
Context-Aware Staged Configuration of Process

Variants@Runtime

Aitor Murguzur1, Xabier De Carlos1, Salvador Trujillo1, and Goiuria Sagardui2

1 Software Production Area, IK4-Ikerlan Research Center, Spain
{amurguzur,xdecarlos,strujillo}@ikerlan.es

2 Embedded Systems Group, Mondragon University, Spain
gsagardui@mondragon.edu

Abstract. Process-based context-aware applications are increasingly be-
coming more complex and dynamic. Besides the large sets of process vari-
ants to be managed in such dynamic systems, process variants need to
be context sensitive in order to accommodate new user requirements and
intrinsic complexity. This paradigm shift forces us to defer decisions to
runtime where process variants must be customized and executed based
on a recognized context. However, there exists a lack of deferral of the
entire process variant configuration and execution to perform an auto-
mated decision of subsequent variation points at runtime. In this paper,
we present a holistic methodology to automatically resolve process vari-
ability at runtime. The proposed solution performs a staged configuration
considering static and dynamic context data to accomplish effective de-
cision making. We demonstrate our approach by exemplifying a storage
operation process in a smart logistics scenario. Our evaluation demon-
strates the performance and scalability results of our methodology.

Keywords: Runtime Variability, Late Selection, Context-awareness,
Dynamic Software Product Lines, Smart Logistics.

1 Introduction

In recent years, emerging technologies, such as Machine-to-Machine (M2M) com-
munications, Cloud Computing, Service-oriented Computing (SOC), Business
Process Management (BPM) and Big Data analytics, have been leveraged to
support businesses achieving their goals under changed marked conditions, e.g.,
reducing the time to market and costs. From the marriage of the latter technolo-
gies, smart services are commonly deployed and extended into a variety of smart
devices and elastic cloud platforms, to improve decision making, rapid provision-
ing and deployment, and to provide greater flexibility. Atop of such service-based
platforms, process-intensive and event-based applications offer a large number of
processes as a catalyst for collaboration, integration and control, e.g., enabling
the Business Process as a Service (BPaaS) concept [1].

Variability management for such processes is indeed becoming challenging,
e.g., in smart logistics [2]. In this light, new techniques and tools are being de-
veloped to address the shortcomings of standard solutions to deal with large

M. Jarke et al. (Eds.): CAiSE 2014, LNCS 8484, pp. 241–255, 2014.
c© Springer International Publishing Switzerland 2014

242 A. Murguzur et al.

sets of process variants and adequate process variants to meet new require-
ments, context changes and intrinsic complexity. Process variability approaches
[3,4] handle different process variants, which are entirely or partially common to
several domain stakeholders and assets to which processes are applied. Process
variants share a common part of a core process whereas concrete parts fluctuate
from variant to variant. In dynamic conditions, such variants need to be con-
text sensitive with the aim of adequately providing multiple stakeholders/assets
configurations and reasoning [5], and thus, drive customization based on context
information [6]. Therefore, context-awareness demands innovative solutions that
allow process-based applications to change during runtime.

This paradigm shift has imposed the emergence of Dynamic Software Product
Lines (DSPLs) [7], which support late variability, i.e., defers product configura-
tion to runtime, exploiting traditional Software Product Line (SPL) concepts.
Regarding to the BPM field, a configurable process model is capable of dynam-
ically (re-)binding variation points at runtime, considering context information.
Once context data is detected from external sensors or new user requirements,
the system decides which alternatives of the configurable process must be acti-
vated or deactivated and executes the decision via runtime binding. At a glance,
the key properties of DSPLs are: (i) support runtime variability, (ii) are able to
handle unexpected and environmental changes, (iii) may change variation points
at runtime, (iv) may support context-awareness and self-adaptive properties, and
(v) may include an automated decision making.

Some of the above-mentioned properties are partially supported by existing
work in the literature, such as the Worklets approach [8] which enables user-
driven selection of self-contained sub-processes aligned to each activity depend-
ing on the particular context at runtime, or the DyBPEL engine [9] which has
the ability to adapt running and compliance Business Process Execution Lan-
guage (BPEL) instances when the corresponding process variant schema evolves.
However, there is a lack of deferral of the entire process variant customization
and execution to perform an automated decision making at runtime. This would
reduce the time to change from one process variant to another, as well as scaling-
up and modifying process variant alternatives during operation.

