, Weir,
Wakeman, Rimmer, and Owen (2004). We will return to this characteristic in
section 3.2.2.

Mis-use from users

A last characteristic which is maybe not so relevant but is very specific to context
awareness, is that users will probably “mis-use” the intelligence of the ambient.
As an example Albrecht Schmidt mentioned the automatic door-opening where
we know we can open the door by waving our hand before it, and can mis-use
it to keep the door open for someone else, although we will not go through it
ourselves.

2.3.4 Consequences

Dynamics of connections

Because we have constrained sensors and mobile objects, we have to deal with
dynamic connections; connections can be lost when a sensor is out of reach
or temporary unavailable, and have to be re-established when the information
is available again. It could be possible that when a sensor is unreachable the

9

CHAPTER 2. CONTEXT

context this sensor provided could be acquired via another sensor or combina-
tions of sensors. Goslar and Schill (2004) suggest because of this that a context
database should store how to read values and not the current values itself.
DeVaul and Pentland (2000) use a “dynamic decentralized resource discovery
framework” which uses semantic descriptions which are registered by the differ-
ent components at a directory registration service when they are available and
are unregistered when they are not available anymore.

Another option is by looking at a goal-oriented approach as done by Saif,
Pham, Paluska, Waterman, Terman, and Ward (2004) and Look and Peters
(2003) where by using high level goals to acquire certain context and having in-
formation of what services are available and what they provide one can combine
the different available services and abstract from the actual sensors. Another
approach by Michahelles, Samulowitz, and Schiele (2002) uses a self-organized
sensor network where autonomous units work together to provide the context
of an object.

We have to keep this this characteristic in mind when considering database
techniques, because for example the optimization techniques of Deshpande,
Guestrin, Madden, Hellerstein, and Hong are based on the assumption that
the network topology only changes slowly, so these techniques might be less
applicable for AmI scenarios.

Dynamics of context

Not only the acquisition of context is dynamic, but the context of an object
can also change very quickly. This is among others mentioned by Henricksen,
Indulska, and Rakotonirainy (2002) and is the reason why temporal properties
are important which we will discuss later in this section.

Highly interrelated

Not only does high level context depend on low level context but also different
sorts of context, for example the temperature of the room and the amount of
people in the room, depend on each other. This interrelatedness makes it pos-
sible to predict some context parameters based on others. This is among others
discussed by Henricksen, Indulska, and Rakotonirainy (2002) and Deshpande,
Guestrin, Madden, Hellerstein, and Hong (2004) uses this interrelateness to do
some optimizations over TinyDB by using correlation between voltage and tem-
perature. However, as noted by Goslar and Schill (2004), because contextual
data structures are so highly interconnected we have to take care that they are
not too complex for limited capabilities of human users or local devices. As a
solution they suggest to break the data structures down in smaller parts.

Alternative representations

Because we have so many context information which will be acquired from
different sensors and could be even from different domains, we will also have
a large number of alternative representations. An example how to take care
hereof can be by the method of Bressan, Fynn, Goh, Madnick, Pena, and Siegel
(1997) who use Prolog rules to convert between different representations.

10

CHAPTER 2. CONTEXT

Different properties

Some context changes quickly (e.g. location) other context slowly (e.g. prefer-
ences). Henricksen and Indulska (2004) here distinguish between four typical
properties as seen in table 2.2. These types differ both on how dynamic and on

Type Source
Sensed Physical and logical sensors
Static User/administrator
Profiled User (directly or through applications)
Derived Other context information

Table 2.2: Properties of context information of Henricksen and Indulska (2004).

how reliable they are.

Imperfectness, uncertainty

Because of the dynamics, the constrained devices, the distributed sources, al-
ternative representations etc. there is almost one hundred percent chance that
acquired context information is not perfect. Henricksen and Indulska (2004)
even characterize four types of imperfect context information:

• unknown,

• ambiguous,

• imprecise, and

• erroneous.

Imperfectness can lead to fuzzy situations where it is for example unclear in
which room a person is. Grimm, Tazari, and Balfanz (2002) therefore introduce
fuzzy situation descriptions in ontologies. Gu, Pung, and Zhang (2004) and
Ranganathan, Al-Muhtadi, and Campbell (2004) both provide a modeling solu-
tion for uncertainty by adding a probability predicate and give some references
to earlier work. They both refer to Dey, Mankoff, and Abowd (2000) who de-
scribe an simple architecture for incorporation imperfectly sensed context and
both use Bayesian networks for reasoning about dependencies between context
events.

Korpipää, Mäntyjärvi, Kela, Keränen, and Malm (2003) mention uncertainty
as well but also combine it with fuzzy situation descriptions, for example Cold,
Normal or Hot, and the chances that a situation is like this. According to
research by Antifakos, Schwaninger, and Schiele (2004) it does help to display
information about the amount of imperfectness to a user when it is used to make
decisions.

“Unpredictable”

Next to uncertainty about the current context, we are even less sure about
the upcoming context, as described by Cherniack, Franklin, and Zdonik (2001).
This means that it is more difficult to do optimization and caching. However
because of the high interrelateness it should not be impossible.

11

CHAPTER 2. CONTEXT

Temporal

Because of the dynamics in context temporal data is very important which is
among others confirmed by Henricksen, Indulska, and Rakotonirainy (2002).
It is therefore not surprising that Chen, Finin, and Joshi (2003b) include a
paragraph how to model temporal data and ter Horst, van Doorn, Kravtsova,
ten Kate, and Siahaan (2002) introduce the notion of spacetime to reason about
context. We will return to these modeling questions in section 3.3.

Spatial

Next to temporal, also spatial information is important. Koile, Tollmar, Demird-
jian, Shrobe, and Darell (2003) for example use “activity zones”; regions in
which the same activities occur, to trigger certain events. Harter, Hopper,
Steggles, Ward, and Webster (1999) describe a context aware application which
especially focuses on the users location using Bats (an ultrasound position de-
termination system) and Chen, Finin, and Joshi (2003b) introduce next to an
ontology for temporal data also one for spatial data.

For acquiring location information a survey with different techniques has
been done by Hightower and Borriello (2001) after which the authors specialize
on particle filters for location estimation with ultrasound, infrared and WiFi in
(Hightower and Borriello 2004).

2.3.5 Demands

In this section we will describe other demands on context aware systems which
follow from the previous characteristics but are not really characteristics them-
selves.

Inference, derivation

Because context can be derived from other context. We must use some kind
of inference or derivation to do this. Schmidt (1999) is one of the first who
does so by using so called cues which takes the value of one sensor and provides
a (sub)symbolic output. Korpipää, Koskinen, Peltola, Mäkelä, and Seppänen
(2003) considers Bayesian networks to recognize high level context. Combined
with the temporal characteristic, research from Höppner (2003) could become
relevant who describes some techniques to discover patterns in time-series. Most
of our research in this area still has to be done.

Metadata

In section 2.3.4 we saw that context can have different properties. Because of
these we will get information about the context information, so called metadata.
Gray and Salber (2001) give an overview of the metadata attributes which they
include. These are, among others:

• forms of representation,

• information quality,

• sensory source,

12

CHAPTER 2. CONTEXT

• interpretation (data transformations), and

• actuation (for example to shut down faulty sensors)

Storage and logging

Because we want to be proactive and detect patterns in the behavior of the user,
context has to be stored. Meyers and Kern (2000) give an overview of different
storage questions (where, how, what etc.). An argument for not storing the
information at sensor level is because in that case we store too detailed infor-
mation which causes both too much capacity and makes it harder for detecting
patterns.

13

Chapter 3

Context and databases

3.1 Introduction

In this chapter we will focus on the connection between context and databases,
considering the characteristics mentioned in chapter 2.

Adding context to normal storage
Queries to store context

Trigger on context

Queries to retrieve context
Query augmentation based on context

Storing context
Optimizations based on characteristics of context

Input Output

Database

Figure 3.1: Context in a database

In figure 3.1 we show the three points where context can relate to databases;

Input How does context enter the database? Note that as we saw in section
2.3.2, this can be very close to the sensors.

Database How to store context information? Can we do special optimizations
based on the characteristics of context? Do we need other query processing
methods?

Output How to use context to adapt the queries to the context? This is also
the place of triggers; a special sort of queries which are used to trigger an
action when satisfied.

In this chapter, we will first look how this database view of context can
relate to an architecture of a context aware environment in section 3.2. To be
able to address the three points mentioned above, we first need a way to model
the context, taken into account the characteristics from section 2.3, we will do
this in section 3.3. In section 3.4 we will show how we can use this model for
intelligent queries.

14

CHAPTER 3. CONTEXT AND DATABASES

Agent

Learner

based on access rules
Access context

Cooking programs

Art galleries

Restaurants

Museums

Interaction

SERVICE REGISTRY

USER CONTEXT

Learn preferences
Based on preferences

Interaction
via registry

PROXIES

Location

etc.
Rain.
Agenda

SENSORS

Context DB

Preferences
Access rules
Log / History

User preferences
Proactive rules

Provide context

provide sensor information based on permissions

via access rules
Access context from sensors
and other proxies

CONTEXT−AWARE
APPLICATIONS

Televisions

Answering machines

Phones

Context aware DBMS
External parties

Temperature

Reasoning

USERS

DB

Figure 3.2: An architecture

3.2 An architecture

3.2.1 Introduction

To get more grip of the relation of data management to context awareness we will
in this section describe an architecture in which we relate the two together. In
chapter 4 we will show for some scenarios how they relate to this architecture.
Based on this architecture a prototype will be made, which includes sensor
information to do context aware querying. The scenario which focuses most on
this prototype is given in section 4.2.10.

