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Abstract. Currently, histopathological tissue examination by a pathologist represents the gold standard for
breast lesion diagnostics. Automated classification of histopathological whole-slide images (WSIs) is challenging
owing to the wide range of appearances of benign lesions and the visual similarity of ductal carcinoma in-situ
(DCIS) to invasive lesions at the cellular level. Consequently, analysis of tissue at high resolutions with a large
contextual area is necessary. We present context-aware stacked convolutional neural networks (CNN) for clas-
sification of breast WSIs into normal/benign, DCIS, and invasive ductal carcinoma (IDC). We first train a CNN
using high pixel resolution to capture cellular level information. The feature responses generated by this model
are then fed as input to a second CNN, stacked on top of the first. Training of this stacked architecture with large
input patches enables learning of fine-grained (cellular) details and global tissue structures. Our system is
trained and evaluated on a dataset containing 221 WSIs of hematoxylin and eosin stained breast tissue spec-
imens. The system achieves an AUC of 0.962 for the binary classification of nonmalignant and malignant slides
and obtains a three-class accuracy of 81.3% for classification of WSIs into normal/benign, DCIS, and IDC, dem-
onstrating its potential for routine diagnostics.© 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.4

.4.044504]
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1 Introduction

Breast cancer is the most frequently diagnosed cancer among

women worldwide. The most frequent subtype of breast cancer,

invasive ductal carcinoma (IDC), accounts for more than 80% of

all breast carcinomas. IDC is considered to develop through

sequential stages of epithelial proliferation starting from normal

epithelium to invasive carcinoma via hyperplasia and ductal car-

cinoma in situ (DCIS).1 DCIS is the preinvasive stage of breast

cancer in which the abnormal cells are confined to the lining of

breast ducts. Accurate diagnosis of DCIS and IDC and their dis-

crimination from benign diseases of the breast are pivotal to

determine the optimal treatment plan. The diagnosis of these

conditions largely depends on a careful examination of hema-

toxylin and eosin (H&E) stained tissue sections under a micro-

scope by a pathologist.

Microscopic examination of tissue sections is, however,

tedious, time-consuming, and may suffer from subjectivity. In

addition, due to extensive population-based mammographic

screening for early detection of cancer, the amount of data to

be assessed by pathologists is increasing. Computerized and

computer-aided diagnostic systems can alleviate these short-

comings by assisting pathologists in diagnostic decision-making

and improving their efficiency. Computational pathology sys-

tems can be used to sieve out obviously benign/normal slides

and to facilitate diagnosis by pointing pathologists to regions

highly suspicious for malignancy in whole-slide images (WSIs)

as well as providing objective second opinions.2,3

Numerous efforts have been undertaken to develop systems

for automated detection of breast carcinomas in histopathology

images.4–13 Most of the existing algorithms for breast cancer

detection and classification in histology images involve assess-

ment of the morphology and arrangement of epithelial structures

(e.g., nuclei, ducts). Naik et al.4 developed a method for auto-

mated detection and segmentation of nuclear and glandular

structures for classification of breast cancer histopathology

images. A large set of features describing the morphology of

the glandular regions and spatial arrangement of nuclei was

extracted for training a support vector machine classifier, yield-

ing an overall accuracy of 80% for classifying different breast

cancer grades on a very small dataset containing a total of 21

preselected small regions of interest images. Doyle et al.5 further

investigated the use of hand-crafted texture features for grading

breast cancer histopathology images. Dundar et al.6 and Dong

et al.7 developed automated classification systems based on an

initial segmentation of nuclei and extraction of features to

describe the morphology of nuclei or their spatial arrangement.

While all of the previously mentioned algorithms were designed

to manually classify selected regions of interest (mostly selected

by expert pathologists), we8 proposed an algorithm based on a

multiscale analysis of superpixels14 for automatic detection of
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DCIS that operates at the whole-slide level and distinguishes

DCIS from a large set of benign disease conditions. Recently,

Balazsi et al.9 proposed a system for detection of regions

expressing IDC in WSIs. This system first divides the WSI

into a set of homogeneous superpixels, and subsequently, uses

a random forest classifier15 to determine if each region indicates

cancer.

