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Abstract: The increasing ubiquity of wireless mobile devices is
promoting unprecedented levels of electronic collaboration among
devices interoperating to achieve a common goal. Issues related to
host interoperability are addressed partially by the
service-oriented computing paradigm. However, certain technical
concerns relating to reliable interactions among hosts in ad hoc
networks have not yet received much attention. We introduce
"follow-me sessions", where interaction occur between a client and
a \textit{service}, rather than a specific provider or server. We
allow the client to switch service providers if needed. The
redundancy offers scope for reliable communication in the presence
of mobility induced disconnections. We exploit strategies
involving the use of contextual information, strong process
migration, context-sensitive binding, and location-agnostic
communication protocols. We show how follow-me sessions mitigate
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ABSTRACT
The increasing ubiquity of wireless mobile devices is promot-
ing unprecedented levels of electronic collaboration among
devices interoperating to achieve a common goal. Issues
related to host interoperability are addressed partially by
the service-oriented computing paradigm. However, certain
technical concerns relating to reliable interactions among
hosts in ad hoc networks have not yet received much atten-
tion. We introduce ”follow-me sessions”, where interaction
occur between a client and a service, rather than a specific
provider or server. We allow the client to switch service
providers if needed. The redundancy offers scope for re-
liable communication in the presence of mobility induced
disconnections. We exploit strategies involving the use of
contextual information, strong process migration, context-
sensitive binding, and location-agnostic communication pro-
tocols. We show how follow-me sessions mitigate issues re-
lated to proxy-based service-oriented architectures in ad hoc
networks, making them more reliable.

1. INTRODUCTION
The increasing ubiquity of computers and portable comput-
ing devices has made pervasive computing feasible. Many
hosts in such environments are small mobile devices with
limited storage space and low computational power but with
wireless communication capabilities. These portable de-
vices may not carry all the programs their users may need
(e.g., they do not have enough storage space for all the pro-
grams the user needs) or may not have enough computa-
tional power to run some of the code they carry (e.g., run-
ning a public/private key encryption algorithm takes many
resources, such as memory space and CPU cycles, but the
code footprint is not large). One way to expand their ca-
pabilities is to search other hosts for the functionality they
need or to find hosts willing to accept code to be executed on
their behalf (i.e., the code will be pushed onto these helper

hosts), in case they have it but cannot afford to run their
own code. Independent of how the interaction between the
client and the server begins (the functionality is discovered
or pushed), the code another host (service provider) runs
for the client’s benefit is called a service. The client controls
the service remotely, while it runs on a different host.

As mobile devices move in space, they are able to communi-
cate for limited periods of time when within wireless commu-
nication range of each other. An interaction begun between
two hosts may need more time to complete than the inter-
val of connectivity between the two hosts. The client could,
therefore, partially complete the task with the help of some
host, pause its work, and resume it on another host when
the first host becomes unreachable. We can thus stretch the
processing of a task over multiple hosts as they fall within
the client host’s communication range and can contribute
pieces of computation toward finishing of the entire task.

For reliable service provision in ad hoc networks, it is imper-
ative that the interaction between the client and the service
provider completes. In ad hoc networks, the movement of
hosts can bring them out of wireless communication range,
so we cannot guarantee uninterrupted connectivity between
a client and a server application. Most of the time, host
movement is independent of the application behavior. For
this reason, we add a layer of abstraction to mask this un-
wanted added complexity in the client-service provider in-
teraction by introducing the notion of a “follow-me” session.

Definition: A “follow-me” session is the aura of interac-
tion between a client application and a service that provides
external functionality needed by the application, masking
the disconnections between intervals of connectivity.

Intuitively, a session is the interaction between the client
application and the service until the client finishes the task
at hand. We emphasize that the interaction is between
the client and the service, not a specific service provider
or process. We allow the client to switch service providers if
needed, given that the new provider offers the same function-
ality (i.e., the provider changes but not the service itself).
This can be achieved in two ways. First, the client can auto-
matically connect and exploit the same functionality from a
new provider as the current provider moves out of commu-
nication range and a new one comes within communication



range (assuming the new provider offers the same function-
ality). Second, the process offering a service migrates from
host to host, following the client’s host as it moves in space.
The follow-me session offers, within limits, the continuity of
service provision; all the challenges associated with having
the service follow the client host will be handled in a manner
transparent to the client application, using strong process
migration, a new concept called context-sensitive binding,
and location agnostic communication protocols.

The remainder of the paper is organized as follows: Sec-
tion 2 presents background material for this paper. Section
3 describes the server migration mechanism. In Section 4
we discuss the context sensitive binding mechanism. The
implementation of the system is detailed in Section 5. Sec-
tion 6discusses the contributions of our work, together with
future work remarks. We conclude the paper in Section 7.

2. BACKGROUND AND CONTEXT AWARE

SESSION MANAGEMENT
One of the key features of service oriented computing (SOC)is
the decoupling between the interface and the implementa-
tion of some functionality, which can be advertised by ser-
vice providers and discovered by service users at run-time.
There are two main approaches to SOC: proxy-based and
web services.

2.1 Service oriented computing architectures
Proxy-based SOC entails a server process running on some
host (e.g., service provider’s host) and a proxy object that
acts as a remote handle for that server. The proxy object
is retrieved by the clients and used as the local representa-
tive of the service implementation. The client interacts with
this proxy object as it would with any other locally available
object. In some cases, this proxy object can deliver on its
own the entire functionality requested by the client. Most
of the times, the proxy object connects to the server run-
ning on the provider’s host and tunnels the client’s method
calls to be executed by this server, while giving the client
the impression that its calls are handled locally. The inter-
action between the proxy and the server is not of interest
to the client application but of interest to us because of the
implications of mobility on the interaction between the two,
which we handle at middleware level.