Of course many architectures are already defined in literature, especially
Judd and Steenkiste (2003) give a good overview. Architectures which are
related to our project are from Feng, Apers, and Jonker (2004) and Boncz and
Treijtel (2003). Our architecture will be based on the one from Gandon and
Sadeh (2004), among others because of their good handling of privacy issues.
We will in future research look how to integrate these different structures.

3.2.2 Features of the architecture

Service registry

The basic component of the architecture is the service registry. It is via this
registry that external parties and users can acquire context information from
different sensors and other users. Example techniques such as are Jini or web
services, as described by Gandon and Sadeh (2004), can be used. The main

15

CHAPTER 3. CONTEXT AND DATABASES

features of the model of Gandon and Sadeh are that context can be acquired by
applications independent of the sensors, respecting the users privacy and in a
semantic model. Our use of context services in our model is the same as in their
model; service rules explain what piece of knowledge the service can produce,
the knowledge needed for calling the service and the function to trigger with its
parameters.

Context proxy

Context information of a user is stored in a context-proxy, so it can be accessed
also if the user is not connected to the network. It is also this proxy which other
devices or users must contact to get context information. The proxy is also the
place where information like preferences of a user and a log of his actions with
their context is stored. The discovery from low level context information (“there
are three people in the room”) to high level information (“there is a meeting
in this room”) will also be done at the proxy because in this way also external
information like a users agenda can be taken into account.

Sensors/actuators

The coupling between the sensors and the proxy takes place via the service
registry. There are services which are responsible for a certain contextual pa-
rameter, such as location or temperature and multimodal services, which by
the combination of several context parameters can for example provide more
reliable information.

The sensors are also responsible for acquiring the metadata as we mentioned
in 2.3.5. Since this is the point were have to collaborate with the Smart Sur-
roundings project we discussed about some metadata which should be available
from these modules:

• Accuracy information for the measurement,

• time information for the measurement,

• possibility to add “requested accuracy information” with request, to weigh
energy cost and accuracy against each other and

• the possibility of subscribing to a module.

Other lists of possible metadata are given by Michahelles, Samulowitz, and
Schiele (2002) who considers feature ID, feature value, sensor type ID, Smart-
It ID, sensor location and time-stamp and Judd and Steenkiste (2003) who
considers accuracy, confidence, update time and sample interval.

External parties

In our model we explicitely place context aware applications in the same cate-
gory as other external parties such as restaurants because they will both make
use of the context of the user and other external parties. Contrary to Gandon
and Sadeh (2004) we do however not have task-specific agents (eg. a restau-
rant agent which proactively looks for a restaurant based on the users context),
they are replaced partly by the learner and agent construction and furthermore
replaced by specific context aware applications.

16

CHAPTER 3. CONTEXT AND DATABASES

An example of an external application could be a context aware multimedia
database which stores all videos and scenes you watched. When you would pose
to this database the query “Which scene of The Bourne Identity did I watch
yesterday before going to the super market”. The database could, if allowed,
query your proxy for the time you went to the supermarket and based on this
present you with the right scene.

Learner and Agent

The claim is that our model “promotes” learning. This is because we store the
context and which actions were taken in a log and it is possible to be able to
“learn” new “preferences” out of it, which will be stored at the proxy. These
preferences will be structured in a way which will be clear to the user. so s/he
can edit them. There are already rule-extraction methods such as PRISM etc.
the question is how to apply them to the logs.

An agent (see figure 3.2) stands side by side with the user, being able to
interact with external parties based on these preferences. This is however not
an autonomous agent as seen for example in the scenario of ‘Maria’ - Road
Warrior from Ducatel, Bogdanowicz, Scapolo, Leijten, and Burgelman (2004)
because in our case the preferences are clear rules and the agents behavior is
completely predictable from these rules. A way of suggesting options can be
using default action which can be executed with a single click as in the Satchell
system (Flynn, Pendlebury, Eldridge, Lamming, and Jones 2000).

To sum up: Preferences are stored at the proxy of the user and learned
(by looking at patterns) from previous experiences or entered by the user. The
proactiveness is realized by deterministically following these preferences by the
agent.

3.3 Modeling context

3.3.1 Introduction

The purpose of this section is to look at different representation languages for
context information and decide which language will be the most promising to
build upon for the remaining part of the project. In figure 3.3 we can see in bold
which parts of databases related to context are influenced by the representation.

1

2

3
Output

Trigger on context

Queries to retrieve context
Query augmentation based on contextAdding context to normal storage

Queries to store context

Database
Storing context
Optimizations based on characteristics of context
Demands on database schema

Input

Figure 3.3: Context representation in a database

17

CHAPTER 3. CONTEXT AND DATABASES

We see that it is mostly related to the interface of the database. In short:

• Queries can be posed in this representation language.

• Queries can be augmented with the use of context represented in this
language.

• Triggers can be formulated in this language.

• It should be possible to represent the database schema in the representa-
tion language.

There are several ways of modeling context, which can be divided in sev-
eral categories. Gu, Wang, Pung, and Zhang (2004) for example differentiate
between an application oriented approach, a model oriented approach and an
ontology oriented approach. Strang (2004) however does a better job surveying
different context modeling strategies. The categories he distinguishes between
are:

• profile based (markup scheme models),

• graphical,

• logic based,

• object oriented and (also)

• ontology based.

Both papers conclude that an ontology based approach is the best approach for
modeling context. We however chose to use Description Logics. This seems
strange but actually Description Logics is very related to ontology based ap-
proaches and many reasoners for ontologies are even based on Description Log-
ics. Furthermore Description Logics has the advantage of having a clear rep-
resentation and being decidable (as we will discuss in section 3.3.2). It is also
not the case that Description Logics are the same as the logic based approach of
Strang, who means with this the approach of McCarthy and Buvac (1997).

The rest of this section will be as follows; first we will give a very short
introduction to Description Logics. To demonstrate how the modeling in De-
scription Logics would work in practice we will present four scenarios modeled
in Description Logics in section 4. In 3.3.3 we will zoom in on five alterna-
tives to Description Logics taken into account the inference we should be able
to do for representing context as mentioned in chapter 2.3.5. Finally we will
make a start of trying to relate our modeling language to sensors of context and
how one would be able to deal with metadata, such as imperfectness, in section
3.3.4. Previous research on selecting knowledge representation systems focusing
on Description Logics was done by Speel (1995).

3.3.2 Description Logics

Description Logics are a knowledge representation formalism. Overall they are
less expressive than first-order predicate logic (except for the Description Log-
ics with the transitive closure on roles) and if something can be expressed in
Description Logics, it can be expressed in First Order Logic. Description Logics

18

CHAPTER 3. CONTEXT AND DATABASES

πx(A) = A(x) πy(A) = A(y)
πx(C uD) = πx(C) ∧ πx(D), πy(C uD) = πy(C) ∧ πy(D)
πx(C tD) = πx(C) ∨ πx(D), πy(C tD) = πy(C) ∨ πy(D)
πx(∃R.C) = ∃y.R(x, y) ∧ πy(C), πy(∃R.C) = ∃x.R(y, x) ∧ πx(C)
πx(∀R.C) = ∀y.R(x, y) → πy(C), πy(∀R.C) = ∀x.R(y, x) → πx(C)

π(T) = ∀x.
n∧

i=1

(πx(Ci) → πx(Di))

Figure 3.4: Translation from Description Logics to First Order Logic

are, more specifically, decidable fragments of First Order Logic. However, next
to decidability Description Logics also explicitly distinguishes between the ter-
minological knowledge (the schema), in a TBox, and the assertional knowledge
(the concrete situation), in an ABox. In figure 3.3.2 from Sattler, Calvanese,
and Molitor (2003) we see how the Description Logics ALC is represented in
First Order Logic for a TBox T . In this figure A is an individual, C and D are
concepts and R is a role1. The translation of concepts is defined in such a way
that the resulting formulas involve only two variables (x,y) and only unary and
binary predicates. For our modeling of context we will use Q-SHIQ from Lutz
(2004) this is ALC with:

• transitive roles,

• role hierarchies,

• inverse roles,

• number restriction and

• representation of numerical knowledge.

Of these properties, expecially the last one is important because we will use it
to model time in the recipe scenario (section 4.2.6). Q-SHIQ is still decidable
(ExpTime-complete) (Lutz 2004).

Description logics are closely related to OWL and in fact most the examples
we see in this report can be expressed in a subset of OWL. More details on the
comparison between OWL and Description Logics are described by Horrocks,
Patel-Schneider, and Harmelen (2003).

Automatic reasoning

From the beginning of Description Logics with Kl-One one already had the
possibility to do automatic reasoning about subsumption. After Kl-One many
systems followed: Classic, Back, Loom, Kris and Crack. And nowadays a new
optimized generation of very expressive but sound and complete Description

1For examples of modeling in Description Logics, see chapter 4.

19

CHAPTER 3. CONTEXT AND DATABASES

Logics systems is available with as the two most important systems FaCT2 and
RACER3. These two both make use of the DIG interface4 which is among others
supported by the ontology building software Protégé. FaCT also has a CORBA
interface and is programmed in Lisp, for RACER no source code is available.