In this paper, we aim to solve such problem by focusing on process models
variability at runtime. The main contributions provided by this paper can be
summarized as follows: c1 - we propose a novel methodology and a prototype
toolkit called LateVa to automatically resolve process variability at runtime; and
c2 - we demonstrate through an experimental smart logistics case study that our
methodology is scalable and can be used in dynamic settings.

The paper is organized as follows: In Section 2, we present a detailed overview
of the case study at the ACME Corp. and the problems associated with the
complexity of its operational processes. In Section 3, we present a methodology
based on an automated customization of process variants using the late selection
of fragments at runtime to address the issues raised by the case study. The results
of our evaluation are detailed in Section 4. Section 5 discusses related work, while
we conclude the paper with a summary and future next steps in Section 6.

Context-Aware Staged Configuration of Process Variants@Runtime 243

2 Case Study: Smart Logistics

ACME Corp. is a leading innovative company that provides goods handling
systems with a multiplicity of solutions for automated warehouses and storage,
baggage handling, sorting systems and picking facilities. ACME Corp. designs
and develops Warehouse Management Systems (WMS) for each customer (i.e.
offering an ad-hoc solution for each customer to satisfy their business needs) in
four areas, namely healthcare, retail, industrial components and food.

In essence, a WMS is a key part of the supply chain which primarily aims to
control the movement and storage of goods (also referred to as articles) within a
warehouse. Each WMS is complex and comprises a large number of operational
processes [2], such as storage, retrieval and picking.

– Storage: The goods storage process allows goods to be stored based on dif-
ferent location search strategies (e.g. manual location, fixed location, next
empty location, storage unit type, etc.) detailed in a WMS.

– Retrieval: The retrieval process enables the complete removal of goods from a
warehouse, following disparate extraction strategies (e.g. FIFO, LIFO, least
quantity, expiration date, etc.). Such extracted goods are typically moved to
an intermediate area for custom shipping configurations.

– Picking: The picking process merges both retrieval and storage processes. It
consists of taking and collecting goods in a specified quantity before shipment
to satisfy customer orders. After each picking operation, the transport unit
(e.g. pallet, box) with its remaining articles is routed back to a specific
warehouse location based on pre-established storage strategies.

Inside an automated warehouse, the aforementioned operational processes can
be modeled and executed by a BPM platform in order to track and control all
warehouse flows, and enable multi-agent interaction, such as physical devices
(e.g. conveyor systems, transelevators, pick to light systems, RFID, presence
sensors, etc.) and warehouse operators (e.g. maintenance manager, workstation
agents, picking operator, etc.) [10]. Hence, logistics process automation provides
a smart visualization of existing operational processes for eachWMS solution and
complex event triggering from dozens of sensors; however, adopting a standard
BPM platform in a smart logistics scenario presents four major issues:

Large set of process variants. Processes may have common parts and de-
tails that can vary for each WMS solution, influenced in various ways by
warehouse types, storage areas, location types and conformance checking.
As a result, designing ad-hoc processes for each WMS becomes time, re-
source and cost consuming, as well as an error prone task.

Constantly changing context data. In each automated warehouse, installed
sensors are able to provide near real-time data, for instance, about warehouse
locations, conveyor systems and the status of goods in transit. It is therefore
essential that such events are picked up just-in-time for appropriate decision
making. Further, although processes may include different wait states for
event catching, inadequate event processing could have a negative impact on
the execution of subsequent activities, often requiring manual intervention.

244 A. Murguzur et al.

Scalability. An initial warehouse layout can be enlarged to accommodate large
amount of orders and/or improve its productivity rates. Previously deployed
processes have to be re-designed tackling new requirements. This often in-
volves designing, testing and deploying updated operating processes.

High-availability. WMS execution may not be interrupted and 24/7 service
availability is most required. However, any unexpected process execution er-
ror would completely stop the system. This would result in expensive system
downtime until a system engineer could take corrective action.

3 Process Variants@Runtime

In this section, we present a fragment-based re-use methodology used to man-
age the variability of process models at runtime, that covers the modeling and
execution phases of the process life-cycle. In Section 3.1, we present a brief sum-
mary of our foundations [11]. Due to space constraints, the formal definitions of
LateVa foundations are provided as supplement1. We detail the different steps of
our methodology in Section 3.2. In Section 3.3, we describe the implementation
of the methodology in our LateVa toolkit.

