
Multimedia Systems (2006) 11(4): 367–382
DOI 10.1007/s00530-006-0014-4

REGULAR PAPER

Rudinei Goularte · Maria da Graça C. Pimentel ·

Edson dos Santos Moreira

Context-aware support in structured documents for interactive-TV

Published online: 8 February 2006
c© Springer-Verlag 2006

Abstract Interactive video technology has demanded the
development of standards, techniques and tools to cre-
ate, deliver and present interactive content and associated
metadata. The literature reports on models representing
interactive-TV (I-TV) programs – one of the main applica-
tions of the interactive video technology; the limitation of
such models include: strict hierarchical relationships among
media objects, low levels of granularity for metadata, pro-
grams and media objects descriptions cannot be separated,
objects are not described beyond the frame level, lack of in-
tegration with context-aware computing. In this paper, we
detail features of our MediaObject model for documents de-
scribing I-TV programs that aim to minimize those limita-
tions. We discuss the model by means of an application that
is part of our I-TV prototype and by an annotation tool that
shows that the model can be applied to other domains.

Keywords Media descriptions · Interactive-TV · Metadata ·

XLink · MPEG-7 · Annotation · Reuse

1 Introduction

Interactive video technology promotes a number of appli-
cations by allowing user-interaction with objects, complex
searches based on objects as well as automatic reaction in
response to user-interaction. Research in this area has led to
the development of standards, techniques, and tools to cre-
ate, deliver and present interactive content, such as MPEG-
4 [1, 2], and to provide metadata for this content, such as
MPEG-7 [3, 4]. The interest shown by the communication
and entertainment industries motivates the development of
interactive-TV (I-TV) as one of the main applications of the
interactive video technology.

The major benefit of I-TV for users is the capacity of
the video delivery chain to process the digital information

R. Goularte (B) · M. da G. C. Pimentel · E. dos S. Moreira
Department of Computer Science, University of São Paulo at São
Carlos, P.O. Box 668, 13560-970, São Carlos – SP, Brazil
E-mail: {rudinei, mgp, edson}@icmc.usp.br

allowing new interaction paradigms. In particular, it is ex-
pected the construction of personalized programs, specifi-
cally designed to fit the needs of each user [5–8]. In this
scenario, the structure and organization of documents con-
taining multimedia metadata play an important role.

However, as computing becomes more pervasive and
ubiquitous, users expect to be able to interact with services
and applications anywhere, anytime, regardless of the device
in use. Context-aware computing takes advantage of inher-
ent context information to provide better services to the user
[9, 10] – for advanced I-TV services, this implies match-
ing the content with users’ preferences or devices’ capabili-
ties. One of these services is the provision of personalized
content supporting object-based interactivity. Those kinds
of services need both multimedia objects to be composed
by sub-objects, and documents describing the program and
the components objects of the programs. Such descriptions
encompass structural composition, media features (e.g. size
and coding method), index information (e.g. author and cre-
ation date), links and relationships between objects and pro-
grams, and context information (e.g. the position of the ob-
jects, the location where a scene took place, or who is in the
scene) [5, 7, 11, 12].

The composition of media objects using sub-objects
is fully supported by the MPEG-4 standard. Moreover,
MPEG-4 provides advanced standardized methods for en-
coding, compression, delivery and content interactivity of
multimedia presentations [2]. These methods are not found
in similar standards such as SMIL [13], Flash [14] or Quick-
Time [15]. In spite of the power for composition and seg-
mentation of media objects provided by MPEG-4, models
representing I-TV programs and related media objects re-
ported in the literature [5, 6, 11, 16–19] present limitations
that include: (a) strict hierarchical relationships among me-
dia objects, (b) low levels of metadata granularity, (c) pro-
grams and media objects descriptions cannot be separated,
(d) objects are not described beyond the frame level and (e)
lack of integration with context-aware computing.

We have proposed the MediaObject model to structure
documents describing I-TV programs and their media

368 R. Goularte et al.

objects [20]; its main features are: (a) separation of de-
scriptions among program and media objects, (b) support
to context information, (c) capability of linking descriptions
between objects and programs, (d) description of in-frame
objects and (e) a flexible structure for compositional media
descriptions. Among other benefits, these features ease
advanced content searches and reuse of objects.