Speel (1995) has fairly large but old overview of description logic systems.
In Möller and Haarslev (2004) a more recent overview is given.

Why decidability

The reason why we would like to use the decidable Description Logics is because
a user should be able to construct triggers (in the form of concepts, maybe in
an intermediate language) and when using Description Logics, a user can be
pointed to more general concepts or already know that a trigger will never fire
because the concept is not satisfiable. Another case in which I think decidable
subsumption could be helpful is when learning behaviors from a user and adding
automatic, proactive, triggers. If in a specific domain (for example “recipes”)
a rule is found based on instances, based on subsumption this rule could, if we
know relations between the two domains, maybe be extended to other domains
(such as “restaurants”). Because Description Logics is decidable, reasoning
about both cases is guaranteed to finish.

Relation to databases

In this report we look at knowledge representation from a Description Logics
point of view and discussed Description Logics-reasoners in which (with maybe
a few modifications) our scenarios in chapter 4 can be implemented. When
looking at real database queries or scalable implementations of our scenarios it
could be possible that the Description Logics-part will be concerned with the
triggers/augmentation etc. and the database with the ABoxes (the results of
the queries) because the ontologies, although very large, will be at least much
smaller than the number of instances. At a later stage we can maybe see if
other parts of reasoning can be moved to the database-part as well, resulting in
a new(?) database management system.

The advantage is that there has already been done much research on the
relation from Description Logics to databases. A survey is given by Borgida,
Lenzerini, and Rosati (2003). Franconi (2003) also discusses several examples
where Description Logics is used for query processing and information access
and Pan and Heflin (2004) present a relational database system with capabilities
for DAML+OIL inference which makes use of the FaCT reasoner.

3.3.3 Alternatives

Introduction

In this section we will shortly discuss alternative representation techniques to
Description Logics which we could use for representing context.

2http://www.cs.man.ac.uk/∼horrocks/FaCT/
3http://www.sts.tu-harburg.de/∼r.f.moeller/racer/
4http://dig.sourceforge.net/

20

CHAPTER 3. CONTEXT AND DATABASES

Variations of First Order Logic

The problem of representation of context in First Order Logic (FOL) is that it
gives too much freedom in modeling choices and it is not focused on representing
knowledge. Just as with Description Logics there are also decidable fragments
of First Order Logic, and there exists some automatic reasoners. The most
famous are Vampire5, Spass6 and Otter7 but there exist even more8.

The relation of Description Logics to modal logic is described by Sattler,
Calvanese, and Molitor (2003) where among others they point out that ALC
can be seen as a notational variant of the multi-modal logic Km.

Variations of RDF/OWL (Semantic web)

The OWL Web Ontology Language is the successor of DAML+OIL and the
proposed language for the semantic web and can be used to model knowledge.
It is used to model context among others by Wang, Gu, Zhang, and Pung (2004),
Gu, Wang, Pung, and Zhang (2004) and Chen, Finin, and Joshi (2003a). The
reasoners for Description Logics can also be used for the decidable fragment of
OWL (called OWL-DL). There also exists a reasoner for full OWL based on
Otter9 which is however not completely finished. The main difference between
OWL-DL and Description Logics itself is that OWL-DL is more focused on the
ABox given a certain TBox; so given an ontology they are interested in the
instances.

An RDF based W3C proposal for context is Composite Capability/Preference
Profiles (CC/CP). However this proposal focuses more on device context and
is therefore located in the Device Independence group of the W3C. Their mis-
sion is to have “Access to a Unified Web from Any Device in Any Context by
Anyone”. A critical description of this language for device and user information
is given by Held, Buchholz, and Schill (2002) in which they propose Compre-
hensive Structured Context Profiles (CSCP) as an alternative. This language
is however also mainly focused on storing static user and device information for
adapting applications. Not for representing the dynamics of context.

Topic maps is another modeling language which is used by Goslar and Schill
(2004) and Power (2003) to model context. The main representation format of
topic maps is XML topic maps10 and reasoning, also called topic map processing,
can among others be done by AsTMa11.

Conceptual graphs

Just as Description Logics, conceptual graphs (CS’s) originate from frame sys-
tems and semantic networks. It is a knowledge representation method and has
the same expressiveness as First Order Logic but is more focused on representa-
tion. There exists a decidable fragment: simple conceptual graphs (SG’s) (Sowa
1984).

5http://www.cs.man.ac.uk/ riazanoa/Vampire/
6http://spass.mpi-sb.mpg.de/
7http://www-unix.mcs.anl.gov/AR/otter
8http://ar.colognet.org/tools.php
9http://www.w3.org/2003/08/surnia/

10http://www.topicmaps.org/xtm/
11http://astma.it.bond.edu.au/

21

CHAPTER 3. CONTEXT AND DATABASES

The relation between Description Logics and Conceptual Graphs has been
made several times, among others by Baader, Molitor, and Tobies (1999). It
consists of four main points

• Conceptual graphs are interpreted as closed formulae, whereas Descrip-
tion Logics concept descriptions are interpreted by formulae with one free
variable.

• Most Description Logics only allow unary and binary relations.

• Conceptual graphs are interpreted by existential sentences, whereas most
almost all Description Logics allow for universal quantification.

• Because Description Logics use a variable-free syntax, certain identifica-
tions of variables expressed by cycles in Conceptual Graphs and by co-
reference links in Conceptual Graphs cannot be expressed in Description
Logics.

For the choice between Conceptual Graphs and Description Logics it is often
advised to look at the specific application. For now we chose Description Logics
because there is more known about different subsets and reasoning techniques
and it has, in our opinion, a clearer way of notation for knowledge.

OpenCyc

OpenCyc is a database of common knowledge together with a reasoning engine
and language based on Lisp (CycL). The language and reasoning system on
its own are not very special. What is more interesting is that there is already
much coherent knowledge available which we might be able to use at a later
stage. A nice property of OpenCyc is the notice of microtheories. In OpenCyc
one can have microtheories which contain a set of assertions. Each microtheory
bundles assertions based on a shared set of assumptions on which the truth of
the assertions depend, a shared topic (medicines, diseases, the stock market)
or a shared source (e.g. articles from Dow Jones Newswires). All information
within a microtheory must be mutually consistent and two microtheories can be
related such that one of them inherits the assertions in the other. In OpenCyc
we can for example make a microtheory which represents our knowledge about
companies, medicines and the stock market as done by Bunningen (2004). These
microtheories relate directly to the view on context from McCarthy and Buvac
(1997).

Reasoning languages

Next to the automatic reasoners for First Order Logic, OWL and Description
Logics there are also exist reasoning languages with their own syntax. The
most well known hereof is probably Prolog. This language has a closed-world-
assumption (contrary to the open world assumption of Description Logics) so if
it cannot prove a goal using the clauses in its database, and the proof attempt
fails after a finite number of steps, then the goal is considered to be false. Prolog
is among others used by Ranganathan, Campbell, Ravi, and Mahajan (2002),
Ranganathan and Campbell (2003) and Chen, Finin, Joshi, Tolia, and Sayers

22

CHAPTER 3. CONTEXT AND DATABASES

(2002) for context aware systems. Ranganathan and Campbell even uses a more
advanced prolog extension called XSB.

Clips is another reasoning language used by Gandon and Sadeh (2004). The
rules of Clips are supported by Jess (a Lisp like rule language binded with Java).

Finally, Jena is a Java framework for building Semantic Web applications.
It provides a programmatic environment for RDF, RDFS and OWL, including
a rule-based inference engine.

3.3.4 Relating the model to sensor data

Now we have the foundations of a model to represent context data in and can
deal with inference and derivation, it is time to look at the other properties of
context. In the scenarios we will see some examples how to deal with temporal
information. More information about reasoning with time in Description Logics
can be found in the survey of Artale and Franconi (2000).

The nice thing of context information is that if we look at our definition,
everything which could be related to a certain event, it actually boils down to
the word related. And in fact we could translate sensor information or other
context information directly to roles in Description Logics.

hasFriend

Person

Location
hasLocation

Activity

hasActivity

Browsing

Device

Printer

Tangible object

Monitor

ReadingDrinkingCoffee

Document

hasText

Time
hasTime

Figure 3.5: A graphical representation of a simple TBox

For example in figure 3.5 a sensor on a printer can determine it’s location and
could be responsible for the hasLocation-role between a printer and a location.

Since a sensor also provides metadata, for example accuracy information, we
can add for each role this extra information. An example how this can be done
is by reifying the roles to add a probability. This can be seen in figure 3.6. In
this figure the Sensed Location concept depicts a sensed location of a certain
object and includes two roles for relating it to a certain time and probability.
To abstract from this reification for reasoning and to make it clearer for the user
it could be done automatically.

23

CHAPTER 3. CONTEXT AND DATABASES

Tangible Object Sensed Location Location

Probability

hasSensedLocation isConcreteLocation

hasProbability

Time

hasTime

Figure 3.6: The location role reified

3.4 Using the context model to process context
aware queries

There are many examples of queries one can do in a context aware environment.
Imielinski and Badrinath (1992) and Koile, Tollmar, Demirdjian, Shrobe, and
Darell (2003) give examples of queries related to location. Judd and Steenkiste
(2003) give some more general, but abstract, context aware queries and some
queries for a sensor network are given by Lazaridis, Han, Yu, Mehrotra, Venkata-
subramanian, Kalashnikov, and Yang (2004).