In web services, lower level languages such as the Web Ser-
vices Description Language (WSDL) [1] describe how the
data is sent across the wires. This layer handles all appli-
cation layer protocol issues. Higher level languages describe
what is being sent across and why. High level description
languages are required to be clear and concise, and to sup-
port easy matching between two entities. Ontologies are
high level languages that capture the semantics of an entity
and its relation to other entities. An ontology is often itself
structured into layers. DAML+OIL [2] is a combination of
a markup language to construct ontologies (DAML) and an
ontology inference layer (OIL) to interpret the semantics of
the description. It is currently the language of choice for for-
mulating ontologies for web services. The lowest layer of the
system provides the syntax and is encoded in XML [3], since
it is a W3C standard and hence has maximum acceptance in
the market. Above the syntax layer a framework provides a

basic set of constructs to describe entities and relations. In
DAML+OIL, the Resource Description Framework (RDF)
[4], also a W3C standard, fulfils this functionality. However,
RDF is not powerful enough to describe entire ontologies.
DAML+OIL fills this gap by extending the RDF concept to
provide more constructs and relations.

The major difference between the web services and proxy-
based models is that in web services service = server while
the rest is assumed to be known by the client while in proxy-
based systems, service = server + proxy, where the client only
needs to be able to interact with the proxy.

Both approaches (proxy-based and web services) to SOC
have been developed under the assumption of a wired in-
frastructure. They are characterized by centralized architec-
tures, easy to deploy in wired networks. The transition to
ad hoc networks entails more than just porting the software
infrastructure onto mobile hosts. In [5] we have motivated
the use of proxy-based architectures over web services in a
mobile ad hoc networking environment. In our research, we
adopted the proxy-based model because we found it to be
more flexible and easier to adapt to the challenges raised
by the ad hoc environment. Briefly, proxy-based SOC of-
fers the advantage of allowing for thin client applications.
When the application needs external help, it uses the proxy
of the needed service and then discards it. This allows for a
modular design, built around a thin core client application.

A well-known implementation of this model is Jini [6] [7].
That implementation, however, was targeted towards a wired,
fairly reliable, networking environment, made evident by the
centralized design and implementation of service reposito-
ries where the providers advertise their offerings and where
clients go to search for needed functionality. Jini employs
a leasing mechanism, which is a garbage collection mecha-
nism that cleans up orphan advertisements which remain in
the service repository after the service provider is no longer
available (e.g., disconnected because of a crash or because its
host went out of communication range, in the case of a mo-
bile host). While a leasing mechanism prevents overcrowd-
ing the service repository with obsolete advertisements by
periodically wiping out the orphan advertisements, it does
not solve the consistency problem, i.e., clients can still dis-
cover advertisements before they get collected. This scenario
is depicted in Figure 1.

In ad hoc networks the infrastructure for communication
is made entirely of mobile hosts that interact in a peer-to-
peer manner. There is no fixed infrastructure on which the
mobile hosts can rely for message relay. Centralized archi-
tectures fail because the availability of a service repository
running on a certain host cannot be guaranteed when hosts
move (they depend too much on a single host that can go
away). Consider the scenario in Figure 2. The client could
use the service offered by the server running on the nearby
host but it cannot discover the service because the advertise-
ment is stored on a third host, where the lookup service is
running (assuming the server was in contact with the lookup
service and had a chance to advertise itself; otherwise, the
service provider is non-existent to the outside world since it
did not have a chance to publish its advertisement).
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it is not reachable.

As long as two devices are connected (direct contact or multi
hop), they can exchange information and interact as if they
were wired. In ad hoc networks, a stable multi-hop con-
nection has severe temporal limitations due to the routing
algorithms that have to be carried out by hosts themselves.
In [8] we addressed issues related to service discovery in ad
hoc networks and security of interactions in this open envi-
ronment. We continue our work by taking the client-service
provider interaction to a new level, in a disconnected work-
ing environment. We provide mechanisms which improve
the client-service interaction despite the challenges raised
by the mobility of hosts and the inherent disconnections.

While using a proxy isolates the client from the network
communication issues and remote invocation challenges, thus
allowing for thin clients, disconnections continue to be a
challenge for the design of the proxy-server interaction. In
ad hoc networks this proves to be a difficult task, a common
challenge for all service providers in this changing environ-
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Figure 2: The service registry is unreachable.

ment. Having identified disconnections as a common chal-
lenge, we provide a layer of abstraction which shifts part of
the challenge from the (service) application developer down
into a middleware layer.