Recent advances in machine learning, in particular, deep

learning,16,17 have afforded state-of-the-art results in several

domains, such as speech18 and image recognition.19,20 Deep

learning is beginning to meet the grand challenge of artificial

intelligence by demonstrating human-level performance on

tasks that require intelligence when carried out by humans.21

Obviating the need for domain-specific knowledge to design

features, these systems learn hierarchical feature representations

directly from data. On the forefront of methodologies for visual

recognition tasks are convolutional neural networks (CNN). A

CNN is a type of feed-forward neural network defined by a set

of convolutional and fully connected layers. The emergence of

deep learning, in particular, CNN, has also energized the medi-

cal imaging field22 and enabled development of diagnostic tools

displaying remarkable accuracy,23–25 to the point of reaching

human-level performance. These motivate the use of CNNs for

detection and/or classification of breast cancer in breast histo-

pathology images.

Cruz-Roa et al.10 proposed the first system using a CNN to

detect regions of IDC in breast WSIs. In contrast to the modern

networks that use very deep architectures to improve recognition

accuracy, the utilized network was a three-layer CNN. Due to

computational constraints, the model was only trained to operate

on images downsampled by a factor of 16. In a recent publica-

tion,11 the authors obtained comparable performance when

training and validating their system on a multicenter cohort.

Rezaeilouyeh et al.12 trained a multistream five-layer CNN tak-

ing as input a combination of RGB images, and magnitude and

phase of shearlet coefficients. In all these works, the models

were evaluated at the patch-level. In a recent work,13 we dem-

onstrated the discriminating power of features extracted from

tumor-associated stromal regions identified by a CNN for clas-

sifying breast WSI biopsies into invasive or benign.

Different from the above-mentioned approaches, the aim of

the present study is to develop a system for WSI classification of

breast histopathology images into three categories: normal/

benign, DCIS, and IDC categories. This problem is particularly

difficult because of the wide range of appearances of benign

lesions as well as the visual similarity of DCIS lesions to inva-

sive lesions at the cellular level. Figure 1 shows some examples

of lesions in our dataset. A system capable of discriminating

these three classes, therefore, needs to use high-resolution infor-

mation for discriminating benign lesions from cancer along with

contextual information to discriminate DCIS from IDC. To

develop a system that will work in a clinical setting, this study

uses WSIs rather than manually extracted regions. Also,

the cases in the “nonmalignant” category contained many of

the common benign lesions, as they appear in pathology

practice.

To this end, we introduce context-aware CNNs for classifi-

cation of breast histopathology images. First, we use a deep

CNN, which uses high-pixel resolution information to classify

the tissue into different classes. To incorporate more contexts to

the classification framework, we feed a much larger patch to this

model at test time. The feature responses generated by this

model are then input to a second CNN, stacked on top of the

first. This stacked network uses the compact, highly informative

representations provided by the first model, which, together

with the information from the surrounding context, enables it

(a) (b) (c)

Fig. 1 Example of breast tissue structures/lesions. Each image is of size 350 μm × 350 μm. (a) Normal
tissue and benign lesions. Benign breast diseases constitute a heterogeneous group of lesions including
developmental abnormalities, inflammatory lesions, epithelial proliferations, and neoplasms. The major-
ity of benign lesions are not associated with an increased risk for subsequent breast cancer. (b) DCIS. In
DCIS, the cells lining the ducts inside the breast appear cancerous, but no cancer has spread through the
ducts and into the breast tissue. (c) IDC spreads through the wall of the duct into the breast tissue. This
invasive carcinoma has the potential to metastasize or spread to other parts of the body through the
bloodstream or lymphatic system. The aim of this study is to develop a system for WSI classification
of breast histopathology images into three categories: normal/benign, DCIS, and IDC categories.
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to learn the global interdependence of various structures in dif-

ferent lesion categories. The performance of our system is evalu-

ated on a large breast histopathology cohort comprising 221

WSIs from 122 patients.

2 Methods

2.1 Overview of the System

The main challenge in the design of our classification frame-

work is that the appearance of many benign diseases of the

breast (e.g., usual ductal hyperplasia) mimics that of DCIS,

hence requiring accurate texture analysis at the cellular level.

Such analysis, however, is not sufficient for discrimination of

DCIS from IDC. DCIS and IDCmay appear identical on cellular

examination but are different in their growth patterns, which can

only be captured through the inclusion of larger image patches

containing more information about the global tissue architec-

ture. Because of computational constraints, however, it is not

feasible to train a deep CNN with large patches at high resolu-

tion that contain enough context.