3.1 Foundations

We follow the Base-Variation-Resolution (BVR) modeling approach [12] from
the Software Product Line Engineering (SPLE), which states the separation of
model commonality, variability and possible configurations into separate models.

Base Model. The first input of our methodology is a base model. It represents
the commonality shared by a process family in a particular domain and place-
holder activities (variation points) that are subject to vary. This configurable
process model may be seen as the intersection or Greatest Common Denomina-
tor (GCD) of all related process variants. Variation points identify specific parts
in a base model where variant binding occurs. In light of this binding time, we
distinguish three types of variation points, as illustrated in Fig. 1: a) static vari-

ation point - resolved at configuration-time (design-time); b) partial variation

point - partially resolved at configuration-time, simplifying the spectrum of run-
time fragment choices within a variation model; and c) dynamic variation point

- fully determined at runtime. The latter type of variation point may have two
different behaviors: with-flag which indicates just-in-time resolution and with no-

flag in which the resolution is performed at base model instance initialization.
In this paper, as will be shown later, we only focus on those two.

Process Fragment. A process fragment, or simply fragment, describes a single
variant realization option for each variation point within a particular base model.
Likewise in a base model specification, it may include different kind of variation
points for upholding nested variation points and control flow elements.

1 http://tinyurl.com/lateva-formaldef

http://tinyurl.com/lateva-formaldef

Context-Aware Staged Configuration of Process Variants@Runtime 245

Variation
Model

Variability
element

Fragment Constraint

Domain
feature

Variation point

VP_

FR_

Static
context-data

Dynamic
context-data

optional

mandatory

alternative
(xor)

or

Legend

Static VP (S_) Partial VP (P_) Dynamic VP (D_)

No-@ag With-@ag

Fig. 1. Variations of the variation model

Variation Model. The third input of our methodology is a variation model

which details all the particularities of a process variant that must be satisfied
for valid process variant configuration. It offers abstraction for the base model
and its variation points when enhancing a customization, in addition to deci-
sion support. Fig. 1 contains a feature diagram for the variation model subtypes
that are differentiated in our approach, using the notation proposed by Batory
[13]: a) Variability elements - stand for a family of process variants, their corre-
sponding domain features and variation points. A feature captures a property of
the domain that is relevant for a user. It is related to its parent as mandatory,
optional, alternative (xor) and or relations [14]; b) Fragments - characterize vari-
ation points’ realization options; and c) Constraints - represent constraints to
valid process variant resolutions (complex feature-feature, feature-variable and
variable-variable cross-tree relationships).

3.2 Methodology

We describe the methodology in two phases where each phase subsumes several
sub-steps. An illustrative overview of the methodology is given in Fig. 2 (a).

Process Variability Specification and Deployment (LateVa Modeler).
This is achieved via steps numbered 1-5 in Fig.2 (a). Following process family
identification, a system engineer provides three inputs as described in Section 3.1:
a) a base model representing the commonality and variability of a process family
(will be exposed as a business service) by employing the OMG standard Busi-
ness Process Model And Notation (BPMN) version 2.0; b) process fragments
in BPMN2; and c) a variation model for decision support exposed as a feature
model given their common industrial adoption [15]. Variation points are modeled
using custom BPMN2 activity constructs (e.g. for each type of variation point)
supported in our Activiti plugin (see Fig. 3).

246 A. Murguzur et al.

Fig. 2. (a) Methodology (b) Context-data/feature mapping example

In Step 3, the variations for portraying a single variation model (shown in grey
in Fig. 1) are: concrete domain feature names and variation points representing
domain variability, features with the VP extension mapped to variation points
in a base model, for fragments we use features with FR extension and cross-tree
constraints between variability elements and fragments. We distinguish between
two context data types, which can be directly mapped to domain features: static
context data variable/value pairs for static preferences which rarely change over
time and are known at base model initialization, and dynamic context data vari-
able/value pairs which change and alter over time as they become unpredictable
in practice. Therefore, our model could contain features capturing domain ab-
straction and features associated with domain data.