2.2 “Follow­me” session
We introduce the concept of a “follow-me” session for SOC
in ad hoc networks. If we compare the definition from Sec-
tion 1 against the definition of a working session as it is
currently used: “in computing, in particular networking, a
session is either a lasting connection using the session layer
of a network protocol or a lasting connection between a user
(or user agent) and a peer, typically a server, usually in-
volving the exchange of many packets between the user’s
computer and the server”1, we observe a few fundamental
differences. In our case, the session spans beyond a single in-
terval of direct connectivity. Since the hosts can repeatedly
move in and out communication range, the working session
can span multiple such connectivity intervals. Throughout
an entire working session, the client (in actuality the ser-
vice proxy used by the client) interacts with its server spo-
radically (e.g., when invoking a method and returning the
results) and therefore the lower layers in the stack of pro-
tocols need not enforce a live connection if it is not being
used (i.e., if a disconnection occurs while nobody is talk-
ing, the applications should not crash or even notice). We
have thus eliminated the “lasting connection” from the clas-
sic definition, allowing a session to be interrupted by dis-
connections. In our case, the session can involve multiple
servers, as the same proxy could connect to another server
that comes within communication range after a previous in-
teraction with another server delivering the same function-
ality was interrupted because of host mobility. A session
can span multiple hosts as well, since the server implement-
ing the service may be mobile code relocating to follow the
client as it moves in physical space.

We can identify several important elements that will help
us manage a “follow-me” session in the ad hoc networking
environment. One important issue is for the middleware to
be able to transparently reconnect to a new service provider
which offers the same functionality as the one currently be-
ing used, if the new provider will be available for a longer
period of time. We mention that there can be multiple rea-
sons why the proxy needs to reconnect to a new server but in
this paper we only consider the duration of the interaction
(direct connectivity) between the two hosts as a measure
for what “better” service means. Another important issue
is to be able to move the implementation of the server to
which a proxy connects from one host to another, to fol-
low the client’s host as it moves in space. We also need
a communication protocol that supports resuming in case
of temporary disconnection, and supports transparent relo-
cation of the source/destination processes from one host to
another. We call this a location agnostic communication pro-

tocol. Since the transfer of pause/transfer/resume cycle of
an ongoing computation as well as source data deployment
and (partial) result retrieval take a toll on the computation
and transfer time, we need to evaluate the time it takes for
these actions to be performed and factor them along with

1As defined by the Free On Line Dictionary of Computing
at http://wombat.doc.ic.ac.uk/foldoc/.



connectivity data into the session management algorithms.
We include all these into a middleware layer to provide the
“follow-me” session in a manner transparent to the client.

A complete overview of the challenges is presented in the
simplified but comprehensive scenario depicted in Figure 3.
The circle represents the client application’s host. The hor-
izontal dashed line represents the client hosts’s trajectory.
As the client approaches host H1, it pushes the implemen-
tation of a service it needs onto H1, while holding on to the
proxy object which will be used to manipulate this server
remotely. The dashed arrows indicate how the server moves
(a variation of the scenario might allow the client to simply
discover the server which is already running on H1). The
solid arrows denote the client’s interactions with the server
dedicated to carrying out the task and are not related to
session management. When the client is in position c, the
server migrates from H1 to H2 since the client will soon
lose connectivity to H1 but will remain connected to H2.
The transfer from H1 directly to H2 is possible because
H1 and H2 are within communication range of each other.
When the client reaches location e, there is no host where
the server could jump and therefore the client will “take
back” the server (the dashed arrow from H2 to the client).
The client cannot run the server on its own host because the
resources available on that host do not allow it and therefore
the client will only transport the server until a new host is
found. At location f the client pushes the server onto H3
where the client will manipulate it remotely until the client
reaches location h. The disconnection from H3 is imminent
but H4 advertises the same service. The client will con-
tinue its job using the service advertised by H4, since it is
much cheaper to migrate the computation state than the en-
tire server process, and have the new server “resume” from
a predefined intermediary progress point. While the client
interacts with H4 the task is completed.

2.3 Mechanisms for delivery
The session management middleware we are describing in
this paper provides transparent support for the interaction
between the proxy manipulated by the client application and
the server process the proxy connects. To deliver “follow-
me” sessions we develop a server thread migration mech-
anism (for situations when the service is not offered on a
certain host) and context-sensitive binding (for situations
when the service is offered by multiple providers and the
client can choose which one to use). To smooth the tran-
sition from one provider to another (via migration or re-
binding) we provide a supporting layer that implements a
location-agnostic communication protocol.

3. SERVER THREAD MIGRATION
An essential contributor to our “follow-me” session is the
process migration. Process migration is composed of code
migration, object state migration and execution state mi-
gration. The code migration downloads the binary code of
the process on the target machine, where the loader can
find it and load it into memory. Object state migration,
also known as object serialization, transfers the state of an
object’s instance variables of the object when the code is al-
ready available on the destination machine. Execution state
migration entails transferring the program counter and the
call stack content.

3.1 Types of migration
Depending on whether the migration addresses the execu-
tion state migration or not, process migration can be split
in two types: weak migration and strong migration.

Weak code migration requires that the process can run, but
not resume, on the destination host. This involves making
the code available on the destination machine, loading it
and restarting the process from the beginning, losing any
progress the process may have made before migration. The
execution state is not transferred during weak migration.
Examples of weak migration are [9, 10]. In some cases, some
initialization data can be transferred along with the process
but that does not account for execution state transfer. The
process is still started from the very beginning, except that
the memory is initialized to contain potential partial results.
An example of such behavior can be observed in µCode [11].

Strong code migration entails the migration of the execu-
tion state as well. This allows for processes to be stopped,
transferred and resumed at a new destination. To deliver
the desired semantics, our design entails a strong migration
mechanism for Java threads (as described in Section 5, our
system is implemented in the Java programming language).
While capturing and transferring the execution state, the
program counter of the Java virtual machine (which indi-
cates where the execution should be resumed from) and
the Java call stack (which is equivalent to conventional lan-
guages call stack) are captured and transferred in a seri-
alizable format to the new destination. Obviously, strong
mobility is more powerful but it is also more expensive to
deliver. Systems that support strong migration are [12, 13].