Our method for classification of breast histopathology WSIs

overcomes these problems through sequential analysis with a

stack of CNNs. The key components of our classification frame-

work, including the CNN used for classification of high-resolu-

tion patches, the stacked CNN for producing dense prediction

maps, and a WSI labeling module, are detailed in the following

sections.

2.2 Deep Convolutional Neural Network for
Classification of Small High-Resolution Patches

Inspired by the recent successes of deep residual networks26 for

image classification, we trained and evaluated the performance

of this CNN for classification of small high-resolution patches

into normal/benign, DCIS, and IDC. We applied an adaptation

of the ResNet architecture called wide ResNet, as proposed by

Zagoruyko and Komodakis.27 This architecture has two hyper-

parameters: N and K determining the depth and width of the

network, respectively. We empirically chose N ¼ 4 and K ¼ 2

as a tradeoff between model capacity, training speed, and

memory usage. Hereafter, we denote this network as WRN-

4-2 (see Fig. 2). This network takes as input patches of size

224 × 224. Zero padding was used before each convolutional

layer to keep the spatial dimension of feature maps constant

after convolution.

The goal of this step was to transfer the highly informative

feature representations learned by this network produced at

its last convolutional layer to a stacked network, which is

described next.

2.3 Context-Aware Stacked Convolutional Neural
Network

In order to increase the context available for dense prediction,

we stack a second CNN on top of the last convolutional layer of

the previously trained WRN-4-2 network. The architecture of

the stacked network, as shown in Fig. 2, is a hybrid between
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Fig. 2 Description of the framework for classification of large input patches of breast tissue into benign/
normal, DCIS, and IDC. The framework has two main steps. At first, the WRN-4-2 architecture shown in
(a) is trained to classify input patches of size 224 × 224. Next, the architecture in (c) is used to classify
patches with input size of 768 × 768, which is composed of a CNN stacked on top of the last convolutional
layer of the WRN-4-2 architecture. The details of the two architectures are as follows. The WRN-4-2
architecture shown in (a) consists of an initial convolutional layer that is followed by three residual con-
volution groups (each of size N ¼ 4 residual blocks), followed by global average pooling and a softmax
classifier. Downsampling is performed by the first convolutional layers in each group with a stride of 2 and
the first convolutional layer of the entire network. Here, Conv 3 at 32 is a convolutional layer with a kernel
size of 3 × 3, and 32 filters. (b) The residual block (RB) used in the WRN-4-2 architecture. Batch nor-
malization and ReLU precede each convolution.

L
indicates an element-wise sum. Note that the 1 × 1

convolution layer is only used in the first convolutional layer of each residual convolution group.
(c) Architecture of the CAS-CNN with input size of 768 × 768. The weights of the components with dotted
outlines are taken from the previously trained WRN-4-2 network and are no longer updated during
training.
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the wide ResNet architecture and the VGG architecture.28 CAS-

CNN is fully convolutional29 and enables fast dense prediction

due to reusing of overlapping convolutions during inference. All

the parameters of the WRN-4-2 network were fixed during train-

ing. Despite being trained with fixed input patches of size

224 × 224, because of being a fully convolutional network,

WRN-4-2 can take a larger patch size during training of the

stacked network, and consequently, produce feature maps with

larger spatial dimensions. Moreover, because of fixing the

parameters of WRN-4-2, the intermediate feature maps of

this network do not need to be stored during backpropagation

of the gradient. This allowed us to train stacked networks with

much larger effective patch sizes. Consequently, we trained

three networks for classification of breast tissue into normal/

benign, DCIS, and IDC with patch sizes of 512 × 512,

768 × 768, and 1024 × 1024.

To produce the dense prediction map for a given WSI, the

stacked network was run over the image using the sliding win-

dow approach with a stride of 224. Background regions in the

WSI were excluded from the analysis as the scanner automati-

cally skipped scanning of areas with no tissue.

2.4 Whole-Slide Image Labeling

Given a prediction map produced by the stacked network, we

extracted a set of features describing global information about

the lesions and their architectural distribution for subsequent

classification into normal/benign, DCIS, or IDC. To this end,

the probability map was transformed into a three label map,

by assigning the class with the highest probability for every

pixel. The three label map could contain several connected

components for different object classes, which were used for

extracting features. Next, we describe the set of features

extracted for WSI labeling.