In this paper, we detail how the MediaObject model can
be generalized in order to also support the separation of each
type of media description: structural, compositional, context
and linking. Our approach segments each media into a set of
MPEG-4 objects with related MPEG-7 descriptions. A main
description file acts as an index to other files describing ob-
ject’s composition, media features, context information and
linking. This allows new objects to be composed by select-
ing desired segments via their descriptions – the description
separation feature facilitates this process. In order to support
the linking of programs, objects and descriptions, we have
defined an specification that uses linking information present
in an instance document – this linking information is based
on the XLink W3C recommendation [21]. Using XLink, we
can associate an MPEG-4 media object (an in-frame object,
for example) with its corresponding MPEG-7 description.

We present two applications to discuss the use of our
model. The first is part of our interactive-TV prototype that
illustrates in-frame interactions. The second is an annota-
tion tool that illustrates object reuse at the same time, which
shows that the model is general enough to be applied in other
domains.

In this paper: Sect. 2 discusses related work towards fur-
ther discussing the relevance of the overall problem tackled
by our model; Sect. 3 introduces the two applications we use
to discuss the MediaObject model; the definition of struc-
tured descriptions of media objects and I-TV programs is
presented in Sect. 4, which details the proposed schemas and
how they describe and segment media objects at the same
time that represent context information; Sect. 5 explains
how media objects and programs descriptions are linked and
how these descriptions are associated with the correspond-
ing MPEG-4 content; Sect. 6 presents a discussion about the
present work; Sect. 7 presents final remarks and discusses
future work; Appendix A gives an introduction to MPEG-4
and MPEG-7 technologies.

2 Related work

In this section, we present related works towards discussing
the general problems that guided the development of
the MediaObject model. A more detailed discussion and
comparison with our work is given in Sect. 6.

Structured description of contents Most of the earlier
approaches on describing multimedia content (including
Benitez et al. [22], Dublin Core Metadata Initiative [23] and
Lagoze and Hunter [24]) have been covered by the MPEG
group in the form of the MPEG-7 international open ISO
standard [3]. This standard, a toolbox of generic description

structures with associated semantics, is meant to be instan-
tiated by any multimedia document that requires the use
of metadata. While having such schemas standardized is
useful to maximize interoperability, the scopes and possible
application domains are so broad that it is unrealistic to
provide an exhaustive set. Consequently, MPEG-7 has been
made extensible by means of its Description Definition
Language (DDL) [25], allowing application developers to
extend the standard description schemas towards meeting
their specific requirements. Similarly, it is very unlikely that
a single application will need the whole set of powerful and
sometimes complex tools specified in MPEG-7. As a result,
a practical way to use the standard is to make a selection
of the description structures needed by the application
and to validate them against specific target functional
requirements.

Specification of context information, reuse and addressing
in-frame objects Although the problem on how to produce
specific documents for the I-TV area has been addressed
by many [5, 6, 11, 16, 17, 26], most of these works do not
provide an adequate combination of metadata and structural
representations for both programs and media objects. An
important exception is the work under developement by
the TV-Anytime Forum [27], which aims at standardizing
interactive-TV. Their approach is to use the MPEG-7 stan-
dard to describe media objects. However, their specifications
do not provide support for describing context information
nor provides the means to produce independent documents
for describing media objects and programs – which makes it
difficult to reuse these documents. Moreover, their specifi-
cations do not make it possible to describe in-frame objects
[27].

Linking programs Another problem, related to I-TV docu-
ments, is how to link programs. The TV-Anytime’s solution
creates an URI [27] that points to a single big object
representing the program (a video, most of the times). The
linking is achieved including this URI into the program’s de-
scription and into program guides [27]. In this approach the
program segmentation into sequences, scenes and frames is
made just in a logical way, through the MPEG-7 program’s
media descriptions. This makes difficult to reuse program’s
segments and related descriptions in order to produce and to
deliver personalized content. The combination of MPEG-4
and MPEG-7 standards allow the physical segmentation of
programs’ media with advantagens in terms of composition,
interactivity and delivery. However, at the time this writting,
the committees had not yet standardized a way to link an
MPEG-4 object to its related MPEG-7 description.

3 The MediaObject model in use

3.1 In-frame interactions

We have built an application, part of our interactive-TV pro-
totype, which processes a set of old home videos towards

Context-aware support in structured documents for interactive-TV 369

Fig. 1 A context metadata input tool: when the user selects the “New Scene” button during a video playback a, a new window pops-up, allowing
the user to select a context dimension to provide annotations b

producing what is called programs. The programs were seg-
mented, coded into a number of MPEG-4 objects (352 × 288
frame size at 24 fps) and stored in a repository. An MPEG-4
object can be a whole video, a video sequence, a scene, a
frame or an in-frame object.