Ideally, the migration happens completely transparently to
the process being transferred. This is, however, extremely
dangerous. For example, such a process could be transferred
at a moment when it holds locks on resources. Without sup-
port from the operating system, these locks would never be
released, since the owner process does not operate under the
supervision of the operating system on the current host. A
system that achieves transparent process migration, in co-
operation with the operating system is [14]. In our case, the
JVM on each host plays the role of the operating system and
it is one of our goals not to tamper with the JVM. Hence, we
cannot migrate a server in a manner completely transparent
to the process itself, and therefore to the human developer
who writes the code of the server. We give the program-
mer control over the places where the process is paused and
transferred by manually marking such locations with check-
points. This does not guarantee that the developer does
not use the checkpoints in wrong places, e.g., while having
a resource locked for exclusive access.

3.2 Migration
We deliver our strong migration in two forms: lightweight

and heavyweight migration. The lightweight migration en-
tails only the transfer of state information. In Figure 3,
when the client is in position e or h, between H2 and the
client (in position e) or the H3 and H4 (when the client is in
position h) the migration is lightweight. The client cannot
run the executable code, so it only needs the state informa-
tion from the server process on H2. Similarly, host H4 only
needs the state information from H3 since it already has the
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Figure 3: Follow-me session.

code (it provides the same kind of service) and therefore a
lightweight migration would suffice. In contrast, when the
client encounters H1 (which does not offer the service but
offers to run the client’s code) at position a, a heavyweight
migration is needed to upload all the bytecode onto H1, as
well as in position c and the server migrates from H1 to H2,
which does not offer the service needed by the client either.

During migration, the serialization process wraps only the
content of an object (values of member variables) and not
the bytecode from which the object was created. This in-
cludes all objects inside the initial object. Therefore, we
need a separate mechanism to transfer the bytecode for each
object along with its dependencies to the destination host.
We use a combination of reflection and exceptions to build
the closure of the server classes that need to be migrated.
We developed a custom class loader [15] that is able to cap-
ture on the destination host all exceptions caused by missing
bytecode. After catching such an exception, we use reflec-
tion to build the list of dependencies (instances of other
classes the object that triggered the exception creates) and
send it to the the source host, demanding the missing byte-
code. On the source host, we inspect the proxy we advertise
using reflection when we publish the service advertisement.
We publish the code of all classes the proxy instantiates and
which are not part of the standard JDK or of the middle-
ware (i.e., they may not be available on a client machine).
This code is downloaded, installed and loaded by our custom
class loader on the destination host. We offer more details
about this procedure in Section 5 of this paper.

A process should not migrate when holding reserved re-
sources. Therefore, the developer should only place check-
points in places where the process does not hold any locks on
shared resources. Since locks on shared resources are usu-
ally not held for a long time (to avoid hoarding), we consider
this to be an acceptable constraint on the developer.

Regardless of whether the migration is lightweight or heavy-
weight, the server continues to execute on the source host.
The migration entails a copy of the process onto the destina-
tion host (heavyweight migration) or a transfer of the state
information (lightweight migration) and does not move the
process from the original host. The “old” server continues
to run until it reaches the next checkpoint. As we will see
more in detail in the implementation section, a Java thread
cannot reliably be stopped from the outside. (Java has a
mechanism to do so but it is deprecated for stability rea-
sons.) Instead, the middleware sets a flag which the thread
verifies every time it enters a checkpoint. Thus, the termi-

nation initiative appears to belong to the server itself.

3.3 Checkpointing and state saving
Checkpointing is a mechanism introduced to improve the
fault tolerance of software. It entails saving the current state
of a program and its data, including intermediate results
to non-volatile storage, so that if interrupted the program
can be restarted at the last checkpoint. If a program run
fails because of some event beyond the program’s control
(e.g. hardware or operating system failure) then the proces-
sor time invested before the checkpoint will not have been
wasted. We address failures triggered by hosts’ disconnec-
tion while a task is processed in a distributed manner.

If a proxy-server interaction does not run to completion
during a window of connectivity, the task has to be com-
pleted during a subsequent window of connectivity between
the client’s host and another host running an instance of
the same server. In this section we consider the case when
the server migrates from the now-disconnected host with a
longer window of connectivity. Using checkpoints, the in-
teraction can resume from an intermediary point (i.e., from
the last checkpoint the execution flow went through), and
does not have to be restarted from the beginning.

At each checkpoint we record the state of the thread, includ-
ing its program counter and call stack, which are known as
the execution state. The standard JVM does not make avail-
able any information about the program counter. We had
to introduce an artificial program counter, which is updated
at each checkpoint. The value of the program counter is
transferred to the destination host and is used to resume
the execution of the server process. As in any conventional
programming language, every time a method is invoked, a
new frame (or entry) is created and pushed to the top of the
call stack. The frame, which contains the parameters of the
method call and local (temporary) variables, is destroyed
when the method returns.

The data state is composed of the values of instance variables
(live objects). These are easier to transfer as serializable
objects (we do request that these objects are all serializable).

When the server migrates from one host to another, the state
recorded at the last checkpoint visited is transferred. Any
further computing is lost as the session and state information
resumes from that last checkpoint, e.g., if the checkpoint
is placed just before a for loop, the loop will be started
from the beginning when the execution is resumed at the
destination host. If the checkpoint is added immediately



inside the loop, the execution resumes with the last iteration
of the loop executed on the initial host of the server process.