After all models (base models, fragments and variation models) are defined,
they are compiled and deployed to the models repository. In this step, we make
use of a variation model compiler (the Clafer compiler [16]) to check that pre-
defined features and constraints are well-defined prior to deployment. Since fea-
tures related to variation points and fragments use direct naming compounds for
corresponding process model IDs (see patterns below for creating variation point
and fragment features), the compiler does not check if the inserted base model
and fragment references already exist in the models repository. Still, such func-
tionality is supported by the fragment engine which directly retrieves mapping
names and threats exceptions in case of mismatch.

Context-Aware Staged Configuration of Process Variants@Runtime 247

Fig. 3. (a) Storage base model and D VP activities (b) f1 and f2 fragment samples

Pattern for representing variation point features

{S_,P_,D_} + VP_ + {baseModelVPName } + {parentFeatureName }

Pattern for representing fragment features

FR_ + {fragmentId } + {parentFeatureName }

The resolution of process variants is context sensitive. Such resolution could
differ from context to context depending on domain context data values and
variation model constraints. Those relationships between features, variables, and
context data variable/value pairs are represented by context model mapping in
Step 5 (see Fig. 2 (b) mapping example for the smart logistics case study). Each
context data row must define its contextVariableName - a concrete variable name
in a domain context model, featureName - represents a feature or a variable
in a variation model, contextValue - context information of a context variable,
defaultValue - a valid value which can be assigned for a context variable, and
parseType - represents the aforementioned static and dynamic data types.

Staged Process Variants Configuration and Execution (LateVa En-
gine). Base models generated in the previous steps need to be resolved prior to
execution. After Step 6, the engine takes system properties for granted. We can
configure the engine to work in two different running modes:

– allin mode (initialization/startup runtime resolution strategy): runs a two-
staged resolution prior to base model instance initialization. Useful when
context data values are not altered rapidly over time, so the engine does not
necessarily postpone decision making, i.e., variation point resolution and
fragment assignment.

– staged mode (n-staged online/pure-runtime resolution strategy): performs
n-staged online resolution until all variation points are self-determined. Re-
quired when a variation point’s execution is dependant on fluctuating data
(just-in-time dynamic data), and thus faces a critical decision. Critical dy-
namic variation points are indicated with-flag while non-critical (with no-
flag) are resolved at base model instance initialization.

Both running modes start by handling messages, as represented in Step 7
of Fig. 2. When a JavaScript Object Notation (JSON) message is received an
internal context object is created based on context model mapping. In addition to
static and dynamic variable-value pairs, a JSON message includes three common
values, namely mappingId - refers to a valid context model mapping identifier,

248 A. Murguzur et al.

Fig. 4. (a) allIn and (b) staged running modes of the fragment selector engine

service - describes a business service (base model) that should be executed, and
instance - identifies a running base model instance. It could also contain extra
data that will be ignored by the engine, but recognized by others (e.g. data
visualization). If context model mapping and business service description are
encountered, the engine follows a pre-established run strategy.

Example of a JSON message for the smart logistics case study

{message :{"date ":"2013 -10 -25 ", "time ":"09:40:13", "mappingId "

:"Geneva", "service":"StorageOP ", "instance ":"4401", "

domain":"SmartLogistics ", "operationalFlow ":"HighRates ",

"scanner":"Barcode", "checkpoint ":"P2", "boxWidth":"280",

"boxLenght ":"480", "boxHeight ":"520", "boxWeight ":"5", "

boxInCorridor ":"0"}}

Bearing in mind the two running strategies, steps 8-9 in Fig. 2 are executed
differently for each configuration (see Fig. 4). In allin mode, the fragment se-
lector loop starts by retrieving base model and variation model definitions for
a given business service. Here, we automatically transform a variation model to
a constraint satisfaction problem (CSP). Proposals using constraint solving to
reason on feature modes have been studied over the past two decades [17]. In
our case, every optional feature becomes a boolean variable of the CSP with do-
main {false,true} or {0,1}, whereas every mandatory domain feature becomes
a {true} or {1} variable.

The second activity in Fig. 4 (a) determines context data values in two-stages.
Firstly, static context data is parsed for putting features into one:

Example of static feature constraint

vSpecModel .addConstraint (one(concreteFeature));

Additionally, dynamic values are specified by setting Integer constraints:

Context-Aware Staged Configuration of Process Variants@Runtime 249

Example of dynamic feature constraint

concreteFeature .addConstraint (equal(joinRef ($this()),

constant ((int) constraintValue)));

After parsing all context values and setting up constraints to the variation
model, the solver starts running propagation and search to derive possible valid
configurations. We handle three situations:

– No solution after allin: Apart from the functionality provided in Fig. 4 (a),
the fragment selector engine must deal with unexpected situations, such
as no solution found after model solving. Pro tem, the engine rollbacks all
operations for an unexpected message.