We will focus on five “queries”:

1. Searching for the first document you read yesterday after the coffee break.

2. Automatically switch on the lights before you have a meeting.

3. Searching for a printer automatically gives the nearest one to which you
have access.

4. Proactively get information what is the best thing to do next considering
appointments and available time; a sort of deadline management.

5. Searching for someone on data management gives the person who is nearby
and not in a meeting.

These “queries” or situations can be categorized in three groups of using
context; query augmentation, placing triggers on context and using the context
for retrieval purposes. For each group we will give an example how we could
realize such a situation.

3.4.1 Query augmentation

In this group are the search for a printer and finding someone on data manage-
ment.

In this case a query for a printer such as the following:

SELECT * FROM Printer

could be transfered via a rule which say that we prefer nearby objects, like:

TangibleObject -->
ORDER BY (TangibleObject.hasLocation - self.hasLocation)

24

CHAPTER 3. CONTEXT AND DATABASES

to

SELECT * FROM Printer
ORDER BY (Printer.hasLocation - self.hasLocation)

Because of the TBox, as shown in figure 3.5, this rule of having a preference for
near objects also applies for printers.

3.4.2 Placing triggers on context

Under this group falls the automatic switching of the lights and the proactive
showing of suggested work. The triggers here are the beginning of a meeting
or for example the planning of a new appointment. Based on these triggers
something should change; the light should switch on or other suggestions for
work should be shown. These triggers can be seen as queries, where a trigger
fires when the query has results. An example trigger(query), triggering a signal
when there is a monitor is in the same room as certain person could be:

Trigger = SELF.hasLocation.contains.Monitor

Where contains is the inverse of hasLocation.
Triggers are very important because they make a context aware system

proactive. Another example could be that we always want to have things which
are in our room easily accessible by a device; a sort of cache. This location
aware caching is also suggested by Jones and Brown (2002).

3.4.3 Using the context for retrieval purposes

This last way of using context is also sometimes called Past-Recall-Based con-
straint (Feng, Apers, and Jonker 2004). Under this group falls the searching for
a document which you read yesterday after the coffee break. This query could
look, when we ignore the yesterday-part, for example like this:

SELECT * FROM Text WHERE
involvedIn.hasTime
> (SELECT MAX(hasTime) FROM Drinkingcoffee WHERE

participant = self)

Where involvedIn is the inverse of hasText and participant the inverse of has-
Activity.

25

Chapter 4

Scenarios

4.1 Introduction

In this chapter we will, to get a clear view of our approach to context awareness,
discuss several scenarios. For the first nine scenarios we will shortly describe
how they can be realized in the architecture we discussed in chapter 3.2, for four
scenarios we will also suggest how they could be modeled in Description Logics
as discussed in chapter 3.3. The last two scenarios are different from the rest; the
airport scenario is just a copy of a scenario by Satyanarayanan (2001) because
it contains some special characteristics as we will discuss in section 4.2.9, the
last scenario is different because it contains a very specific office scenario which
is constructed in such a way that we think we are able to realize it in the course
of our research.

Another excellent resource of five well worked out scenarios is given by Duca-
tel, Bogdanowicz, Scapolo, Leijten, and Burgelman (2004).

4.2 The scenarios

4.2.1 The phone call

Description

John Brown calls the West family, who are out on the beach. As the Brown’s are
marked as friends of the family, the default action of the answering machine is
to put them through a family phone that is active where Ron’s phone has highest
priority, unless he is in a business meeting.

Special features

Based on the context of a call (the caller) it is treated differently. Furthermore
there is knowledge about the context of the phone users (location and agenda)
based on which it is decided where to redirect the call.

26

CHAPTER 4. SCENARIOS

Possible implementation in the model

The answering machine could be a context aware application. When a call
arrives it will, based on the social context of the family (where it has access to),
determine that the caller is a friend. Now it will look at its settings to see how
to treat friends. When it knows from these settings that it should pass the call
to Ron, it will look at the agenda of Ron if he is in a business meeting. If he
is not, the call is redirected. All this information is accessed based on privacy
profiles of the users as described by Gandon and Sadeh (2004).

Description Logics

To represent this scenario in Description Logics we will first show the schema
(TBox) and then its instances (ABox). First the TBox:

Call ≡ ∀callerOf.Person

Person v ∀currentActivity.Activity

Family v ∀hasFriend.Person u ∀hasMember.Person

friendOf ≡ hasFriend−1

memberOf ≡ hasMember−1

Activity ≡ Meeting tWalking

Now the instances can be as follows:

JOHNBROWN : Person

RON : Person

LOUISE : Person

C1 : Call

< C1, JOHNBROWN > : callerOf

WESTFAMILY : Family

< WESTFAMILY, JOHNBROWN > : hasFriend

< WESTFAMILY, RON > : hasMember

< WESTFAMILY, LOUISE > : hasMember

A1 : Meeting

A2 : Walking

< RON, A1 > : currentActivity

< LOUISE, A2 > : currentActivity

Using this knowledge the answering machine should now be able to redirect a
phone call. Therefore we define a trigger. Costa (2003) defined triggers to be
fired when condition which first evaluated to false now evaluated to true. For
Description Logics we define the trigger as follows: If a concrete situation in the
ABox is subsumed by the trigger concept, the trigger is fired.

The next concept can be used as trigger to the answering machine

Trigger1 ≡ Call u ∃callerOf ◦ friendOf.WESTFAMILY

27

CHAPTER 4. SCENARIOS

When this trigger is activated the corresponding call is found using the same
concept, and the result will be C1. Now the phone can do a query for persons
of the family which are able to accept the call.

Person u ¬∃currentActivity.Meeting umemberOf.WESTFAMILY

The result will be LOUISE. Now the phone can redirect call C1 to LOUISE.

Design choices and possible issues

Family context As we saw in this scenario, not only individuals have a con-
text, but families can have one as well. Although this could be derived
from the context of the members individually, it is too much too ask from
an answering machine to have knowledge of the family structure so there
must be general knowledge of a family.

4.2.2 The document

Description

Ron actually does have a business meeting. He has to do a talk about the devel-
opment of an auto inference database. He quickly needs the document which he
wrote last night before dinner in the hotel for this afternoon’s talk, so he asks
his personal assistant to get this document.

Special features

In this case past context is used for retrieval purposes.

Possible implementation in the model

When Ron writes a document in a context aware word processor, the time at
which he works on it is captured by the program. Furthermore, his context is
also stored in his proxy. When asking the word processor for the document he
wrote last night before dinner in the hotel, the word processor determines this
moment by querying the users context (via the service registry) and can look
at documents written by the user at the time the user specifies.

4.2.3 Looking at pictures

Description

Meanwhile Louise (Ron’s wife) is standing in the art gallery looking at paintings.
Because she always asks about the style of the painter when she looks at mostly
blue paintings, at the following blue paintings she is, unobtrusively, presented
with the style of the painter.

Special features

In this scenario, not only preferences are used (interested in the style of blue
paintings) but also learned. Furthermore, there is knowledge about the paintings
needed for the inference (the blue color). And finally there is an action triggered
by the environment instead of by the user.

28

CHAPTER 4. SCENARIOS

Possible implementation in the model

The art gallery publishes information on each painting about colors, style, lo-
cation etc. At the moment the user takes the action of asking the style of a
painting this information is stored. The learner examines the log and can look
for co-occurring events when the user asked for the style of a painting. In this
case, it will find out that if the Louise looks at blue paintings, she is interested
in the style so it will add the preference to show the style of the painting when
Louise looks at a blue painting.

Description Logics

This scenario is mainly about learning of triggers for which we use timepoints.
Here I assume a discrete flow of time and a “point” would be some generally
agreed interval for the whole “ontology”. So we could say that in the same
millisecond/minute (depending on the agreed interval) someone looked at a
painting and did something else. The Tbox can be like this:

Person v ∀hasActivity.Activity

Activity ≡ Askstyle tMeeting tWalking

tAskcolor t Looking

Activity v ∃hasT imepoint.T imepoint

T imepoint ≡ hasEvent.Activity

hasT imepoint ≡ hasEvent−1

Looking v ∃target.Object

Object ≡ BluePainting t Y ellowPainting

29

CHAPTER 4. SCENARIOS

And the corresponding ABox:

LOUISE : Person

A1 : Askstyle

A2 : Askstyle

A3 : Askcolor

A4 : Looking u target.BluePainting

A5 : Looking u target.BluePainting

A6 : Looking u target.Y ellowPainting

< LOUISE,A1 > : hasActivity

< LOUISE,A2 > : hasActivity

< LOUISE,A3 > : hasActivity

< LOUISE,A4 > : hasActivity

< LOUISE,A5 > : hasActivity

< LOUISE,A6 > : hasActivity

< A1, T1 > : hasT imepoint

< A2, T2 > : hasT imepoint

< A3, T3 > : hasT imepoint

< A4, T1 > : hasT imepoint

< A5, T2 > : hasT imepoint

< A6, T3 > : hasT imepoint

We do learning based co-occurrence. To deduct interesting co-occurrences, we
can look at things which co-occur with an activity which is carried out often,
suppose this activity is AskStyle. We can now do the following query:

Query1 = Activity u hasT imepoint.hasEvent.Askstyle u ¬Askstyle

When we now check for the “least common subsummer” of this query we know
which specific activity occurred always while asking for a style. The answer here
should be that Louise looked at a blue painting. We have some ideas how to
capture things which happened before instead of during a certain activity which
could be done using a Gaussian curve for the time at which an event occurs.