4. CONTEXT SENSITIVE BINDING
In the previous section we showed how we can deliver the
functionality of a follow-me session by migrating a process
from one host to another. In this section, we present a
different strategy for achieving this functionality through
context-sensitive binding, a novel mechanism that decouples
the interface of a service from its realization. The realization
of the interface is provided by a changing set of servers such
that the best server provides the realization at any given
time, where best is defined by user-specified criteria. For ex-
ample, best may be defined as “the server with the highest
available bandwidth” or “the server with highest remaining
battery power” or “the server that is physically closest to
the client”. The switching between servers occurs dynami-
cally and transparently in a context-sensitive manner. Using
Figure 3 as an example, if we consider time to disconnection
as the criteria for switching servers, once H4 comes within
the client’s host communication range the context-sensitive
binding mechanism will disconnect the proxy from the server
on H2 and connect to the server running on H4.

4.1 Novel features of context­sensitive binding
Policy based selection - The set of qualifying providers is
chosen based on programmer specified policies. An example
of a policy is “I want to be connected to the server which is
closest to me, with the remaining battery power of the server
being the tiebreaker”. When choosing a service provider,
the client specified policy is the first filter that is applied
after choosing a set of service providers that already offer
the needed functionality (i.e., this step executes after the
service query/discovery step) or that offer to run code pro-
vided by the client. Other parameters for the policy may
include security constraints (e.g., the client cannot print se-
cret documents on any of the available printers), geographi-
cal restrictions imposed on the provider’s location (e.g., the
client will not print on a printer on a different floor), etc.

Metric based evaluation - Once the set of candidates is de-
termined, the best provider is chosen according to client-
specified metrics (e.g., the client prints on the fastest printer
that passed the previous filters).

Transparent binding maintenance - Context-sensitive bind-
ing provides for dynamic switching between servers to pro-
vide the best available service at any given time. Except
for a small interval of time when the mechanism is switch-
ing between servers, continuous binding between the client
and the server is maintained. However, the switching of the
server is masked from the client by the middleware, so from
the client’s perspective, the binding appears continuous for
the time interval it uses the service.

4.2 Mobility and context­sensitive binding
In the previous section, we mentioned that the behavior
of the context-sensitive binding mechanism was driven by
client-specified policies and metrics. While one can specify
any kind of policy, in the interest of a targeted and complete
treatment, we focus on spatiotemporal policies, as these are
among the most relevant in ad hoc networks. More specif-

ically, we deal with the policy that emphasizes the connec-
tivity of hosts over all else. The metric for evaluating hosts
is the duration of connectivity between the client host and
the server host(a longer interval is better).

Context-sensitive binding (CSB) is responsible for changing
the server such that it is the best available given a con-
text. In ad hoc networks, the primary reason for context
changes is physical mobility. As hosts move in space, they
encounter a changing set of hosts over a period of time.
Since other hosts too move in space, the set of hosts that
the client host is connected to changes rapidly and unpre-
dictably. Given these changes, the context-sensitive binding
mechanism must constantly evaluate which of the servers
is most likely to be connected the longest and switch the
server if necessary. In addition, it must have the capability
for some rudimentary decision making, e.g., it must decide
whether the cost of switching the server is worth it or not.

Context Gathering: To be able to make decisions about
which server to choose, CSB must gather contextual in-
formation. In our implementation, which is based on the
LIME middleware, all the required contextual information
(connected host list, location of hosts, etc.) is provided as a
resource by the middleware. We can simply obtain this in-
formation via programmatic calls to the middleware, elimi-
nating the need for additional communication or processing.

Server Choice: Once the context information has been gath-
ered, the next step is to choose the best option. This is done
by ranking each choice according to the metric specified.
Currently we support only simple metrics which specify a
parameter, and to minimize or maximize it. Support for
more complex metrics is currently in the pipeline.

Switching Servers: Once a server is chosen, the client begins
its interactions with the server. Periodically, a snapshot of
the interaction is taken (as described in Section 3) and prop-
agated back to the client. The client stores this snapshot lo-
cally. In parallel, the context gathering process periodically
evaluates the context to check if the current server is still
the best server to use. The periodicity of this check can be
customized according to the environment. For example, for
fast moving cars, a periodicity of 1 second would be appro-
priate, whereas for ships, a periodicity of 10 seconds would
not be detrimental and save computational resources. By
default, we set the periodicity to 4 seconds.

If it is determined that the server needs to be switched, the
middleware preempts the interaction between the client and
the server and sends a termination message. The client’s
calls to the server are then temporarily held locally while the
latest snapshot is propagated from the client to the server.
Once this snapshot has been installed, again using the mech-
anism in Section 3, the calls are directed to the new server.
This is achieved via the use of location agnostic protocols,
which are described later in this section. It should be noted
that the rebinding to a new host can be influenced by other
parameters than those related to the physical movement of
hosts. For example, if a certain host does not renew its se-
curity credentials, it may become unqualified to provide the
same service it has been providing, even if it still has the
server code. The clients will “avoid” that server because



the context-sensitive binding mechanism will break the con-
nection with that host, even if another option is not avail-
able. Another example could be a printer running low on
paper. If the client has multiple documents to print, at some
point, the context-sensitive binding mechanism will connect
to another printer that has more paper in the tray.