2.4.1 Global lesion-based features

Details of the extracted features are presented in Table 1. Global

lesion-based features include the total area of pixels classified as

benign, DCIS, IDC, or cancerous (DCIS and IDC combined),

and their corresponding normalized areas with respect to all

nonbackground pixels, along with the fraction of DCIS, and

IDC labeled pixels with respect to all cancerous pixels. We addi-

tionally computed a convex-hull area feature for IDC detected

lesions. IDC lesions usually appear as a large connected mass.

As such, we constructed a convex hull of all IDC detected and

connected components in the WSI and computed the area ratio

between the pixels labeled as IDC and the area of the convex

hull. In case multiple tissue sections were present in the

WSI, we took the average of these measures over different tissue

sections. Note that IDC labeled connected components with an

area smaller than 1500 μm
2 were discarded as false positives

prior to computation of the convex hull feature. At the end, we

computed the mean, median, and standard deviation of the area

and eccentricity of DCIS connected components as well as IDC

connected components.

2.4.2 Architectural features

These features describe the spatial distribution of DCIS and IDC

lesions in the WSI. They were extracted from the area-Voronoi

diagram30 and Delaunay triangulation (DT). We built these

graphs for DCIS and IDC lesions, independently. The seed

points for constructing the graphs were the center of the con-

nected components representing DCIS or IDC lesions.

The set of features computed for each area-Voronoi region

includes the eccentricity of the Voronoi region, the area ratio

of the Voronoi region and the total tissue area, and the area

ratio of the lesion inside the Voronoi region and the Voronoi

region itself. As per WSI, we computed the mean, median, and

standard deviation of these Voronoi area metrics. Additionally,

we added the area of the largest Voronoi region to the feature set.

The features extracted for each of the nodes in the DT include

the number of neighbors that are closer than a certain threshold

to the node (threshold ¼ 1500 μm), and the average distance of

these neighbors to the node. We computed the mean, median,

and standard deviation of these values as features. Additionally,

we added the highest average node distance in the DT to the

feature set.

Overall, a total of 57 features were extracted, which were

used as input to two random forest classifiers15 with 512 deci-

sion trees: one for three class classification of WSIs and the

other for binary classification of the WSIs into normal/benign

versus cancerous (DCIS and IDC). We tuned the parameters of

the classifiers by cross-validation on the combined set of train

and validation WSIs.

Table 1 Description of the features extracted from the labeled map produced by the CNN for classification of the WSI.

Feature category Feature list

Global lesion-based
features

(1-8) Total area of pixels classified as benign, DCIS, IDC, or cancerous (DCIS and IDC combined) and their
corresponding normalized areas with respect to all nonbackground pixels. (9-10) Fraction of DCIS, and IDC
labeled pixels with respect to all cancerous pixels. (11) The area ratio between the pixels labeled as IDC and the
area of the convex hull including all IDC connected components. (12-17) The mean, median, and standard
deviation of the area and eccentricity of DCIS connected components and (18-23) IDC connected components.

Architectural features
(area-Voronoi diagram)

The eccentricity of the Voronoi region, the area ratio of the Voronoi region and the total tissue area, and the area
ratio of the lesion inside the Voronoi region and the Voronoi region itself. (24-41) Per WSI, we computed the
mean, median and standard deviation of these Voronoi area metrics for DCIS and IDC lesions, independently.
(42-43) The area of the largest Voronoi region for the diagrams built on DCIS and IDC lesions, independently.

Architectural features
(Delaunay triangulation)

(44-55) The mean, median, and standard deviation of the number of neighbors for each node and the distances
of each node with respect to other neighboring nodes, computed independently for DCIS and IDC lesions.
(56-57) Highest average node distance for the graphs built on DCIS and IDC lesions.
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3 Experiments

3.1 Data

We conducted our study on a large cohort comprising 221 digi-

tized WSIs of H&E stained breast tissue sections from 122

patients, taken from the pathology archive. Ethical approval was

waived by the institutional review boards of the Radboud Univer-

sity Medical Center because all images were provided anony-

mously. All slides were stained in our laboratory and digitized

using the 3DHISTECH Pannoramic 250 Flash II digital slide

scanner with a 20× objective lens. Each image has square pixels

of size 0.243 μm × 0.243 μm in the microscope image plane.

Each slide was reviewed independently by a breast patholo-

gist (P. B.) and assigned a pathological diagnosis. Overall, the

dataset contains 100 normal/benign, 69 DCIS, and 55 IDC

WSIs. Two human observers (M. B. and M. H.) annotated

DCIS and IDC lesions using the automated slide analysis

platform.31 All the annotations were verified by the breast

pathologist. Note that the slide labels were assigned according

to the worst abnormality condition in the WSI. Therefore, a slide

with the IDC label may contain both IDC and DCIS lesions.