– One solution after allin: The engine assigns fragments to applicable variation
points from the resulting solution, saves this model (resolution model) in the
models repository and enhances a base model instance. When the execution
reaches a variation point, it starts a valid fragment execution.

– Many solutions after allin: When the solver returns more than one valid solu-
tion for the current context, we may select between four different strategies:
(i) get-first to get the first feasible fragment, (ii) get-default to select the
fragment marked as default, (iii) recommender system to decide which is the
suitable solution for the given context, and (iv) manual-selection to enable
system-user decision making. In this paper, the engine automatically runs a
get-first strategy, i.e., it returns the first correct resolution from all possible
configurations and establishes this as an input for the “one solution” flow.

The second run mode, namely the staged mode, may activate two different
branches depending on whether the received context data is for a running in-
stance or not. This is indicated by the instance variable.

In a first stage (the upper workflow in Fig. 4 (b)), both static and dynamic
constraints for dynamic variation points with no-flag are set (with-flag indicates
that a variation point is critical and thus needs just-in-time data for its proper
resolution). In the event of many solutions, the get-first strategy is performed
to assign fragments for dynamic variation points with no-flag and an interme-
diate model is saved. Otherwise, one solution flow performs assignations for all
dynamic variation points in order to ensure a valid customization.

The n-staged flow (the lower workflow in Fig. 4 (b)) is activated to handle
“just-in-time” context messages. For each dynamic variation point in a wait state
(with staged flag = true), the engine establishes constraints for an intermediate
model which is restored from the models repository by the specified instance
ID. The solver uses this altered model as an input, and concludes if a sound
configuration exists. If just one exists, all with-flag dynamic variation points
are determined by a suitable fragment. Many solutions after n-staged, however,
implies the activation of a many-solution strategy (e.g. get-first) to assign a
fragment for pending dynamic variation points with-flag. These are then re-
activated by signal-catching to initiate a concrete fragment instance.

250 A. Murguzur et al.

3.3 Implementation in LateVa Toolkit

We implement our methodology in the LateVa toolkit to manage the variability
of process models at runtime. The implementation is standalone and employs
open source frameworks such as Activiti2 for base model and process fragment
modeling and execution, Clafer3 for variability representation with its alterna-
tive backend using Choco4 constraint solver, ActiveMQ5 as the engine broker
and Camel6 for integration. A prototype implementation of the toolkit encom-
passes two modules: the LateVa-modeler for representing models (as an Activiti
extension) and the LateVa-engine for executing late variability.

4 Evaluation

In this section, we perform an experiment to synthesize a storage process for
the ACME Corp. case study and discuss the experimental results and threats to
validity of the proposed methodology.

4.1 Experimental Setup

We developed a case scenario to automatically configure and enhance a storage
process to test an automated warehouse operation in the Geneva apparel in-
dustry. The warehouse layout consists of a single material entry point in which
goods are packed in carton boxes (288x492x531mm), two corridors each contain-
ing 2000 locations, 2 picking workstations and a single material retrieval point.
Due to space limitations, the full description of the storage process example is
given online at: http://aitormurguzur.com/projects/lateva/caise2014

4.2 Results of Discussion

We generated 1 base model with 3 dynamic variation points (1 with no-flag:
D VP Scanner, and 2 with-flag: D VP Checkpoint and D VP Decisionpoint, as
depicted by Fig. 3), 5 fragments and 1 variation model with 22 features and 8
constraints, covering 3x2x2 = 12 process variant customizations for the Geneva
layout. These models were used to generate a test case for 157 storage oper-
ations. We ran the experiment as a standalone application on a 13inch MacBook
Air with 8GB 1600 MHz DDR3 RAM, and Core i7 running @2 GHz.