4.2.4 The nearest restaurant

Description

After Ron’s presentation is finished, Louise joins Ron to go to a restaurant.
Because they are in the north of the city and not familiar with the surroundings,
they ask their context aware phone for a nearby restaurant, taken into account
their preferences.

30

CHAPTER 4. SCENARIOS

Special features

Although the question is just for a restaurant, it should be augmented depending
on the user preferences.

Possible implementation in the model

Restaurants advertise themselves globally, in the service registry, including
among others their location and kitchen. This could be for example accord-
ing to a similar ontology as mentioned in agent cities1. When the user queries
for a restaurant on the device, according to the restaurant ontology on her/his
context aware phone, s/he can choose a cuisine. Since preferences for a certain
cuisine could be entered beforehand or already be learned, just searching for “a
restaurant nearby with company of Louise” is also enough to take these into
account; the context aware phone will simply query the proxy of the user for
other preferences.

Design choices and possible issues

Advertisement Another possibility is that the user gets information about
restaurants without explicitely asking for it. This could be done by the
agent, based on the users profile.

What is nearby? The question if a restaurant is nearby depends on the way
of transportation, this has to be taken into account as well.

4.2.5 A web service

Description

The presentation was a blast; Ron is invited to become professor at this univer-
sity. The same night, Louise and Ron decide to move out of their apartment to
a nice house. They log in to the “digital desk” of the estate agent where they
see the houses based on their preferences. When they have given authorization
an appointment is being made and an initial limited amount transfered to the
estate agent.

Special features

This scenario focuses on the short term application domain, to be able to
see he architecture is compatible with this. The special feature is how the
(web)application acquires the house preferences of the user.

Implementation in the model

This scenario could actually partly be implemented with Passport (McKiernan
2002). Passport stores information like birth date, country, name, preferred
language etc. and a user can choose which information to share. This could
even be credit card information, so payments could be done as well. However

1http://agentcities.crm-paris.com/services/RestaurantServiceDescription.html . It doesn’t
have to be this format, but it is an illustration that it is possible to have a single format for
restaurants.

31

CHAPTER 4. SCENARIOS

the storage function (which was called myWallet) was canceled. In our model we
already store preferences as context and since a web service can, if it is allowed,
access this information it can display information based on this context.

Description Logics

From a representational point of view an interesting part of this scenario is that
a user, an entity, can like certain concepts like red houses. Second, to be able to
reason about the color and size of a house, we want to introduce an exhaustive
list for properties of houses, so a house cannot be small and large at the same
time. We therefore use the a so called value partition for these properties which
means adding a covering axiom (Color, Size) to make the list exhaustive, make
the subclasses (Small, Medium, Large, Green, Red and Purple) disjoint and the
properties (hasColor, hasSize) functional. The TBox now looks as follows:

House v Thing

Color ≡ Green tRed t Purple

Green ≡ ¬Red u ¬Purple

Red ≡ ¬Green u ¬Purple

Purple ≡ ¬Green u ¬Red

Size ≡ Small tMedium t Large

Small ≡ ¬Medium u ¬Large

Medium ≡ ¬Small u ¬Large

Large ≡ ¬Small u ¬Medium

Group v ∃hasMember.Person u ∀hasMember.Person

House v ∃hasColor.Color

u ∀hasColor.Color u ∃hasSize.Size u ∀hasSize.Size

Person v ∀likes.Thing

likedBy ≡ likes−1

memberOf ≡ hasMember−1

32

CHAPTER 4. SCENARIOS

Where hasSize and hasColor are functional roles (also called attributes or fea-
tures). The ABox is now as follows:

RON : Person u ∀likes.((House

u (hasColor.(Green tRed)
t hasSize.Big))
t ¬House)

LOUISE : Person u ∀likes.((House

u (hasColor.(Red t Purple)
t hasSize.Small))
t ¬House)

H1 : House

< H1, C1 > : hasColor

< H1, S1 > : hasSize

C1 : Green

S1 : Small

H2 : House

< H2, C1 > : hasColor

< H2, S1 > : hasSize

C2 : Red

S2 : Large

< RONLOUISE, LOUISE > : hasMember

< RONLOUISE,RON > : hasMember

Interesting about this ABox is that we can say that the instance RON likes
certain concepts by using a complex concept to describe RON . We can now
augment a (Description Logic-)query for a house, which would look like

Query1 ≡ House

to one in which it is required that a house which matches the query has some-
thing which Ron likes and something which Louise likes:

Query2 ≡ House u ∃likedBy.LOUISE u ∃likedBy.RON

In the representation of the scenario we also introduced Ron and Louise together
as a group. We could try to use this notion to represent the same query:

Query2 ≡ House u ∃likedBy.(memberOf.RONLOUISE)

The problem is here that in this case the liking by one of the two is sufficient
(instead of by both of them). An alternative is to define the likedBy of the group
specifically (and use other algorithms for combining properties of subclasses
from a group. This is probably also a more natural way because one can have
different ways of reasoning about what a group likes or who are friends of a
group. For such ambiguous properties it is maybe even better not to reason
about them but let the users edit this information themselves.

33

CHAPTER 4. SCENARIOS

4.2.6 Searching a recipe

Description

It seems like no restaurant fits their needs and because they still have time, they
decide to cook together. Back in the kitchen Ron asks for an original recipe.
Because the ambient “knows” they want to finish soon, it proposes a fast recipe
of which the ingredients are already in their refrigerator.

Special features

Instead of restaurants, recipes cannot advertise on their own, so they have to
be provided by other parties (supermarkets?). Another difficulty is how the
ambient “knows” that they have little time, because it can not be stored in a
preference file.

Possible implementation in the model

There will be different providers of recipes (supermarkets, public domain recipes
etc.), who will uniformly publish their information on “the internet” in a com-
mon recipe ontology. The matching will be done in the same way as the restau-
rants. Except for the “fast recipe” part (which is based on context rules).
These context rules can be learned from experience by the system, but can
also be edited directly, for example a user could have the following rule in its
preferences:

($timeInCurrentTimeSlot < 1hour) -> Prefer(Recipe.time = fast)

Note that the notice of “having little time” is not explicitely stored in the
preferences. Instead there is a rule which based on the amount of time in the
current time slot says that the user prefers fast recipes. This rule can be entered
by the user or can be learned by continously noting that a user select fast recipes
when s/he has little time.

Design choices and possible issues

Economic issues Asking oneself if the user will buy recipe books for getting
the recipes, they will come with a subscription to a “ambient service” or if
they will be provided by supermarkets is of course an interesting question,
but is certainly out of scope here.

Description Logics

Specific about this scenario is the notion of time, which is the reason why we
chose Q-SHIQ to model context. Concepts can now have rational numbers as
role fillers and one can reason with them by comparing them to rational role
fillers of related concepts or testing for a specific number (formally explained by

34

CHAPTER 4. SCENARIOS

Lutz (2004)).

Person v ∀likes.Thing u ∀hasActivity.Activity

Food v Thing

Activity v ∃=1hasStartT ime. >0 u∃=1hasEndT ime. >0

Recipe v ∀hasIngredient.Food u ∃=1takesT ime. >0

participator ≡ hasActivity−1

Foodstorage v contains.Food

Refrigerator v Foodstorage

Food v Milk t Eggs t Cinnamon

Wentelteefjes v Recipe u hasIngredient.Milk u hasIngredient.Eggs

u hasIngredient.Cinnamon u hasIngredient.Bread

u takesT ime. < 3

The Abox instantiates among others the rational numbers for the start and end
times:

RON : Person u ∀likes.(Eggs

t ¬Food)
< RON, A1 > : hasActivity

A1 : Activity

< A1, 12 > : hasStartT ime

< A1, 14 > : hasEndT ime

R1 : Refrigerator

F1 : Milk

F2 : Eggs

F3 : Cinnamon

F4 : Bread

< REFRIGERATOR, F1 > : contentOf

< REFRIGERATOR, F2 > : contentOf

< REFRIGERATOR, F3 > : contentOf

< REFRIGERATOR, F4 > : contentOf

In this scenario the query rewriting is dependent on the situation. When Ron
has little time a fast recipe must be triggered for which the ingredients are in
his house and there is an ingredient which he likes in the recipe. The scenario
does not tell what happens when there is more time, so we assume in this case
he just asks for a recipe.

First when Ron asks for a recipe with the query:

queryi1 : Recipe

we look if there is little time, with the following “check”:

Check1 ≡ Activity u ∃participator.RON u ∃hasStartT ime. < 10

35

CHAPTER 4. SCENARIOS

and the query can be rewritten as follows:

queryi2 : Recipe u ∃hasIngredient.likedBy.RON

u ∀hasIngredient.(REFRIGERATOR.contentOf)
u ∃takesT ime. < 2

which returns the right recipe with instance checking. The queries in this case
are different from the queries we saw in section 4.2.5 because we now query
for concepts instead of instances. This is done using instance checking where
reasoning returns all concepts which subsume an instance (here queryi1 and
queryi2). This means that recipes should not restrict ingredients because in
this case extra available ingredients in the refrigerator restrict the result instead
of augmenting it.