We split this cohort into three separate sets: one for fitting

classification models, one for intermediate validation and model

selection, and one set for final evaluation of the system (test set).

The training, validation, and test sets had 118 (50 normal/

benign, 38 DCIS, and 30 IDC), 39 (19 normal/benign, 11

DCIS, and 9 IDC), and 64 (31 normal/benign, 20 DCIS, and 13

IDC) WSIs, respectively. There was no overlap at the slide- and

patient-level between the three sets. The benign/normal category

included 15 normal and 85 benign WSIs comprising fibroade-

noma (14), ductal hyperplasia (11), adenosis (8), fibrosis (8),

fibrocystic disease (8), duct ectasia (7), hamartoma (7), pseu-

doangiomatous stromal hyperplasia (5), sclerosing lobular

hyperplasia (5), and mixed abnormalities (12). The WSIs from

these 10 benign categories and the normal class were propor-

tionally distributed in the training, validation, and test sets.

Note that the relative occurrence of these lesions in our dataset

is comparable to that encountered in routine diagnostics.

3.2 Training Protocols for Convolutional Neural
Networks

We preprocessed all the data by scaling the pixel intensities

between 0 and 1 for every RGB channel of the image patch and

subtracting the mean RGB value that was computed on the train-

ing set. The training data were augmented with rotation, flip-

ping, and jittering of the hue and saturation channels in the

HSV color model.

Patches were generated on-the-fly to construct mini-batches

during training and validation of both WRN-4-2 and CAS-CNN

networks, by random selection of samples from points inside the

contour of annotations for each class. For each mini-batch, the

number of samples per class was determined with uniform

probabilities.

Both WRN-4-2 and CAS-CNN were trained using Nesterov

accelerated gradient descent. The weights of all trainable layers in

the two networks were initialized using He et al.32 initialization.

Initial learning rates of 0.05 and 0.005 were used for WRN-4-2

and CAS-CNN, respectively. The learning rates were multiplied

by 0.2 after no better validation accuracy was observed for a pre-

defined number of consecutive epochs, which we denote as epoch

patience (Ep). The initial value for Ep was set to 8 and increased

by 20% (rounded up) after every reduction in learning rate. We

used a mini-batch size of 22 for the WRN-4-2 and 18 for the

CAS-CNN trained with patches of size 512 × 512 and 768 ×

768. The network trained on 1024 × 1024 patches had a greater

memory footprint and was trained with mini-batches of size 10.

Training of the WRN-4-2 involved one round of hard

negative mining. Unlike the annotation of DCIS and IDC

regions, the initial manual annotation of normal/benign areas

was based on an arbitrary selection of visually interesting

areas (e.g., areas that visually resembled cancer). These regions

are not necessarily difficult for our network. In addition, some of

the more difficult to classify benign regions could be under-rep-

resented in our training set. We, therefore, enriched our training

dataset by automatically adding all false-positive regions in

normal/benign training WSIs resulted by our initially trained

WRN-4-2 model.

Table 2 Patch-level accuracy for different networks on the validation
set.

Classification Patch size Architecture Accuracy

Normal/benign, cancer 224 × 224 WRN-4-2 0.9241

Normal/benign, DCIS, IDC 224 × 224 WRN-4-2 0.7995

Normal/benign, DCIS, IDC 512 × 512 CAS-CNN 0.8797

Normal/benign, DCIS, IDC 768 × 768 CAS-CNN 0.9050

Normal/benign, DCIS, IDC 1024 × 1024 CAS-CNN 0.9135

Fig. 3 ROC curve of the proposed system for binary classification of
the WSIs in the test set into normal/benign and cancer (DCIS and
IDC). The system achieved an AUC of 0.962 (95% CI, 0.908–
0.996). The confidence interval for the AUC was obtained using
the percentile bootstrap method.34

Table 3 Results of WSI label prediction on the test set.

Labels Acc Kappa AUC

Benign, cancer 0.891 0.781 0.962

Benign, DCIS, IDC 0.813 0.700 —
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3.3 Empirical Evaluation and Results

We evaluated the performance of our system for classifying the

WSIs into normal/benign, DCIS, and IDC categories using the

accuracy measure and Cohen’s kappa coefficient.33 We addi-

tionally measured the performance of our system for the binary

classification of normal/benign versus cancer (DCIS and IDC

combined) WSIs.