In this paper, we focus on understanding the performance of our approach in
relation to the smart logistics case study. We use the non-intrusive perf4j li-
brary to perform measurements. Dynamic variation point execution performance
is measured by total processing time. Fig. 5 shows the minimum, maximum and

2 http://activiti.org
3 http://clafer.org
4 http://www.emn.fr/z-info/choco-solver
5 http://activemq.apache.org
6 http://camel.apache.org

http://aitormurguzur.com/projects/lateva/caise2014
http://activiti.org
http://clafer.org
http://www.emn.fr/z-info/choco-solver
http://activemq.apache.org
http://camel.apache.org

Context-Aware Staged Configuration of Process Variants@Runtime 251

Fig. 5. TTR of dynamic variation points with-flag

average time taken by each with-flag dynamic variation point before fragment ex-
ecution. Consequently, the average time-to-resolution (TTR) that a base model
instance has to wait for using this kind of variation points is 192.2197 ms. The
delay can be omitted by including events and exclusive gateways in the modeling
phase, however, LateVa solves several issues raised at the beginning of the paper:

Large set of process variants. This is achieved by separating operational pro-
cess variability in disjointed models. The key model (the variation model)
captures variability at the domain level in which different processes have
been assembled. This allows users to focus on domain concepts rather than
on each BPMN2 elements.

Constantly changing context data. The variation model may contain two
types of domain features: features for domain abstraction and features/vari-
ables mapped to context data. Dynamic context data can be controlled by
establishing constraints and automatically customizing process variants.

Scalability. Our approach supports variability by extension [18], i.e., it allows
variable segments of operational processes to be captured in fragments and
weaved into a base model. Consequently, the base model is minimal in that
it only contains elements common to all processes. Specific variation points
elements (i.e. fragments) are added and/or updated when needed. This also
applies to new context data types.

High-availability. Unexpected situations are dealt effectively and appropriate
fragments are updated when necessary. Fragment replacement only affects
new configurations while running base model instances will assure their cor-
rect execution path.

Looking beyond the particulars of the case study, we lend to generalization
by checking how our approach operates with increasing LateVa fragments, i.e.,
approach scalability. We added 50 extra fragments to D VP Checkpoint, so that

252 A. Murguzur et al.

Fig. 6. TTR of D VP Checkpoint by increasing fragments in the variation model

the number of possible variant configurations increases to 312 (3x52x2). First
results are encouraging which indicate that the engine suffers a minimal delay of
1.3503 ms when the number of applicable fragments grow for a particular dy-
namic variation point with-flag, as illustrated in Fig. 6. All datasets are available
at: http://git.io/3sUrCA

4.3 Threats to Validity

Our experiments did not consider a certain number of factors that may affect
our proposed methodology and generalized outcomes on scalability.

– Correctness: Our approach guarantees the syntactical correctness (correct
structure of process variants), but not behavioral (soundness [19], e.g., by
avoiding deadlocks and livelocks) correctness of the resulting process vari-
ants. For the former, we avoided disconnected nodes by representing process
fragments with initial and final states and enabling “call activity” behav-
ior from BPMN2 elements within new activity constructs (variation points).
However, it may become impossible to guarantee behavioral correctness of
the customized models adopting the variability by extension strategy [18]. In
our case, this is due to the large number of possible combinations of solver
options, considering both static and dynamic context variable/value pairs at
runtime, as well as evolutionary variation models, i.e., the process engineer
may also add or modify fragments in the variation model.

– Dynamic context data: In this paper, we only employed Integer values for
constraint solving, but the variation model should consider other data types,
such as, strings and reals in future releases.

– Base model, fragment and variation model scalability: Although initial tests
on model scalability show promising results, we plan to consider more scal-
ability and performance tests, and also evaluate the presented methodology

http://git.io/3sUrCA

Context-Aware Staged Configuration of Process Variants@Runtime 253

against different industrial case studies. In addition, only dynamic varia-
tion points were considered in the presented case study; however, static and
partial variation points need to be incorporated in future tests.

5 Related Work

The work presented is related to other fields of research, such as process vari-
ability, context-aware configuration of process variants, process flexibility and
DSPLs. In this section, we briefly introduce related research in these areas and
explain the novelty of our proposed approach.