What is furthermore interesting about this scenario is that the contents
of the recipe are described in the TBox which is logical because they are not
concrete instances but concepts. The problem however, is how to deal with
the combination of having a concrete instance of a recipe (eg. the description
how to make the food with a description of the ingredients on concept level).
In this scenario we showed that it is possible to find the right recipe-concept
based on ingredients and available time. How a concrete recipe is now coupled
to this concept is open for further research. Maybe this can be done with web
services or a so called “find-concept”; a concept which is stored as instance
in the database, and can be searched for using instance checking, when found
we can look for instances which relate to this concept. As an example of a
“find-concept” we could have this rule in the ABox:

< CONCRETERECIPE, Wentelteefjes > : hasF indConcept

Note that this construction is not part of Description Logics and just an idea
how to deal with such situations.

4.2.7 Improving life

Description

The parents of Louise are already in their eighties and are doing very well.
Although her fathers back prevents him for walking too long, the ambient helps
him with: automatically switching the TV-news on at 20:00, making coffee before
guests arrive, putting on music he likes. Furthermore temperature and lightning
are adapted to the time of the day and the room which is occupied. Because her
parents both need to watch their health, they are happy with the help they get from
the ambience; food advice from refrigerator, automatic extraction of chemical
samples from the toilet and weight measurement in bathroom to monitor the
health condition, quick access to medical information and help functions in their
personal device and when unusual things happen the hospital is informed.

Special features

This scenario is not very specific, but describes a promising application; to assist
live of sick and elderly people.

36

CHAPTER 4. SCENARIOS

Possible implementation in the model

This example is mainly about context aware applications. The TV will, de-
pending on the profile (at home, preferences), play shows. The refrigerator will,
depending on health situation, suggest recipes etc.

Design choices and possible issues

Privacy Privacy plays an important role in this scenario for example the ques-
tion to which amount reporting unusual situations to a hospital is useful
for preventing serious issues versus to which amount privacy is given up.

4.2.8 At the university

Description

After dinner Ron has an emergency meeting at the university. Because this
meeting is very important, his personal assistant does not intrude him with
messages or reminders. Until a phone call from Louise arrives; the assistant
notices him very subtile so he can go outside for some minutes to talk with her
about their upcoming baby. When he arrives back in the meeting he shows some
slides from the presentation which was given during the business meeting this
afternoon. The slides are automatically displayed on the projector. However
because he wants to show some details, they go to another room with a larger
screen where the presentation is automatically “transported to” when he arrives.
At the end of the meeting he is noticed that someone working on his research is
also nearby.

Special features

This scenario tries to encompass four context aware features of which three are
also mentioned in DeVaul and Pentland (2000) namely; central management of
different attentions and prioritizing them (messages in the meeting), decentral-
ized contextual resource discovery and allocation (presentation which is auto-
matically displayed on the best available screen) and flexible context sensing and
classification based on heterogeneous sensors (how to recognize he is in a meet-
ing). Although this last feature could also be discussed in other scenarios, we
will discuss it here explicitely. The last feature, the discovery of someone with
same interest is based on the DMe scenario of Ducatel, Bogdanowicz, Scapolo,
Leijten, and Burgelman (2004).

Implementation in the model

The central management of different attentions could be done at a device Ron
carries with him. This device can depending on Rons context determine what
kind of attention to generate. Prerequisite is however that all application re-
quiring attention from Ron will do so via this device.

The contextual resource discovery can take place by the Agent based on
a rule to display presentation information on the nearest largest device, so it
moves with Ron. Another option is that a device on which the presentation was
made had limited display capabilities and automatically searches for an unused

37

CHAPTER 4. SCENARIOS

screen to display its information on. Of course the Agent could also only suggest
nearby large screens.

The recognition of situations, in this case being in a meeting can be done
via learned “preferences” or multimodal sensors. Because the user context con-
tains all information of the different sensors this detection can be learned. An
alternative could be using ready-made recognizers which can immediately sense
a meeting and store this information.

The discovery of context of other users (with same interest) is possible be-
cause this context information is published by their proxies. Based on privacy
rules users can discover nearby interesting users.

Design choices and possible issues

Querying over area and privacy Because we do the global query “get ev-
eryone who is nearby”, we need to take into account both the fact how this
can be solved without querying each user in the whole world. Furthermore
not every user probably wants to show it’s location, so privacy must be
taken into account as well.

4.2.9 The airport

As mentioned in the introduction, this scenario is copied from Satyanarayanan
(2001).

description

Jane is at Gate 23 in the Pittsburgh airport, waiting for her connecting flight.
She has edited many large documents, and would like to use her wireless con-
nection to e-mail them. Unfortunately, bandwidth is miserable because many
passengers at Gates 22 and 23 are surfing the web. Aura2 observes that at the
current bandwidth Jane won’t be able to finish sending her documents before her
flight departs. Consulting the airport’s network weather service and flight sched-
ule service, Aura discovers that wireless bandwidth is excellent at Gate 15, and
that there are no departing or arriving flights at nearby gates for half an hour.
A dialog box pops up on Jane’s screen suggesting that she go to Gate 15, which
is only three minutes away. It also asks her to prioritize her e-mail, so that
the most critical messages are transmitted first. Jane accepts Aura’s advice and
walks to Gate 15. She watches CNN on the TV there until Aura informs her
that it is close to being done with her messages, and that she can start walking
back. The last message is transmitted during her walk, and she is back at Gate
23 in time for her boarding call.

Special features

This scenario emphasizes combining knowledge from different layers; low-level
(network congestion) and high-level (knowledge of boarding time), knowledge
of different spaces (to redirect to the right place) and proactiveness; the system
knows that user will have little time.

2Aura is the ambient environment from CMU.

38

CHAPTER 4. SCENARIOS

Implementation in the model

The airport can provide services with among others knowledge where within the
airport how many bandwidth is available. The combination of different levels of
context is something which we have to take in mind when designing the context
storage that we are able to combine these levels in reasoning. And finally, the
proactiveness can easily be implemented with the same timeInCurrentTimeSlot
notion as we used in section 4.2.6.

4.2.10 An implementable office scenario

Introduction

As we saw in section 3.4 there are three important ways in which context can
influence doing queries:

1. Using context as a trigger (getting a message when interesting persons are
nearby, adapting the function of a button in an application)

2. Using context as query augmentation (only returning nearby printer, only
returning headers of e-mail messages when network connection is slow)

3. Using context which is added storage for retrieval purposes (retrieving the
documents I printed yesterday)

We decided to work out one scenario with these three different aspects.
First, we wanted to focus on an application which can be implemented at our
university. Not only to test our techniques and implementation possibilities but
also to inspire other people (researchers, companies, students) to think about
the possibilities of AmI and how to contribute to this research. Second, the
scenario should be a real office/university scenario (not searching of recipes or
looking at paintings), so people might actually find it a useful scenario. And
finally, the scenario should be a challenge to implement, but not impossible.

The scenario

Ron is researcher at the University of Twente. On Tuesday morning after he
finishes his workshop proposal, he has some time left for himself. Since the
ambient knows he is in no hurry, he is unobtrusively notified that some of his
colleagues of him are having a coffee break. After the coffee break, he meets
Alex in the corridor who suggests an article on XQuery. The next day, Chris,
a researcher at Philips, is visiting Ron. Fifteen minutes before the meeting Ron
looks at the large overview screen in his office, on top there is a summary of
common interests between him and Chris, after this, his other appointments for
today and because he has little time, no news headlines. Ron prefers to have the
lights on in his room when he has a visitor, which he first did by himself but now
is known by the ambient which automatically switches on the lights, just before
Chris enters the office. They talk to each other about query languages when Ron
suddenly remembers the article which was mentioned to him the day before after
the coffee break. He does a query for articles at which he looked at after the coffee
break when Alex was also with him and that are about query languages. When he
get back the right article, he gives it to Chris. When leaving the office of Ron,
Chris decides to print the article. This is automatically done on the nearest

39

CHAPTER 4. SCENARIOS

printer, to which he is redirected with signs on the wall. Ron’s next appointment
is already in 30 minutes; he has to leave to Italy for a conference on Description
Logics. Based on the topic of the conference, attendees and things Ron still has
to do, data is cached on his PDA.

Extensions

When the scenario we described is implemented and works in practice I think
the prototype has succeeded. However, of course we can add several interesting
extensions, based on the same principles and also in an office environment.

Learning At this moment, it is learned at which moment the light is switched
on, other office actions which could be learned are: making coffee (for a
several number of persons), starting and stopping the computer or putting
the sunscreen up or down.

Adapting environment Next to having the large overview screen at the of-
fice, places in the corridor screens can also continously show next appoint-
ments and next deadlines, but also for example the documents you already
read at that location (with new similar documents) or appointments with
nearby people.

Nearest device Instead of printing documents on the nearest printer, also
presentations could be shown on the nearest beamer.

Caching We now saw that documents are cached for a certain event on the
PDA, other examples of office scenarios where the ambient is pro-active,
could be exiting the power-save modus of a printer when the user is prob-
ably going to print something.

Other extensions could be done when extending the infrastructure to the
whole campus; more persons can be found and one can find more interests of
persons.

Scenarios already implemented elsewhere

We believe some of the previous applications to be fairly new, but there are
office applications which were already done by others which could complement
them:

Sticky notes Displaying a note when at a certain time being at a certain lo-
cation, as described by Brown, Bovey, and Chen (1997). We can augment
this by for example displaying notes when in the neighborhood of a person
with the same expertise.

