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Abstract

English. Robots operate in specific en-
vironments and the correct interpretation
of linguistic interactions depends on phys-
ical, cognitive and language-dependent as-
pects triggered by the environment. In this
work, we present LU4R - adaptive spo-
ken Language Understanding 4 Robots,
a Spoken Language Understanding chain
for the semantic interpretation of robotic
commands, that is sensitive to the opera-
tional environment. The system has been
designed according to a Client/Server ar-
chitecture in order to be easily integrated
with the vast plethora of robotic platforms.

Italiano. L’interpretazione di comandi
espressi nei confronti di piattaforme
robotiche è un processo strettamente
legato al contesto operativo in cui avviene
l’interazione. In questo lavoro, presenti-
amo LU4R - adaptive spoken Language
Understanding 4 Robots, un sistema per
l’elaborazione automatica di comandi vo-
cali, dipendente dall’ambiente in cui il co-
mando viene espresso. Il sistema pro-
posto, implementato come una cascata
di passi di elaborazione semantica, è
stato progettato seguendo un’architettura
Client/Server, per ridurre i requisiti di in-
tegrazione con le piattaforme robotiche es-
istenti.

1 Introduction

End-to-end communication in natural language
between humans and robots is challenging for the
different cognitive abilities involved during the in-
teraction. As an example, for a robot to react to a
command like “take the book on the table”, a num-
ber of implicit assumptions should be met. First,

at least two entities, a book and a table, must
exist in the environment and the speaker must be
aware of such entities. Accordingly, the robot
must have access to an inner representation of the
objects, e.g., an explicit map of the environment.
Second, mappings from lexical references to real
world entities must be developed or made avail-
able. In this respect, the Grounding process (Har-
nad, 1990) links symbols (e.g., words) to the cor-
responding perceptual information. Hence, robot
interactions need to be grounded, as meaning de-
pends on the state of the physical world and the in-
terpretation crucially interacts with perception, as
pointed out by psycho-linguistic theories (Tanen-
haus et al., 1995). To this end, the integration
of perceptual information derived from the robot’s
sensors with an ontologically motivated descrip-
tion of the world has been adopted as an aug-
mented representation of the environment, in the
so-called semantic maps (Nüchter and Hertzberg,
2008). In this maps, the existence of real world
objects can be associated to lexical information,
in the form of entity names given by a knowledge
engineer or spoken by a user for a pointed object,
as in Human-Augmented Mapping (Diosi et al.,
2005). While SLU for Interactive Robotics have
been mostly carried out over the only evidences
specific to the linguistic level (see, for example,
(Chen and Mooney, 2011; Matuszek et al., 2012)),
we argue that such process should be context-
aware, in the sense that both the user and the robot
access and make references to a shared environ-
ment. For example, in the above command, “tak-
ing” is the intended action whenever a book is ac-
tually on the table, so that “the book on the table”
refers to a single argument. On the contrary, the
command may refer to a “bringing” action, when
no book is on the table and the book and on the
table correspond to different semantic roles.

In this paper, we present LU4R an adaptive spo-
ken language understanding chain for the auto-



matic interpretation of robotic spoken commands
that is coherent with the above assumptions. The
resulting chain is based on the approach proposed
in (Bastianelli et al., 2016) that allows to pro-
duce interpretations that are consistent with (i) the
world (with all the entities composing it), (ii) the
Robotic Platform (with all its inner representations
and capabilities), and (iii) the linguistic informa-
tion derived from the user’s utterance. LU4R is
fully implemented in Java and is released accord-
ing to a Client/Server architecture, in order to de-
couple the chain from the specific robotic plat-
form that will use it. It receives as input one
or more transcriptions of a spoken command and
produces one or more linguistic predicates reflect-
ing the actions intended by the user. Predicates,
as well as their arguments, are consistent with a
linguistically-motivated representation and coher-
ent with the environment perceived by the robot.

The rest of the paper is structured as follows.
Section 2 provides an architectural description of
the entire system, as well as an overall introduc-
tion about its integration with a generic robot. In
Section 3 we demonstrate the applicability of the
chain in the interpretation of commands in English
and Italian.

2 The overall architecture

The architecture of the proposed system is decou-
pled into two main macro-components, as shown
in Figure 1: the Robotic Platform and LU4R.

The Client-Server communication schema be-
tween the Robotic Platform (the Client) and LU4R
(the Server) allows to maintain the former inde-
pendent from the latter. It is obvious that the in-
terpretation process must be achieved even when
no information about the domain/environment is
available, i.e., a scenario involving a blind but
speaking robot. This is the case when the com-
mand “take the book on the table” is paired with
any additional information and the ambiguity with
respect to the evoked predicate, i.e., Taking vs.
Bringing, cannot be resolved. At the same time,
the platform allows to specialize the semantic in-
terpretation process to individual situations when
contextual information is available. In this case,
whenever the sentence “take the book on the ta-
ble” is provided along with information about the
presence and position of a book on a table, the
above disambiguation can be solved.