Previous work on process variability [18,20] can be divided into two main
groups: approaches adopting a single configurable process model [3,4,21] and
fragment-based re-use approaches [6,9,8]. C-EPC [3] is an extension of the Event-
driven Process Chain (EPC) to support multiple process families of EPC process
variants by means of configurable nodes and configurable alternatives. Orthog-
onally, the PESOA project [4] was proposed to provide mechanisms to capture
variability of UML activity diagrams and BPMN, enriching them with stereo-
type annotations using feature models in an abstract way (they do not transform
variation points to selected variants). C-YAWL [21] is an extension of the Yet An-
other Workflow Language (YAWL) which applies hiding/blocking operations to
customize a configurable process model. They all provide useful methods to deal
with process variability; however, they are merely focused on design-time process
variability, rather than customizing process variants at runtime. Furthermore,
they are based on conceptual modeling rather than executable process models.

Context-aware process modeling and variability has been also studied in the
past. A context-aware framework for the explicit modeling of context is provided
in [22], which includes system stakeholders’ reasoning about business processes
in appropriate manner. The importance of context sensitive process modeling
has been also discussed in other studies [5], in order to deal with changing user
requirements and the complex and dynamic nature of environments. In a similar
vein, context-awareness has been translated to the process variability field. For
instance, the Provop approach [6] provides five steps to customize base models
based on context information. Although the latter allows for context-aware pro-
cess variants customizations employing a base model, such customizations are
user-supported rather than automated and they are not executable in practice.

Process variability and flexibility concepts are closely connected. Process flex-
ibility is concerned not only with variability but also with runtime aspects of
process models, as described by Reichert and Weber [23]. Hence, runtime vari-
ability may be seen as a flexibility type (also referred to as late selection or late
binding) which defers placeholder activity resolution to runtime. The work that
is closer to our proposal is the Worklets approach [8], which enables a dynamic
runtime selection of self-contained sub-processes aligned to each activity depend-
ing on the context of the particular instance. When activities become enabled
appropriate fragment selection is achieved by using Ripple Down Rules (RDR),
which include hierarchically organized selection rules. With respect to the men-
tioned work, the main novelties of our approach are two-fold: we provide a staged

254 A. Murguzur et al.

configuration and execution of process variability at runtime, which can perform
customizations in different ways (allin, staged). Secondly, all customizations are
performed automatically while in Worklets the selection is realized interactively
by end-users (user interaction).

Context-awareness and intrinsic complexity of environments has caused
DSPLs to support late variability in systems in order to cater for changes at
runtime. Baresi et al. [9] propose a methodology based on Common Variability
Language (CVL) and DyBPEL for managing process reconfiguration at run-
time using DSPLs. This proposal has been focused on handling process variants
at design-time and supporting adaptation at runtime; however, our approach
merely binds variation points at runtime. Despite the fact that DSPLs have
been applied to other research areas such as, model-driven engineering [24] or
service-oriented systems [25], to the best of our knowledge this is the first work
tackling the issue of DSPLs in process variability.

6 Conclusion

In this paper, we have addressed the problem of a smart logistics scenario and
presented a novel fragment-based re-use approach for an automated manage-
ment of process models variability at runtime. We introduced a methodology
implemented in the LateVa toolkit, to manage large sets of variants that utilize
context data and constraint solving for process variant customization. In the
experiment, we developed a base model, 5 fragments and a variation model for a
warehouse storage operation. The evaluation generated 157 tests and concluded
that the approach provides an average TTR of 192.2197 ms for dynamic varia-
tion point with-flag. The initial scalability tests for our approach have provided
positive results for its adoption as an alternative in scenarios where: large set of
process variants, dynamic context data, scalability and/or high-availability are
the norm, not the exception. Our future work will involve a large-scale empirical
evaluation using different real case studies while carefully collecting scalabili-
ty/performance metrics and dealing with models complexity and maintainabil-
ity. We also plan to concentrate on three parts: testing of other many-solution
strategies when the solver gets many solutions, abstractions for enabling user-
defined dynamic process configuration [26], and how to deal with data variability
for the automated generation of context model mappings.