Transporting windows system Having your desktop at the computer at which
you are nearest was described by Harter, Hopper, Steggles, Ward, and
Webster (1999). This roughly corresponds with the automatic printing on
the nearest printer. However, this is not initiated by an action of a user
but purely by the location.

Redirecting telephone calls (Semi)automatically redirecting calls to the cur-
rent room someone is in was described by Want, Hopper, Falcão, and
Gibbons (1992).

40

Chapter 5

Future directions

In this technical report we gave an overview of many aspects of context and how
to relate context awareness to databases. The final goal is of course to realize
the scenarios and especially the queries posed in section 3.4, but before this is
possible, certain tasks have to be carried out.

We must look how our architecture given in section 3.2 relate to the archi-
tecture used in AmbientDB and if it is possible to use the AmbientDB infras-
tructure.

To evaluate the system a prototype should be build as described in section
4.2.10. Based on this we can also come up with some evaluation measures of
context awareness on which previous research has among others been done by
Brown and Jones (2004) and Ranganathan, Al-Muhtadi, Biehl, Ziebart, Camp-
bell, and Bailey (2004).

Related to our modeling we should better define how sensor information can
be related to our context model (via database techniques or context modules)
and a well defined way of augmenting queries of which we in this report only gave
some examples. To do both it is important to have a well defined ontology for
which we have to look at other ontologies related to the characteristics of con-
text and other ontologies which will probably be defined in other MultimediaN
projects.

The most important thing however is how to get from sensor information
to information which we a computer or user can use to describe situations; to
get from fuzzy temperature information to the conclusion of being in a meeting.
To do this we need among others inference, probabilistic reasoning and maybe
learning. But how should they be applied? And where will it be done? Probably
in a sort of context proxy as discussed in section 3.2.2, but should it for example
be done with a description logic reasoner or should these capabilities be present
in the database? To answer these questions will probably be one of my main
research tasks the next three years.

41

Bibliography

Antifakos, S., A. Schwaninger, and B. Schiele (2004). Evaluating the effects of
displaying uncertainty in context-aware applications. In N. Davies, E. My-
natt, and I. Siio (Eds.), UbiComp 2004: Ubiquitous Computing: 6th In-
ternational Conference, pp. 54–69. Springer-Verlag Heidelberg.

Artale, A. and E. Franconi (2000). A survey of temporal extensions of de-
scription logics. Annals of Mathematics and Artificial Intelligence 30 (1-4),
171–210.

Baader, F., R. Molitor, and S. Tobies (1999). Tractable and decidable frag-
ments of conceptual graphs. In W. Tepfenhart and W. Cyre (Eds.), 7th
International Conference on Conceptual Structures: Standards and Prac-
tices, pp. 480–493. Springer-Verlag.

Boncz, P. and C. Treijtel (2003). Ambientdb: relational query processing
in a p2p network. In Databases, Information Systems, and Peer-to-Peer
Computing, First International Workshop, pp. 153–168. Springer.

Bonnet, P., J. Gehrke, and P. Seshadri (2001, January). Towards sensor
database systems. In 2nd International Conference on Mobile Data Man-
agement.

Borgida, A., M. Lenzerini, and R. Rosati (2003). Description logics for
databases. In The Description Logic Handbook, pp. 462–484. Cambridge
University Press.

Bressan, S., K. Fynn, C. H. Goh, S. E. Madnick, T. Pena, and M. D. Siegel
(1997). Overview of a prolog implementation of the context interchange
mediator. In International COnference and Exhibition on The Practical
Applications of Prolog.

Brown, P., J. D. Bovey, and X. Chen (1997). Context-aware applications:
from the laboratory to the marketplace. IEEE Personal Communica-
tions 4 (5), 58–64.

Brown, P., W. Burleson, M. Lamming, O.-W. Rahlff, G. Romano, J. Scholtz,
and D. Snowdon (2000, April). Context- awareness: Some compelling ap-
plications. In CH12000 Workshop on The What, Who, Where, When,
Why and How of Context-Awareness.

Brown, P. and G. J. F. Jones (2004). Research issues in context-aware re-
trieval: evaluation.

Bunningen, A. v. (2004). Augmented trading: From news articles to stock
price predictions using syntactic analysis. Master’s thesis, University of
Twente.

42

BIBLIOGRAPHY

Chalmers, M. (2004). A historical view of context. Computer Supported Co-
operative Work (CSCW), The Journal of Collaborative Computing (to
appear).

Chen, G. and D. Kotz (2000). A survey of context-aware mobile comput-
ing research. Technical report TR2000-381, Dept. of Computer Science,
Dartmouth College.

Chen, H., T. Finin, and A. Joshi (2003a). An ontology for context-aware
pervasive computing environments. Special Issue on Ontologies for Dis-
tributed Systems, Knowledge Engineering Review 18 (3), 197–207.

Chen, H., T. Finin, and A. Joshi (2003b). Semantic web in a pervasive
context-aware architecture. Artificial Intelligence in Mobile System, 33–
40.

Chen, H., T. Finin, A. Joshi, S. Tolia, and C. Sayers (2002). Creating context-
aware software agents. In First GSFC/JPL Workshop on Radical Agent
Concepts. Springer Verlag (2003).

Cherniack, M., M. Franklin, and S. Zdonik (2001). Data management for
pervasive computing. Tutorial.

Costa, P. D. (2003). Towards a services platform for context-aware applica-
tions.

Deshpande, A., C. Guestrin, S. R. Madden, J. M. Hellerstein, and W. Hong
(2004). Model-driven data acquisition in sensor networks. In VLDB 2004,
pp. 588–599.

DeVaul, R. W. and A. Pentland (2000). The ektara architecture: The right
framework for context-aware wearable.

Dey, A. K. (2001). Understanding and using context. Personal Ubiquitous
Comput. 5 (1), 4–9.

Dey, A. K. and G. D. Abowd (1999). Towards a better understanding of con-
text and context-awareness. Technical report GIT-GVU-99-22, Georgia
Institute of Technology.

Dey, A. K., G. D. Abowd, and D. Salber (1999). A context-based infras-
tructure for smart environments. In 1 st Intl. Workshop on Managing
Interactions in Smart Environments (MANSE’99).

Dey, A. K., J. Mankoff, and G. D. Abowd (2000, September). Distributed
mediation of imperfectly sensed context in aware environments. Technical
Report GIT-GVU-00-14, Georgia Institute of Technology.

Dourish, P. (2004). What we talk about when we talk about context. Personal
Ubiquitous Comput. 8 (1), 19–30.

Ducatel, K., M. Bogdanowicz, F. Scapolo, J. Leijten, and J.-C. Burgelman
(2004). Scenarios for ambient intelligence in 2010. Scientific, IST Advisory
Group (ISTAG).

Feng, L., P. Apers, and W. Jonker (2004). Towards context-aware data man-
agement for ambient intelligence. In Conf. on Database and Expert Sys-
tems Applications.

43

BIBLIOGRAPHY

Flynn, M., D. Pendlebury, M. Eldridge, M. Lamming, and C. Jones (2000).
The satchel system architecture: mobile access to documents and services.
Mobile Networks and Applications 1 (12), 243–258.

Franconi, E. (2003). Description logics for conceptual design, information
access, and ontology integration: Research trends. Networks - journal of
the philosophy of Artificial Intelligence and Cognitive Science, special issue
on the Semantic Web 2, 25–32.

Gandon, F. and N. Sadeh (2004). Semantic web technologies to reconcile
privacy and context awareness. Web Semantics Journal 1 (3), 241–260.

Goslar, K. and A. Schill (2004). Modeling contextual information using active
data structures. In Workshop for Pervasive Information Management.

Gray, P. D. and D. Salber (2001). Modelling and using sensed context in-
formation in the design of interactive applications. In Proceedings of the
8th IFIP International Conference on Engineering for Human-Computer
Interaction, pp. 317–335. Springer-Verlag.

Grimm, M., M.-R. Tazari, and D. Balfanz (2002). Towards a framework for
mobile knowledge management. In 4th international conference on Prac-
tical Aspects of Knowledge Management.

Gu, T., H. K. Pung, and D. Q. Zhang (2004). A bayesian approach for dealing
with uncertain contexts. In Second International Conference on Pervasive
Computing (Pervasive 2004).

Gu, T., X. H. Wang, H. K. Pung, and D. Q. Zhang (2004). An ontology-based
context model in intelligent environments. In Communication Networks
and Distributed Systems Modeling and Simulation Conference.

Harter, A., A. Hopper, P. Steggles, A. Ward, and P. Webster (1999). The
anatomy of a context-aware application. In Proceedings of the 5th Annual
ACM/IEEE International Conference on Mobile Computing and Network-
ing (Mobicom), pp. 59–68. ACM Press.

Held, A., S. Buchholz, and A. Schill (2002). Modeling of context information
for pervasive computing applications. In 6th World Multiconference on
Systemics, Cybernetics and Informatics (SCI).

Henricksen, K. and J. Indulska (2004). Modelling and using imperfect con-
text information. In Second IEEE International Conference on Pervasive
Computing and Communications. Workshop on Context Modelling and
Reasoning (CoMoRea’04), pp. 33–37. IEEE Computer Society.

Henricksen, K., J. Indulska, and A. Rakotonirainy (2002). Modeling context
information in pervasive computing systems. In First International Con-
ference on Pervasive Computing, pp. 167–180.

Hightower, J. and G. Borriello (2001). A survey and taxonomy of location
systems for ubiquitous computing. Technical Report UW-CSE 01-08-03,
University of Washington.