In the following, each macro-component of the

architecture in Figure 1 is discussed and analyzed.

2.1 The Robotic Platform

The overall architecture contemplates a generic
Robotic Platform, whose task, domain and physi-
cal setting are not necessarily specified. In order to
make LU4R independent from the above specific
aspects, we will assume that the platform requires
at least the following modules: (i) an Automatic
Speech Recognition (ASR) system; (ii) a SLU Or-
chestrator; (iii) a Grounding and Command Exe-
cution Engine; (iv) a Physical Robot. Addition-
ally, the optional component Support Knowledge
Base is expected to provide the contextual infor-
mation discussed above. While the discussion
about the Physical Robot is out of the scope of
this work, all the other components are hereafter
shortly summarized.
ASR system. An ASR engine allows to transcribe
a spoken utterance into one or more possible tran-
scriptions. In the actual release, the ASR is here
performed through an ad-hoc Android application
that can be deployed on both Android smartphones
and tablets. It relies on the official Google ASR
API1 that offers valuable performances for an off-
the-shelf solution. The acoustic model is here
based on deep learning techniques, i.e. Recur-
rent Neural Networks (Hinton et al., 2012). The
Google ASR is publicly available and is rather
robust toward some of the complexities of spo-
ken language, such as disfluencies and repetitions.
This allowed us to focus on other challenges of
spoken language, such as linguistic variations (e.g.
synonymy, phonetically similar words, interroga-
tive vs. imperative sentences, . . . ). Advantages of
our lexicalized grounding approach (Bastianelli et
al., 2015) is the robustness against variability and
sense ambiguity.
SLU Orchestrator. The SLU Orchestrator imple-
ments a TCP Server for the Android App, here
coded as a ROS node (Quigley et al., 2009) wait-
ing for Client requests. Once a new request ar-
rives (a list of transcriptions for a given spoken
sentence), this module is in charge of extracting
the perceived entities from a structured represen-
tation of the environment (here, a sub-component
of the Support Knowledge Base) and sending the
list of hypothesized transcriptions to LU4R along
with the list of the perceived entities. The commu-
nication protocol requires the serialization of such

1https : //cloud.google.com/speech/
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Figure 1: Overall architecture of the system

information in two different JSON objects. Even
though this module is actually a TCP Server for
the Android App, it represents also the Client in-
terface toward LU4R.
Grounding and Command Execution. Even
though the grounding process is placed at the end
of the loop, it is discussed here as it represents
part of the Robotic Platform. In fact, this process
has been completely decoupled from the SLU, as
it may involve perception capabilities and infor-
mation unavailable to LU4R or, in general, out of
the linguistic dimension. Nevertheless, this sit-
uation can be partially compensated by defining
mechanisms to exchange some of the grounding
information with the linguistic reasoning compo-
nent. However, grounding is always carried out on
board of the robot, as it represents the most general
situation. The grounding carried out by the robot
is triggered by a logical form expressing one or
more actions through (linguistic) predicates. The
output of the SLU process embodies the produced
logical form: this latter exposes the recognized ac-
tions that are then linked to specific robotic oper-
ations (primitive actions or plans). Correspond-
ingly, the predicate arguments (e.g., objects and
location involved in the targeted action) are de-
tected and linked to the objects/entities of the cur-
rent environment. A fully grounded command is
obtained through the complete instantiation of the
robot action (or plan) and its final execution.

2.2 The LU4R system
The language understanding process produces an
interpretation of the user’s utterance in terms of
linguistic predicates as defined in Frame Seman-

tics (Fillmore, 1985). Specifically, we consider
the formalization adopted in the FrameNet (Baker
et al., 1998) database. According to such theory,
actions expressed in user utterances can be mod-
eled as semantic frames. These are micro-theories
about real world situations, e.g., the action of tak-
ing. Each frame specifies also the set of partic-
ipating entities, called frame elements, e.g., the
THEME representing the object that is taken dur-
ing the Taking action. For example, for the sen-
tence “take the book on the table”, a potential cor-
responding parsed version is:

[take]Taking [the book on the table]THEME (1)

In a robotic perspective, semantic frames provide
a cognitively sound bridge between the actions ex-
pressed in the language and the implementation of
such actions in the robot world.

As shown in Figure 1, LU4R is composed of
four main steps.