As an intermediate evaluation, we began with measuring the

performance of the WRN-4-2 for the binary and three-class

problems at the patch level (see Table 2). These are only results

on the validation set, as this network is not used for producing

the dense prediction maps individually. As can be seen, the

model performs significantly better for the two class problem

with an accuracy of 0.924 compared to the three class accuracy

of 0.799 for the three-class problem. This could be explained by

the fact that WRN-4-2 only operates on small patches of size

224 × 224 and does not have enough contexts for a more accu-

rate discrimination of the three classes.

The results for the performance of the CAS-CNN on the val-

idation set for the three-class problem are shown in Table 2. The

3-class accuracy of this network was considerably improved

compared to that of the WRN-4-2 at the patch level. We also

observe that increasing the training patch-size leads to better

performance. Accuracies of 0.872, 0.905, and 0.914 were

obtained for the CAS-CNN networks trained on 512 × 512,

768 × 768, and 1024 × 1024 patches, respectively.

Due to heavy computational costs of the network operating

on 1024 × 1024 patches, the CAS-CNN network trained on

768 × 768 was ultimately selected for producing dense predic-

tion maps. The results of the random forest classifier for WSI

classification on the test set of our dataset are presented in

Table 3. For the binary classification task, our system achieves

an AUC of 0.962 (95% CI, 0.908–0.996). The accuracy and

kappa values were 0.891 and 0.781, respectively. The ROC

curve of the system for binary classification of WSIs into cancer

versus normal/benign is shown in Fig. 3.

The system achieves an overall accuracy and kappa value of

0.813 and 0.700 for three-class classification of WSIs. The con-

fusion matrix of the test set predictions is presented in Table 4.

Figure 4 presents several examples of correctly and incorrectly

classified image patches for different lesion classes. The top-

ranked features for both binary and three-class classification

tasks, identified based on random forest feature importance

analysis, were the total area of IDC regions, the ratio between

the total area of IDC regions and the total tissue area in the WSI,

the total area of cancerous regions (DCIS and IDC combined),

the area ratio between IDC and cancerous regions in the WSI,

Table 4 Confusion matrix of test set predictions.

Benign DCIS IDC

Benign 29 2 0

DCIS 4 12 4

IDC 0 2 11

Fig. 4 Examples of correctly and incorrectly classified patches for different types of lesions. Each image
is of size 350 μm × 350 μm. (a–c) Correctly classified normal, DCIS, and IDC regions, respectively. (d) A
benign lesion (usual ductal hyperplasia) misclassified as DCIS. (e) A DCIS lesion misclassified as nor-
mal/benign. (f) IDC misclassified as DCIS.
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and the median of the ratios between the area of each IDC con-

nected component and its corresponding Voronoi area.

4 Discussion and Conclusion

In this paper, we presented a context-aware stacked CNN (CAS-

CNN) architecture to classify breast WSIs. To the best of our

knowledge, this is the first approach investigating the use of

deep CNNs for multiclass classification of breast WSIs into nor-

mal/benign, DCIS, and IDC categories. CAS-CNN consists of

two stages: in the first, we trained a CNN to learn cellular level

features from small high-resolution patches and in the second,

we stacked a fully convolutional network on top of this to allow

for incorporation of global interdependence of structures to

facilitate predictions in local regions. Our empirical evaluation

demonstrates the efficacy of the proposed approach in incorpo-

rating more contexts to afford a high classification performance.

CAS-CNN trained on large input patches outperforms the wide

ResNet trained with input patches of size 224 × 224 by a large

margin and consistently yields better results when trained with

larger input patches.

Our system achieves an AUC of 0.962 for the binary clas-

sification of normal/benign slides from cancerous slides. This

is remarkable, given the existence of 10 benign categories in

the dataset, demonstrating the potential of our approach for

pathology diagnostics. Based on the achieved performance on

an independent test set, this system could be used to sieve

out ∼50% of obviously normal/benign slides on our dataset

without missing any cancerous slides.

The performance of the system on the three-class classifica-

tion of WSIs was also very promising. An accuracy of 0.812 and

a kappa value of 0.700 were achieved. While discrimination of

normal/benign slides from IDC slides was without any misclas-

sification, errors in discriminating between normal/benign slides

and DCIS slides, as well as DCIS and IDC slides, were

common. We postulate that the reason for these misclassifica-

tions is primarily because of the difficulty in discrimination

of several benign categories, such as usual ductal hyperplasia

from DCIS, which is also a source of subjective interpretation

among pathologists. This could, in turn, be alleviated by

obtaining more training data for these specific benign classes.