The key difference between CSB and strong migration is
that only the state is transferred without any thread state
migration. The usefulness of this is when proprietary soft-
ware is involved, or there are licensing issues. Rather than
move the process, we simply switch to another instance of it,
which allows the client to continue its work without raising
issues of security and ownership of code.

4.3 Location agnostic protocols
A key element in the delivery of the mobile session manage-
ment is the communication protocol between the client(proxy)
and the server applications. All these interactions logically
belong to the same “follow-me” session. Therefore, the
client side should not be impacted by the disconnection from
server, server migration or context-sensitive rebinding to a
new server as long as the session is in progress. While the
disconnection cannot be completely hidden from the client
application (when the client expects an immediate answer
from a disconnected server, there is nothing the middleware
can do to help), it can be masked as a delayed response un-
til the two hosts reconnect or the answer is obtained from
another party. When the server migrates or the proxy is
rebound to another server, the change has to be completely
transparent to the client application.

To deliver this, we employ location-agnostic communication
protocols. The client obtains a unique session identifier
which will be used to stamp all messages exchanged in a
working session. The client only knows that at the other
end there is a server handling the requests belonging to this
session. Similarly, the server knows to pick up and serve
only messages marked with the appropriate session ID. This
leads to a communication protocol based on the content of
the messages rather than the explicit destination stamped
on each message. This idea resonates with modern imple-
mentations of the Linda [16] coordination model.

5. IMPLEMENTATION
The framework described in the previous section has been
implemented in Java, using Lime [17] as a middleware to
handle the implications of an ad hoc wireless network, i.e.,
physical mobility of hosts. In this section we present a brief
overview of Lime, followed by a description of the implemen-
tation. We also show a proof of concept via a set of demo
proxies running on our client.

5.1 LIME overview
Lime is a Java implementation of the Linda [16] coordina-
tion model, designed for ad hoc networks, which masks de-
tails associated with coordination and communication from
the application programmer. A host running Lime runs
a LimeServer upon which run one or more Lime agents,
which are analogous to applications. Coordination in Lime

occurs via transiently shared tuple spaces. Every tuple space
in Lime is identified by a name. Tuple spaces having the

same name can be merged to form a federated tuple space
when their hosts are within communication range.

Tuple spaces are containers for tuples. Tuples are ordered
sequences of Java objects which have a type and a value. An
agent places a tuple in the tuple space, making it available
to all other agents that are sharing the same tuple space. To
read a tuple from the tuple space, an agent needs to provide
a template, which is description of the tuple that the agent
is interested in. A template is a sequence of fields, each of
which can contain a formal representing the required type
for that field or an actual value that identifies the type and
value of the corresponding field. A template is said to match
a tuple if all the corresponding fields match pairwise.

An agent can access the tuple space via standard Linda op-
erations (rd (read a tuple), in (remove a tuple), out(write
a tuple)). The in and rd operations take a template as a
parameter and return a tuple as the result or block until
a match is found (the operations are synchronous). Lime

offers probe variants of the traditional blocking operations
(e.g., inp, rdp), and group operations (e.g., outg, ing, rdg,
rdgp, and ingp). While the original calls return a matching
tuple (if available) or null otherwise (if nonblocking), the
group operations return all matching tuples.

To provide asynchronous interactions, Lime extends the ba-
sic Linda tuple space operations with a reaction mechanism
R(s, p), defined by a code fragment s that specifies the ac-
tions to be executed when a tuple matching the pattern p

is found in the tuple space. Blocking operations are not
allowed in s, to ensure programs reach fixed point.

Lime protects applications from the complexity associated
with sudden disconnection by using location information.
The concept of safe distance [18] helps preserve the consis-
tency of the system by predicting disconnections. When a
host approaches a group, it engages with the group only
after it comes within safe distance of some member of the
group. Once the safe distance is exceeded, an automatic
disengagement protocol is triggered and the group is split,
ensuring that no messages between group members are lost.

5.2 Checkpoints
The implementation of strong code migration presents sev-
eral interesting technical problems. First, the standard JVM
does not allow programs to save or restore the program
counter. Second, once an application has been migrated,
it should stop running on the original host; but arbitrar-
ily stopping threads in the middle of execution is inherently
unsafe. Finally, saving the complete state of an application
involves saving its local variables, which cannot be accessed
at runtime by an external library.

We approached these problems by choosing to rewrite the
bytecode of applications rather than trying to manipulate
them at runtime. This rewriting process adds bytecode to
applications to add support for strong code migration, in-
cluding code to work around these technical limitations.

As noted earlier, the state of the server application is saved
at specific checkpoints. The application programmer creates
mobile applications by extending the MobileThread class,



which adds several methods and fields to Java’s standard
Thread class as described below. The programmer defines
checkpoints by calling the addCheckpoint() method. Though
this appears to the programmer to be an ordinary method
call, it simply serves as a placeholder in the bytecode to
indicate when the partial progress and state information
are recorded. After compiling the Java source code, the
resulting bytecode is passed into the bytecode rewriter. The
rewriter loops through all the methods in the class and mod-
ifies them to allow strong code migration.