Morpho-syntactic analysis is performed over
each available utterance transcription, by applying
Part-of-Speech tagging and syntactic parsing, pro-
viding morphological and syntactic information,
essential for further processing.

Whenever more than one hypothesized tran-
scription is available, a Re-ranking module can
be activated to evaluate a new sorting of the hy-
potheses, in order to get the best one out of the
original ranking. It allows to reuse existent ASR
solutions, making the final rank sensitive to the
specific robotic domain.

The selected transcription is the input of the
Action Detection (AD) component. Here all the



frames (i.e. intended actions) evoked in a sentence
are detected, according to their triggering lexical
units. For instance, given the above example, the
AD would produce the following interpretation:
[take]Taking the book on the table.

The final step is the Argument Labeling (AL).
Here a set of frame elements is retrieved for each
frame, detected during the AD step. Such process
is, in turn, realized in two sub-steps. First, the
Argument Identification (AI) aims at finding the
spans of all the possible frame elements. Then, the
Argument Classification (AC) assigns the suitable
frame element label to each span identified during
the AI, producing the final tagging shown in (1).

An off-the-shelf tool is used for the morpho-
syntactic analysis, namely the Stanford CoreNLP
suite (Manning et al., 2014). Re-ranking is per-
formed using a learn-to-rank approach, where a
Support Vector Machine exploiting a combination
of linguistic kernels is applied, as discussed in
(Basili et al., 2013). The AD, AI and AC steps
are modeled as a sequential labeling task, as in
(Bastianelli et al., 2016). The Markovian formu-
lation of a structured SVM proposed in (Altun
et al., 2003) is applied to implement the sequen-
tial labeler, known as SVMhmm . In general, this
learning algorithm combines a local discrimina-
tive model, which estimates the individual obser-
vation probabilities of a sequence, with a global
generative approach to retrieve the most likely se-
quence, i.e. tags that better explain the whole se-
quence. In other words, given an input sequence
x = (x1 . . . xl) ∈ X of feature vectors x1 . . . xl,
SVMhmm learns a model isomorphic to a k-order
Hidden Markov Model, to associate x with a set
of labels y = (y1 . . . yl) ∈ Y .

A sentence s is here intended as a sequence
of words wi, each modeled through a feature
vector xi and associated to a dedicated label yi,
specifically designed for each interpretation pro-
cess. During training, the SVM algorithm is
devoted to associating words to step-specific la-
bels: linear kernel functions are applied to dif-
ferent types of features, ranging from linguistic
to perception-based features, and linear combina-
tions of kernels are used to integrate independent
properties. At classification time, given a sentence
s = (w1 . . . w|s|), the SVMhmm efficiently predicts
the tag sequence y = (y1 . . . y|s|) using a Viterbi-
like decoding algorithm.

Both the re-ranking and the language under-

standing phases can work in two different settings.
In the so-called basic scenario, only linguistic

information is used during the interpretation task.
Perceptual information from the environment is
thus neglected and evidences from the user’s ut-
terances or linguistic resources are considered.

Conversely, when perceptual information is
made available to the chain, a context-aware
interpretation is triggered. Such a perceptual
knowledge is mainly exploited through a lin-
guistic grounding mechanism (Bastianelli et al.,
2015). This lexically-driven grounding is esti-
mated through distances between filler (i.e. ar-
gument heads) and entity names. Such a se-
mantic distance integrates metrics over word vec-
tors descriptions and phonetic similarity. Word
semantic vectors are here acquired through cor-
pus analysis, as in Distributional Lexical Semantic
paradigms (Turney and Pantel, 2010). They allow
to map referential elements, such as lexical fillers,
e.g. desk, to entities, e.g. a table, by thus model-
ing synonymy or co-hyponymy. Conversely, pho-
netic similarities ar smoothing factors against pos-
sible ASR transcription errors, e.g. pitcher and
picture. Once links between fillers and entities
have been activated, the sequential labeler is made
sensitive to additional features, that inject percep-
tual information both in the learning and the tag-
ging process, e.g. the presence/absence of referred
objects in the environment. As a side effect, the
above mechanism provides the robot with the set
of linguistically-motivated groundings, that can be
potentially used for any further grounding process.

Overall, the service provided by LU4R is per-
formed as a black-box component, so that the
complexity of each inner sub-task is hidden to the
user. The service is realized through a server ac-
cepting connections on a predefined port. LU4R
is entirely coded in Java and released as a sin-
gle Jar file2, along with the required folders con-
taining linguistic models, configurations files and
other resources. Hence, it can be run through com-
mand line, so that it is easier to integrate it within
any architecture.