The second reason could be the requirement of even larger

receptive fields to enable discrimination of DCIS from invasive

cancer. As shown in Table 2, the performance of CAS-CNN

consistently improved with increasing patch size. However, this

came with increased computation time both during training and

inference. One major reason for this increase is that larger patch

sizes lead to higher computational costs (e.g., larger memory

usage). Inference time was increased from ∼2 to 3 h∕WSI for

input patches of size 768 × 768 from 4 to 5 h for input of size

1024 × 1024. In addition, as the patch size increases, more time

is required for on-the-fly fetching of multiple patches from the

WSI for both training and inference phases. One way to redress

the problem could be the inclusion of additional downsampled

patches with larger receptive fields as input to a multiscale

network35 or using alternative architectures, such as U-net.36,37

The final reason behind these errors lies in the fact that discrimi-

nation of certain DCIS patterns from IDC, purely based on

H&E staining, can be complex. As such, pathologists may use

additional staining, such as myoepithelial markers to differen-

tiate between DCIS and IDC lesions.38

Although the current system learns to exhibit some hue and

saturation invariance, specialized stain standardization techniques

exist39–41 and have been shown to greatly improve CAD

system performance42,43 by reducing the stain variations.44 It is

likely that standardizing the WSIs would also improve generali-

zation of the performance of our network.

Although our primary aim was to facilitate pathology diag-

nostics by discriminating between different breast lesion catego-

ries, our system could serve as an important first step for the

development of systems that aim at finding prognostic and pre-

dictive biomarkers within malignant lesions.45 This will be one

of our major directions for future work.
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37. M. U. Dalmış et al., “Using deep learning to segment breast and fibro-

glandular tissue in MRI volumes,” Med. Phys. 44(2), 533–546 (2017).

38. M. P. Foschini et al., “Differential expression of myoepithelial markers

in salivary, sweat and mammary glands,” Int. J. Surg. Pathol. 8(1), 29–

37 (2000).

39. B. E. Bejnordi et al., “Stain specific standardization of whole-slide histo-

pathological images,” IEEE Trans. Med. Imaging 35(2), 404–415 (2016).

40. A. M. Khan et al., “A nonlinear mapping approach to stain normaliza-

tion in digital histopathology images using image-specific color decon-

volution,” IEEE Trans. Biomed. Eng. 61(6), 1729–1738 (2014).

41. M.Macenko et al., “Amethod for normalizing histology slides for quan-

titative analysis,” in IEEE Int. Symp. on Biomedical Imaging: From

Nano to Macro (ISBI ’09), pp. 1107–1110, IEEE (2009).

42. F. Ciompi et al., “The importance of stain normalization in colorectal

tissue classification with convolutional networks,” arXiv preprint

arXiv:1702.05931 (2017).

43. D. Wang et al., “Deep learning for identifying metastatic breast cancer,”

arXiv preprint arXiv:1606.05718 (2016).

44. B. E. Bejnordi et al., “Quantitative analysis of stain variability in his-

tology slides and an algorithm for standardization,” Proc. SPIE 9041,

904108 (2014).

45. M. Veta, “Tupac16: tumor proliferation assessment challenge 2016,”

http://tupac.tue-image.nl (14 November 2017).

Babak Ehteshami Bejnordi studied electronics engineering as his
undergraduate major at the University of Guilan, Iran. In 2013, he
received his MSc in electrical engineering from Chalmers University
of Technology, Sweden. In April 2013, he started his PhD at the
Diagnostic Image Analysis Group, Radboud University, The Nether-
lands. His PhD project focuses on the automated detection and char-
acterization of breast cancer in digital pathology images. His research
interests are deep learning, machine learning, medical image analy-
sis, and computer vision.

Guido Zuidhof received his BA degree from Radboud University,
Nijmegen, The Netherlands, in 2015. He is currently finishing his dou-
ble master’s degree in artificial intelligence and computing science at
this university. His main research interests include machine learning,
deep learning, and computer vision.

Maschenka Balkenhol received her MD degree from Maastricht
University, The Netherlands, in 2014. In 2015, she started her PhD
project at the Department of Pathology, Radboud University Medical
Center, Nijmegen, The Netherlands, which aims to construct statisti-
cal models for triple negative breast cancer prognosis by using digital
image analysis. Since 2016, she also has been a pathology resident
in the same department.