To do this, the rewriter first collects a list of all the lo-
cal variables in the current method. It then adds a field
for each of these local variables; these fields will be used
later to store the state of the local variables. The rewriter
also inserts a field to store an artificial program counter.
The rewriter then searches for all calls to addCheckpoint().
At each checkpoint, the rewriter inserts code to check the
do pause field, which indicates whether or not the applica-
tion thread is being paused so it can be migrated. If this
field is set, then the method immediately returns. If it is
not, then the method copies all of the in-scope local vari-
ables to the fields described above and then sets the artificial
program counter to some unique value. Finally, the rewriter
removes the call to addCheckpoint(), since it only serves to
mark the bytecode. The rewriter also appends code at the
end of the method to copy these fields back into the corre-
sponding local variables and jump to the checkpoint; these
“restoration points” provide a place for the thread to restore
its state and return to the last checkpoint it passed before
being migrated. The bytecode rewriter then adds code to
the beginning of the method to see if the paused field is
set. If it is, then the application jumps to the appropriate
restoration point based on the contents of the artificial pro-
gram counter field. This has the indirect effect of restoring
the thread’s local variables and the JVM program counter.

The MobileThread class adds two important methods to
the standard Thread class: pause() and unpause(). The
pause() method sets the do pause and paused fields to
true; the former tells the thread that it should stop exe-
cution as soon as it reaches the next checkpoint, and the
latter tells the thread that it should restore its state when
it is restarted. The unpause() method simply resets the
do pause field to false and restarts the thread; since the
pause() call set the paused flag, the thread will jump to the
appropriate restoration point and return to the last check-
point passed before pausing. This way, rewritten applica-
tions can be migrated across hosts by pausing the applica-
tion thread, serializing it on the original host, deserializing
it on the new host, and unpausing it.

5.3 Migration
When migrating applications across hosts, it is very likely
that one or more will not have the bytecode for the migrated
application or one of its dependencies. The solution to this
problem is a custom class loader that can locate missing
bytecode from shared tuple spaces.

When a host on the network creates an instance of an ap-
plication, it passes the application’s class file to our mid-
dleware, which searches the class’s bytecode to find all the
other classes it refers to. It then recursively analyzes these

new dependencies until the set of classes converges; this is
the application’s full class closure. (Any classes provided
by the standard JRE or any parts of our middleware are
excluded from this set, since it is assumed that they are
always available on any host.) The middleware then pack-
ages the bytecode for all these classes together in a JAR file
and creates a new tuple of the form <Names:class names,
BinaryCodeFile:bytecode>. It outs this tuple into a shared
CodeRepository tuple space.

When an application is migrated to a remote host, our
middleware attempts to deserialize it. If this fails due
to missing bytecode, the deserialization mechanism throws
a ClassNotFoundException, which out middleware inter-
cepts and uses to fetch the needed bytecode. This
is done by using a custom classloader and a custom
ObjectInputStream that refers to this new class loader.
Our custom ObjectInputStream intercepts any failed at-
tempts to resolve classes locally and invokes our custom
LWClassLoader, which attempts a rdp operation on the
code repository using the pattern <Names:class name,
BinaryCodeFile.class> to retrieve the byte code for the re-
quired class from the code repository. If this rdp operation
succeeds, the class loader loads the JAR package contained
in this tuple into memory and presents each the bytecode of
each class inside to the class loader.

5.4 Protocols and context sensitive binding
The choice of tuple space-based communication was a natu-
ral fit for communication protocols that are immune to dis-
connections, support resuming, and do not use explicit loca-
tion information for message delivery. The tuple space com-
munication is similar to exchanging messages on a board:
the source puts the message out and the recipients come and
look for the messages they need. The level of granularity we
assume allows to transfer a tuple atomically from one host
to the other. If a disconnection occurs during transfer, the
tuple will remain available in the source agent’s local tuple
space. The protocol supports resuming only at the layers
above tuple space coordination, and therefore if the transfer
of a tuple is interrupted it will have to be restarted from
zero. The tuple-based communication (which is analogous
to message passing), handled at middleware level, protects
the application from crashes in face of disconnections.

The location-agnostic character of interactions is also a ben-
efit of using tuple spaces. The recipient of a message listens
for messages using a template that describes the messages it
should read (using the reaction mechanism described in the
Lime overview section). In our implementation, each proxy-
server pair stamp their messages with a shared session ID.
There may be more servers providing the same service, but
each server will only pick up messages labeled with the ses-
sion ID it is currently serving. This session ID is created
by the proxy when the proxy is instantiated on the client’s
machine by obtaining a hash based on the object’s mem-
ory address, which is unique on the host. We combine this
value with a host ID and stamp it with the time when the
session begins, which makes it globally unique. The proxy
will communicate the session ID to its server, which learns
to pick up messages with this particular stamp. Looking at
Figure 3, when the client is in position h it can talk to two
servers on H3 and H4. The server running on H3 will pick



up the tuples generated by the proxy running on the client
because it can match the session ID.

The context sensitive binding handles redirecting the traffic
to a new server. That is, it makes a new server pick up mes-
sages and service requests in a manner transparent to the
client. If the new server is the result of migrating the old
server onto a new host, the state information the server car-
ries with it will include the session ID. If a new server picks
up the task and continues the work, the light migration that
ships the state of the computation and partial results will
also transfer the session ID, and therefore know to pick up
and service requests that come in the corresponding tuples.
In the current implementation, if there are multiple servers
available, the context-sensitive binding mechanism chooses
the one with which the connection is guaranteed for a longer
period of time (based on an analysis of the motion profiles
of the carrier hosts and wireless communication range).