The program and its components (MPEG-4 objects)
were described according to the schemas defined in the Me-

diaObject model. The schema instances – which are descrip-
tions of the programs and objects – are also stored in a repos-
itory. The system uses two types of metadata: low level and
high-level. The first, which includes media features such as
file size, file format, file path, encoding method, frame size,
frame rate, etc., can be automated. The later requires se-
mantic knowledge about the scene – provided by the pro-
gram author with the help of a context information input tool
(Fig. 1).

Using the MPEG-J API [2] to access the MPEG-4 ob-
jects in the scene, we have built an application that responds
to mouse clicks over objects of a scene and retrieves related
descriptions (features and context information relative to the
object) – when a user loads a program, the descriptions (an-
notations) about the videos are also loaded. The implemen-
tation of this application is detailed elsewhere [20]. When a
user clicks on a scene, the application allows the user choose
the kind of object description to be retrieved (Fig. 2a) or, if
the object is an in-frame one, the application retrieves the
context information (Fig. 2b). This later case allows the user
to ask the application who a person is just by clicking on
the image. Moreover, clicking on an in-frame object makes
the application to retrieve all related media objects: in the
example of Fig. 2b, metadata as well as scenes and frames
relative to John’s brothers are retrieved along with informa-
tion regarding his location.

3.2 Multimedia annotation tool

M4Note [28, 29] is a multimedia multimodal annotation tool
that allows electronic ink and voice annotations on frames

extracted from a video stream presented on a Tablet PCs
– when a camera is used, as in Fig. 3, a video stream can
be annotated at the same time that it is recorded. Moreover,
the annotations can be edited, extended or played back syn-
chronously. MediaObject is the underlying model for struc-
tured multimedia descriptions and annotations, allowing the
creation of spatial, temporal and linking relationships. Our
approach provides annotations as metadata for indexing, re-
trieval and semantic processing as well as content enrich-
ment.

Differently from related work, M4Note allows annota-
tions using two complementary methods: metadata associ-
ation and content enrichment. Although the first approach,
annotation by metadata association, has the potential to al-
low matching and sharing of the exact meaning of descrip-
tions, its use can be quite arduous. However, when automatic
metadata extraction and personalized tag hierarchies can be
applied, it is possible to find a compromise between accu-
racy and effort [28, 29]. The second approach, annotation by
content enrichment, may be more appealing from the user’s
point of view since it does not require previous knowledge
of tag hierarchies and is a natural way of annotating consid-
ering annotations made by voice or ink marking. Moreover,
in this case the annotation has a particular meaning for the
user and as such should facilitate further understanding and
retrieval.

As the user makes annotations with electronic ink marks,
the system generates MediaObject instances describing the
annotations as objects (for instance the asterisk and the ar-
row in Fig. 3). These annotation objects are included as com-
ponent objects of the annotated object – the frame showing
the bear in Fig. 3. In this way, the video frame is now com-
posed by itself plus the asterisk and arrow annotation ob-
jects. Each user has his own “mark vocabulary” managed by
the tool: a registration is requested at the first time the user
writes a new mark so that, in the following times, the system
recognizes the mark and reuses the previously registered an-
notation object in order to build a new object – an annotated
video frame.

370 R. Goularte et al.

Fig. 2 a Background. Clicking on the scene causes the application to provide windows (at the top) allowing the user to select, first, the type of
media (Video, Scene or Frame) and, next, the type of description (Media features or Context information). As a result, the application retrieves
the related media features description. b Foreground. In-frame interaction and service suggesting related objects. Clicking on the taller child
image, the application will retrieve the context description about that object (John’s information), presenting it inside a window. Based on this
description, the application retrieves all related objects where “John” matches (objects’ list at left)

Fig. 3 Background. A user in a capture session with the M4Note run-
ning on a Tablet PC with an attached USB WebCam. Foreground. De-
tail of the M4Note tool’s GUI during the definition of a new symbol:
when finds an unknown symbol, the M4Note tools requires its regis-
tration

The same concepts taken from the object-based interac-
tivity of the I-TV prototype and from object reuse achieved
in the M4Note application can be applied to build other types
of interactive TV programs. News programs are good exam-
ples since they are generally well structured which facilitates
segmentation. In the next section we present the MediaObject

model schemas, which give necessary support to building
applications with context-aware features and object-based
interactivity and reuse.

4 Descriptions: context and media objects

4.1 A framework for context representation

Abowd et al. [9] argue that, without good representations
for context, application developers are left to develop ad-
hoc and limited schemas for storing and manipulating such
key information. Trying to ease the understanding and use
of context, Dey [10] discusses a categorization in five di-
mensions – who, where, when, what and why – the first
four dimensions represent, respectively, the primary types
of context – identity, location, time and activity, and can
be used to determine the last dimension: why a situation is
happening.