Hightower, J. and G. Borriello (2004). Particle filters for location estimation
in ubiquitous computing: A case study. In N. Davies, E. Mynatt, and
I. Siio (Eds.), UbiComp 2004: Ubiquitous Computing: 6th International
Conference, pp. 88–106. Springer-Verlag Heidelberg.

44

BIBLIOGRAPHY

Höppner, F. (2003). Knowledge Discovery from Sequential Data. Ph. D. thesis,
Technischen Universitat Braunschweig.

Horrocks, I., P. Patel-Schneider, and F. v. Harmelen (2003). From shiq and
rdf to owl: The making of a web ontology language. Journal of Web
Semantics 1 (1), 7–26.

Imielinski, T. and B. R. Badrinath (1992). Querying in highly mobile dis-
tributed environments. In the 18th International Conference on Very
Large Data Bases, pp. 41–52. Morgan Kaufmann Publishers Inc.

Jones, G. J. F. and P. Brown (2002). Challenges and opportunities for context-
aware retrieval on mobile devices. In SIGIR workshop on Mobile Personal
Information Retrieval, pp. 47–56.

Jones, G. J. F. and P. Brown (2004, September). Context-aware retrieval for
ubiquitous computing environments. In Mobile HCI Workshop on Mobile
and Ubiquitous Information Access, pp. 227–243. Springer.

Judd, G. and P. Steenkiste (2003). Providing contextual information to per-
vasive computing applications. In IEEE International Conference on Per-
vasive Computing (PERCOM), pp. 133–142.

Kindberg, T., A. Sellen, and E. Geelhoed (2004, September). Security and
trust in mobile interactions: A study of users perceptions and reasoning.
In N. Davies, E. Mynatt, and I. Siio (Eds.), UbiComp 2004: Ubiquitous
Computing: 6th International Conference, pp. 196–213. Springer-Verlag
Heidelberg.

Koile, K., K. Tollmar, D. Demirdjian, H. Shrobe, and T. Darell (2003, Octo-
ber). Activity zones for context-aware computing. In Fifth International
Conference on Ubiquitous Computing (UbiComp’03).

Korkea-aho, M. (2000). Context-aware applications survey.

Korpipää, P., M. Koskinen, J. Peltola, S.-M. Mäkelä, and T. Seppänen (2003).
Bayesian approach to sensor-based context awareness. Personal Ubiqui-
tous Comput. 7 (2), 113–124.

Korpipää, P., J. Mäntyjärvi, J. Kela, H. Keränen, and E.-J. Malm (2003).
Managing context information in mobile devices. IEEE Pervasive Com-
puting 2 (3), 42–51.

Lazaridis, I., Q. Han, X. Yu, S. Mehrotra, N. Venkatasubramanian, D. V.
Kalashnikov, and W. Yang (2004). Quasar: quality aware sensing archi-
tecture. ACM SIGMOD Record 33 (1), 26–5.

Leonhardt, U. and J. Magee (1998, March). Security considerations for a
distributed location service. Journal of Network and Systems Manage-
ment 6 (1), 51–70.

Lieberman, H. and T. Selker (2000). Out of context: computer systems that
adapt to, and learn from, context. IBM Systems Journal 39 (3-4), 617–632.

Look, G. and S. Peters (2003). Plan-driven ubiquitous computing. In Student
Oxygen Workshop (SOW’03). MIT Project Oxygen.

Lutz, C. (2004). Adding numbers to the shiq description logic–first results. In
Eighth International Conference on Principles of Knowledge Representa-
tion and Reasoning (KR-2002), pp. 191–202. Morgan Kaufman.

45

BIBLIOGRAPHY

Madden, S. R., W. Hong, J. M. Hellerstein, and M. Franklin (2004). Tinydb
web page. http://telegraph.cs.berkeley.edu/tinydb/.

McCarthy, J. and S. Buvac (1997). Computing Natural Language : Formal-
izing Context (Expanded Notes), pp. 13–37. Center for the Study of Lan-
guage and Information, Stanford University.

McKiernan, P. (2002). Addressing online identity: Understanding the mi-
crosoft passport service. Information Security Technical Report 7 (3), 65–
80.

Meyer, S. and A. Rakotonirainy (2003). A survey of research on context-aware
homes. In Proceedings of the Australasian information security workshop
conference on ACSW frontiers 2003, pp. 159–10. Australian Computer
Society, Inc.

Meyers, B. and A. Kern (2000). <context-aware> schema </context-aware>.
In CHI Workshop on The What, Who, When, Where, Why, and How of
Context-Awareness.

Michahelles, F., M. Samulowitz, and B. Schiele (2002). Detecting context in
distributed sensor networks by using smart context-aware packets. In the
International Conference on Architecture of Computing Systems: Trends
in Network and Pervasive Computing, pp. 34–50. Springer-Verlag.

Mitchell, K. (2002). A survey of context-aware computing. Technical report,
Lancaster University.

Möller, R. and V. Haarslev (2004). Description logic systems. In F. Baader,
D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider (Eds.),
The Description Logic Handbook, pp. 282–305. Cambridge university
press.

Newman, W. M., M. Eldridge, and M. Lamming (1991). Pepys: Generat-
ing autobiographies by automatic tracking. In Second European Conf. on
Computer-Supported Cooperative Work, pp. 175–188.

Pan, Z. and J. Heflin (2004). Dldb: Extending relational databases to support
semantic web queries. Technical report LU-CSE-04-006, Dept. of Com-
puter Science and Engineering, Lehigh University.

Power, R. (2003). Topic maps for context management. In International Sym-
posium on Information and Communication Technologies (ISICT 03), pp.
199–204.

Ranganathan, A., J. Al-Muhtadi, J. Biehl, B. Ziebart, R. H. Campbell, and
B. Bailey (2004). Evaluating gaia using a pervasive computing benchmark.

Ranganathan, A., J. Al-Muhtadi, and R. H. Campbell (2004). Reasoning
about uncertain contexts in pervasive computing environments. IEEE
Pervasive Computing 3 (2), 62–70.

Ranganathan, A. and R. H. Campbell (2003). An infrastructure for context-
awareness based on first order logic. Personal Ubiquitous Comput. 7 (6),
353–11.

Ranganathan, A., R. H. Campbell, A. Ravi, and A. Mahajan (2002, July).
Conchat: A context-aware chat program. IEEE Pervasive Comput-
ing 1 (3), 52–58.

46

BIBLIOGRAPHY

Rehman, K. (2001). 101 ubiquitous computing applications. http://www-
lce.eng.cam.ac.uk/∼kr241/html/101 ubicomp.html. Date accessed: 6-10-
2004.

Saif, U., H. Pham, J. M. Paluska, J. Waterman, C. Terman, and S. Ward
(2004). A case for goal-oriented programming semantics. In System Sup-
port for Ubiquitous Computing Workshop at the Fifth Annual Conference
on Ubiquitous Computing.

Sattler, U., D. Calvanese, and R. Molitor (2003). Relationship with other
formalisms. In F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and
P. Patel-Schneider (Eds.), The Description Logic Handbook, pp. 137–177.
Cambridge University Press.

Satyanarayanan, M. (1996, February). Accessing information on demand at
any location: Mobile information access. IEEE Personal Communica-
tions 3 (1), 26–33.

Satyanarayanan, M. (2001). Pervasive computing: Vision and challenges.
IEEE Personal Communications 8, 10–7.

Schilit, B. N., N. Adams, and R. Want (1994). Context-aware computing
applications. In the Workshop on Mobile Computing Systems and Appli-
cations, pp. 85–90. IEEE Computer Society.

Schmidt, A. (1999). There is more to context than location. Computers and
Graphics Journal 23 (6), 893–901.

Sowa, J. F. (1984). Conceptual Structures. The system programming series.
Addison-Wesley.

Speel, P.-H. (1995, August). Selecting Knowledge Representation Systems.
Ph. D. thesis, University of Twente.

Strang, T. (2004, September). A context modeling survey. In Workshop on
Advanced Context Modelling, Reasoning and Management associated with
the Sixth International Conference on Ubiquitous Computing (UbiComp
2004).

Tennenhouse, D. (2000). Proactive computing. Communications of the
ACM 43 (5), 43–50.

ter Horst, H., M. van Doorn, N. Kravtsova, W. ten Kate, and D. Siahaan
(2002). Context-aware music selection using knowledge on the semantic
web. In Fourteenth Belgium-Netherlands Conference on Artificial Intelli-
gence, pp. 131–138.

Wang, X. H., T. Gu, D. Q. Zhang, and H. K. Pung (2004). Ontology based
context modeling and reasoning using owl. In 2nd IEEE Conference on
Pervasive Computing and Communications, Workshop on Context Mod-
eling and Reasoning, pp. 18–5. IEEE Computer Society.

Want, R., A. Hopper, V. Falcão, and J. Gibbons (1992). The active badge
location system. ACM Transactions on Information Systems 10 (1), 91–
102.

Weeds, J., B. Keller, D. Weir, I. Wakeman, J. Rimmer, and T. Owen (2004,
May). Natural language expression of user policies in pervasive comput-
ing environments. In OntoLex 2004 (LREC Workshop on Ontologies and
Lexical Resources in Distributed Environments).

47

BIBLIOGRAPHY

Weiser, M. (1991). The computer for the 21st century. Scientific Ameri-
can 265 (3), 94–104.

48