Meyke Hermsen received her BSc at the HAN University of applied
sciences, with a main focus on cytology, histology, and pathology.
After graduating in 2013, she started working as a research technician
at the Pathology Department of Radboud University Medical Center in
the Computational Pathology and Nephropathology Group. In July
2016, she started her PhD project in the computational pathology
group. Her research interests include renal transplantation pathology,
transplantation immunology, and image analysis.

Peter Bult has been a breast pathologist at the Radboudumc in
Nijmegen, The Netherlands, since 1994. He received his PhD degree
in 2009 for his thesis “Prognostic indicators of primary breast cancer in
relation to patient’s risk profile.” His research is focused on breast
cancer with special attention to the sentinel node procedure, lymph
node metastases (isolated tumor cells, micrometastases), heredi-
tary/familial breast cancer and high risk lesions, HER2 testing, and
computer-aided detection (CAD) in pathology.

Bram van Ginneken is a professor of functional image analysis at
Radboud University Medical Center. He is a cochair of the
Diagnostic Image Analysis Group within the Department of Radiology
and Nuclear Medicine. He is also a cofounder of Thirona (Nijmegen,
The Netherlands). He studied physics at the Eindhoven University of
Technology and at Utrecht University. In March 2001, he obtained his
PhD at the Image Sciences Institute (ISI) at Utrecht University. He is
an associate editor of IEEE Transactions on Medical Imaging and
member of the editorial board of Medical Image Analysis.

Nico Karssemeijer is a professor of computer-aided diagnosis at the
Radboud University Nijmegen, where he also graduated, and has an
MSc degree in physics from Delft University of Technology. He is a
member of the editorial boards of Journal of Medical Imaging, Physics
in Medicine and Biology, and Medical Image Analysis. In 2012 and
2013, he served as symposium chair of SPIE Medical Imaging. He
is also a cofounder of Volpara Solutions (Wellington, New
Zealand) and founder and CEO of ScreenPoint Medical (Nijmegen,
The Netherlands).

Geert Litjens studied biomedical engineering at Eindhoven University
of Technology. Subsequently, he completed his PhD in “Computer-
aided detection of prostate cancer in MRI” at the Radboud University
Medical Center. He spent 2015 as a postdoctoral researcher at the
Tissue Imaging and Analysis Center in Heidelberg. He is currently
an assistant professor in computational pathology at the Department
of Pathology in the Radboud University Medical Center.

Jeroen van der Laak received his MSc in computer science and PhD
in medical science from Radboud University in Nijmegen, The
Netherlands. He is currently an associate professor in digital pathol-
ogy at the Department of Pathology of the Radboud University
Medical Center in Nijmegen. His research interest includes deep
learning-based analysis of whole-slide images for improvement of
routine pathology diagnostics, objective quantification of immunohis-
tochemical markers, and study of imaging biomarkers for prognostics.

Journal of Medical Imaging 044504-8 Oct–Dec 2017 • Vol. 4(4)

Bejnordi et al.: Context-aware stacked convolutional neural networks for classification of breast. . .

http://dx.doi.org/10.1109/MSP.2012.2205597
http://dx.doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1016/j.media.2017.07.005
http://dx.doi.org/10.1001/jama.2016.17216
http://dx.doi.org/10.1038/nature21056
https://camelyon16.grand-challenge.org
https://camelyon16.grand-challenge.org
https://camelyon16.grand-challenge.org
https://camelyon16.grand-challenge.org
https://dx.doi.org/10.5244/C.30.87
https://dx.doi.org/10.5244/C.30.87
http://dx.doi.org/10.1117/12.2007185
https://github.com/GeertLitjens/ASAP
https://github.com/GeertLitjens/ASAP
https://github.com/GeertLitjens/ASAP
http://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.1016/j.nicl.2017.01.033
http://dx.doi.org/10.1002/mp.12079
http://dx.doi.org/10.1177/106689690000800108
http://dx.doi.org/10.1109/TMI.2015.2476509
http://dx.doi.org/10.1109/TBME.2014.2303294
http://dx.doi.org/10.1109/ISBI.2009.5193250
http://dx.doi.org/10.1109/ISBI.2009.5193250
http://dx.doi.org/10.1117/12.2043683
http://tupac.tue-image.nl
http://tupac.tue-image.nl
http://tupac.tue-image.nl