The LU4R system takes three input parameters:
type of the understanding process, output format
and listening port. The first parameter defines the
type of the interpretation process to be initialized:
the basic value activates the setting where only
linguistic information is adopted, while simple

2
http://sag.art.uniroma2.it/sluchain.html



refers to the interpretation where perceptual in-
formation is considered. The second parameter
specifies the desired output format, e.g., eXtended
Dependency Graph (Basili and Zanzotto, 2002) or
the Abstract Meaning Representation, proposed in
(Banarescu et al., 2013).

3 Evaluating LU4R

In order to provide evidences about the effective-
ness of the proposed solution, we report here a pre-
liminary evaluation of the interpretation process
w.r.t. robotic commands in two languages, i.e. En-
glish and Italian.

AD AI AC
English 95.91% 94.29% 95.31%
Italian 82.29% 79.46% 84.49%

Table 1: Experimental evaluation of the semantic
interpretation process, in terms of F1

Table 1 shows results obtained over the Human
Robot Interaction Corpus (HuRIC) (Bastianelli et
al., 2014), a dataset of semantically annotated
commands typical of Service Robotics. HuRIC
contains 527 sentences in English. Moreover, re-
sults w.r.t. to a subset of 188 commands from
HuRIC translated in Italian are reported. The re-
sults, expressed in terms of F1 measure, focus on
the semantic interpretation process, in particular
Action Detection (AD), Argument Identification
(AI) and Argument Classification (AC) steps. In
fact, F1 scores measures the quality of a specific
module. While in the AD step the F1 refers to the
ability to extract the correct frame(s) evoked by a
sentence, in the AI step it evaluates to the correct-
ness of the predicted argument spans. Finally, in
the AC step the F1 measures the accuracy of the
classification of individual arguments.

We tested each sub-module in isolation, feed-
ing each step with gold information provided by
the previous step in the chain. Moreover, the eval-
uation has been carried out considering the cor-
rect transcriptions, i.e., not contemplating the er-
ror introduced by the Automatic Speech Recogni-
tion system. The results over the Italian dataset
refer to the basic setting of LU4R, i.e. leveraging
just linguistic information. Conversely, the exper-
iments over the English dataset have been carried
out with the LU4R setting exploiting also percep-
tual knowledge. Results against the commands

in English are encouraging for the application of
LU4R in realistic applications, with a F1 higher
than 94% in the recognition of semantic predicates
used to express intended actions as well as the in-
volved entities. We speculate that the gap w.r.t.
results against the Italian dataset is mainly due to
the lack of perceptual knowledge as well as the
reduced size of the dataset. A more detailed de-
scription of the above evaluation over the English
and Italian dataset is available in (Bastianelli et al.,
2016) and (Vanzo et al., 2016), respectively.

4 Conclusions

In this paper, we presented LU4R, an adaptive
SLU processing chain focused on the interpreta-
tion of commands in the Mobile Service Robotics
domain. The proposed solution relies on Frame
Semantics and Distributional Lexical Semantics
to support example-driven machine learning al-
gorithms that map individual sentence transcrip-
tions to meaningful commands. Statistical learn-
ing, i.e. SVMhmm , is applied by transforming
the interpretation process into a cascade of sen-
tence annotation tasks. The use of Frame seman-
tics enables the reuse of large repositories of ex-
amples (i.e. (Baker et al., 1998)), supporting the
recognition of up to more than 1,000 different se-
mantic frames, currently defined in the FrameNet
database. The robustness of the sentence interpre-
tation, as measured in this paper, is rather good,
where language variability is tackled by relying
on distributional lexical models that generalize se-
mantics for large vocabularies, well beyond the
training set dictionaries. Moreover, even though
LU4R is completely decoupled from the Robotic
Platform, the final interpretation is made depen-
dent on the robot’s environment, by designing per-
ceptual knowledge through feature modeling. Per-
ceptual knowledge is derived from the robot’s se-
mantic map and translated into feature values. The
corresponding space allow to synthesize informa-
tion about existence and position of named enti-
ties, useful to disambiguate predicates and role as-
signment.

The results gathered during repeated empiri-
cal investigation campaigns confirm the effective-
ness of the proposed tool and, in particular, the
benefits provided by the injection of perceptual
Knowledge into the understanding (i.e. labeling)
process. LU4R is thus an effective example of
grounded language learning framework, whereas



predicates and semantic roles are acquired through
an integration between linguistic (e.g. lexical and
grammatical) properties and perceptual informa-
tion (e.g. distances between entities in a map):
this makes LU4R an interesting topic for future
research, such as the extension of command inter-
pretation process to complex interaction patterns,
such as in interactive question answering or dia-
logue.
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