5.5 Demo application
We developed an application as proof of concept. Figure 4
shows a map and 5 mobile hosts on a street. The experiment
follows the scenario described in Figure 3. The client drives
in a car and meets other cars on the way. The client wants
to record a radio show which it cannot receive in its car. The
client deploys the software, which records the show in MP3
format, onto H1, the first car that the client encounters that
is capable and willing to run the service on client’s behalf.
As H1 is about to go out of client’s range, the service is mi-
grated onto H2 where it continues to record the show. The
client disconnects from H2 and before meeting H3 misses a
significant part of the broadcast but resumes recording the
show with H3’s help. When H4 comes into range, the mid-
dleware discovers that H4 already runs a recording service
and transfers the computation state to H4. The show ends
while the client and H4 are in contact, when the client ob-
tains from H4 a MP3 file containing the radio show, less the
intervals spent during migration.

Figure 4 captures the client in a position equivalent to e in
Figure 3. The positions and the motion profiles of the 5
hosts emulate the scenario above such that we can test the
types of migration, context-sensitive binding and location
agnostic communication protocols described in the paper.
The progress bars in the four dialog boxes indicate partial
progress on each host. We simulated the application indoors
but we used 5 hosts and forced all interactions to be as if the
hosts were in real motion. The reason is the ratio between
the wireless communication range of the IEEE 802.11 cards
we used (about 100m) and the errors of the GPS readings
(the advertised error is less than 10m but we found it to
be around 25m). We developed a virtual space simulator
(VSS) for location information. This is a server that runs on
a machine and feeds location information to the clients that
connect to it. We configured the motion profile of each host
into VSS, which periodically tells each host where it is and
how it moves at each moment. The middleware running on
each host makes the decisions about migration and binding
based on this location information received from the VSS
server, which makes our indoors simulation be realistic. The
servers encoded a radio show from an Internet live feed,
which does not affect the validity of the simulation.

Figure 4: Mobile client and servers.

6. DISCUSSION AND FUTURE WORK
An issue we did not address in this paper is related to the se-
curity of inter-host collaboration. There are concerns about
accepting code from another host to be executed locally.
Certain restrictions have to be applied such as the down-
loaded code should not have access to the local file system
or to certain parts of the system’s memory, similar to the re-
strictions imposed on Java applets. The code uploaded by a
client onto a server can also be the target of the server’s cu-
riosity and the client may want to protect the service’s code
from a malicious server’s introspection. A solution for this
is presented in [19] where the authors describe a method to
compute using encrypted functions (i.e., the code uploaded
is encrypted). The tensions between the servers’ concerns
about accepting code for execution and the clients’ concerns
about not giving away code need to reach a balance where
both parties are satisfied with the level of security.

Another important issue is to figure the time needed to com-
plete a migration so we can start it early enough. Factors
influencing this time interval are the speed of the source
and destination hosts, the size of the data being transferred
(code, input data, partial results), the computation power
of the two machines, the bandwidth of the wireless link, etc.
The motion profiles of the two hosts and most of the other
parameters can be obtained at runtime (e.g., the bandwidth
can be obtained from the wireless cards driver, the size of
the data to be transferred can also be determined relatively
easy, etc). Another challenges is evaluating how much time
it takes for a piece of code to execute on a certain machine.
This cannot be statically determined as the load of the pro-
cessor varies at run time and there are no processor drivers
we could interact with (like we can read the bandwidth of a
link from the network card driver). A way to tackle the issue
is to have a sample piece of code used as unit of measure
and report the execution of the rest of the code to this unit.



Thus, after many runs, a certain procedure can be labelled
as taking x units to complete for a certain input (recursive
calls, different sizes of the input, or waiting for input or in
synchronized calls can affect the evaluation). The sample
piece of code could be run in the background from time to
time and by measuring the time it takes to execute we can
get a sense of the system’s load and the execution speed of
the application’s code in real time.

Related to process migration, we mentioned that a process
should not migrate while holding locks on shared resources.
On the new host the locks are invalid while on the old host
the locks continue to block the resource until the operating
system or Java Virtual Machine releases these locks by force.
It is part of our future work to develop a mechanism that re-
leases the locks automatically before migration and resumes
execution of the process on the the host by redeclaring the
interest for those locks. The process would thus compete
for the locks like any other process that has always been
running on that host. To do this, we need to develop our
custom locks which will be recognized by our middleware
such that they can be manipulated automatically.

A ”follow-me” session accompanies the client until the task
is finished. It resembles a cloud spanning the client host
and one or more other hosts where services of interest to the
client may be running. An approach similar to ours could
be developed based mobile IP [20]. MobileIP allows for a
host to “drag” it’s IP address along as it moves in space.
The work was developed for wired networks where the same
host would connect to the network from different places or
would cross network boundaries. The mobile node uses two
IP addresses: a fixed home address and a care-of address
that changes at each new point of attachment. From each
new point of attachment the host communicates “home” its
new address. The traffic destined for this host will always
be directed towards the home address. At this location,
a server relays the packets to the IP address the mobile
host has registered. The approach is interesting because
it exhibits the location-agnostic characteristic. It supports
mobile computing but does not entail software migration
and also assumes Internet (or at least LAN) connectivity for
the long distance routes the packets may have to follow.

7. CONCLUSIONS
In conclusion, we presented a middleware architecture that
supports SOC in mobile ad hoc networks. We defined the
“follow-me” session which follows the client while the task
at hand is under processing. To cope with challenges of
ad hoc networking and transparently maintain the session
with the entities involved, we employ strong process migra-
tion, context-sensitive binding and location-agnostic proto-
cols. We delivered stop/transfer/resume computation se-
mantics and disconnection and migration-proof coordination
among participants.
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