References

1. Böhmer, M., Daniluk, D., Schmidt, M., Gsell, H.: Business object model for real-
ization of individual business processes in the logistics domain. In: Efficiency and
Logistics, pp. 237–244 (2013)

2. Derguech, W., Gao, F., Bhiri, S.: Configurable process models for logistics case
study for customs clearance processes. In: Daniel, F., Barkaoui, K., Dustdar, S.
(eds.) BPM Workshops 2011, Part II. LNBIP, vol. 100, pp. 119–130. Springer,
Heidelberg (2012)

3. Rosemann, M., van der Aalst, W.: A configurable reference modelling language.
Information Systems 32(1), 1–23 (2007)

Context-Aware Staged Configuration of Process Variants@Runtime 255

4. Puhlmann, F., Schnieders, A., Weiland, J., Weske, M.: Variability Mechanisms for
Process Models. Technical report (2005)

5. Saidani, O., Nurcan, S.: Context-awareness for adequate business process mod-
elling. In: RCIS, pp. 177–186 (2009)

6. Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process
models: The provop approach. Journal of Software Maintenance and Evolution:
Research and Practice 22(6-7), 519–546 (2010)

7. Bencomo, N., Hallsteinsen, S., de Almeida, E.S.: A view of the dynamic software
product line landscape. Computer 45(10), 36–41 (2012)

8. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Worklets: A
service-orientedimplementationofdynamicflexibility inworkflows.In:Meersman,R.,
Tari, Z. (eds.) OTM2006. LNCS, vol. 4275, pp. 291–308. Springer, Heidelberg (2006)

9. Baresi, L., Guinea, S., Pasquale, L.: Service-oriented dynamic software product
lines. Computer 45(10), 42–48 (2012)

10. Ao, Y., He, W., Xiao, X., Lee, E.: A business process management approach for
rfid enabled supply chain management. In: ETFA, pp. 1–7 (2010)

11. Murguzur, A., Sagardui, G., Intxausti, K., Trujillo, S.: Process variability through
automated late selection of fragments. In: Franch, X., Soffer, P. (eds.) CAiSE Work-
shops 2013. LNBIP, vol. 148, pp. 371–385. Springer, Heidelberg (2013)

12. Bayer, J., Gerard, S., Haugen, Y., Mansell, J., Müller-Pedersen, B., Oldevik, J.,
Tessier, P., Thibault, J.P., Widen, T.: Consolidated product line variability mod-
eling. In: SPLC, pp. 195–241 (2006)

13. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink, H.,
Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

14. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical report (1990)

15. Berger, T., Rublack, R., Nair, D., Atlee, J.M., Becker, M., Czarnecki, K., Wasowski,
A.: A survey of variability modeling in industrial practice. In: VaMoS (2013)

16. Antkiewicz, M., Ba̧k, K., Murashkin, A., Olaechea, R., Liang, J., Czarnecki, K.:
Clafer tools for product line engineering. In: SPLC, Tokyo, Japan (2013)

17. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: A literature review. Information Systems 35(6), 615–636 (2010)

18. Rosa, M.L., van der Aalst, W.M., Dumas, M., Milani, F.P.: Business process vari-
ability modeling: A survey. ACM Computing Surveys (2013)

19. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek,
H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: Classification,
decidability, and analysis. Form. Asp. Comput. 23(3), 333–363 (2011)

20. Valença, G., Alves, C., Alves, V., Niu, N.: A Systematic Mapping Study on Business
Process Variability. IJCSIT 5(1) (2013)

21. Gottschalk, F., van der Aalst, W.M., Jansen-Vullers, M.H., Rosa, M.L.: Config-
urable workflow models. IJCIS 17(2) (2008)

22. Balabko, P., Wegmann, A.: Context based reasoning in business process models.
In: IRI, pp. 120–128 (2003)

23. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems: Challenges, Methods, Technologies. Springer (2012)

24. Morin, B., Barais, O., Jezequel, J., Fleurey, F., Solberg, A.: Models@ run.time to
support dynamic adaptation. Computer 42(10), 44–51 (2009)

25. Parra, C., Blanc, X., Duchien, L.: Context Awareness for Dynamic Service-Oriented
Product Lines. In: SPLC, pp. 131–140 (2009)

26. Lapouchnian, A., Yu, Y., Mylopoulos, J.: Requirements-driven design and config-
uration management of business processes. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 246–261. Springer, Heidelberg (2007)

	Context-Aware Staged Configuration of ProcessVariants@Runtime
	1 Introduction
	2 Case Study: Smart Logistics
	3 Process Variants@Runtime
	3.1 Foundations
	3.2 Methodology
	3.3 Implementation in LateVa Toolkit

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results of Discussion
	4.3 Threats to Validity

	5 Related Work
	6 Conclusion
	References