Developers have widely used Dey’s categorization of
context in order to analyze application requirements. By do-
ing so, developers can decide how to model and to repre-
sent context information for each dimension. The require-
ments for context information differ from one application to
another, making it very difficult to cover all the possibili-
ties of context in a self-contained document model. A sim-
ilar problem was addressed by the MPEG-7 standard in the
multimedia metadata representation (as discussed in Sect. 2)
and, similarly to the solution adopted to MPEG-7, a solution
to the representation of context information is to provide a
framework with an extensible library of context elements.

Context-aware support in structured documents for interactive-TV 371

In this way, developers use the framework and decide how
much information is needed in order to represent some con-
text entity. Moreover, developers can use the extension facil-
ities provided to build specific context elements.

In order to guide the development of our framework, we
have followed Dey’s widely accepted definition for context:
“Context is any information that can be used to characterize
the situation of an entity. An entity is a person, place or
object that is considered relevant to the interaction between
a user and an application, including the user and the applica-
tion themselves” [10]. Following this definition, developers
should characterize the situation of an entity using context
information. Towards allowing this characterization, our
framework provides: (a) a representation for context; (b)
the means to define contextual entities classifying them
according to the context framework model and (c) an exten-
sible set of pre-defined contextual elements – the context
library. Our framework was built using XML Schema [30]
both to ensure MPEG-7 compatibility, since the MPEG-
7 DDL is XML Schema, and to facilitate information
interchange.

Context hierarchies As far as the current literature is con-
cerned, a comprehensive classification for context is still
an open question – authors focus on information relative
to user and infrastructure, leaving apart information relative
to system, application, domain and environment. This prob-
lem occurs, in part, because of the difficulties in defining
the boundaries among those entities – so that accurate tax-
onomies and ontologies can be modeled. In spite of these
difficulties, we have defined a framework in which context
models can be represented, integrated and instantiated in the
hierarchical approach indicated by Fig. 4.

In our framework, a context entity type can be defined
extending PrimaryContextType. PrimaryContext organizes
the contextual information library used to classify context
entities. A contextual entity can be classified according to
many context types by making it a component of some
context type – as shown in Fig. 4, “A context entity type”
is a component of “A context type”. As an example, in
our framework UserType is a component of UsersType and
represents a contextual entity – a user. Since “A context

entity type” is a composite element derived by extension
from PrimaryContextType, it inherits all PrimaryContext

elements and attributes.

Primary Context Following Dey’s definition, the situation
of an entity can be characterized by (a set of) contextual
information that can be indexed by the primary context.

Fig. 4 Context hierarchies

Fig. 5 Primary context information as represented in UML

In order to implement this definition, our representation of
primary context is given via the abstract type PrimaryCon-

textType that is composed by the abstract types IdentityType,
LocationType, TimeType and ActivityType – which are, re-
spectively, representations of the primary contexts identity,
location, time and activity (Fig. 5).

Using these base-classes it is possible to build special-
ized ones in a classified fashion according to the primary
context (identity, location, time or activity). We used this
approach to define a context library formed by a set of these
specialized classes – each library item is an XML Schema
type representing context information useful to characterize
an entity (the lower level in Fig. 5).

Table 1 lists some examples of the element types present
in our library. Each type corresponds to one element. In
the same way that complex types were built using simple
types, developers can use simple or complex types in or-
der to build their elements. For example, a type represent-
ing the users’ history could be: userHistoryType = {userID-
Type, fullNameType, userActionType, dateType, simple-
TimeType}. An exhaustive list of the types defined and
detailed explanations about each element can be found at
http://www.icmc.usp.br/∼rudinei/Context/.

The framework aims at facilitating the developer’s task:
when describing a context entity, a developer chooses in
the library which information best characterizes an en-
tity. If the library does not have the right contextual in-
formation representation, developers can create their own.
Since PrimaryContext type and its components are abstract,
XML complex type extensions are allowed. For example,
when creating a User entity through the UserType, this
type must be an extension of PrimaryContextType, as in the
Example 1, which implies that the UserType inherits all el-
ements defined in PrimaryContextType (the entire context li-
brary):

372 R. Goularte et al.

Table 1 Examples of types present in the context library

Primary context Complex built-in types Simple built-in types

Identity userIDType, roleType, simpleNameType,
fullNameType givenNameType, middleNameType, familyNameType.
personal InformationType ageType, heightType, weightType, eyesType, hairType, birthDateType.

locationIDType, locationNameType, locationDescriptionType,
Location indoor LocationType floorType, roomType, corridorType, gateType, exitType.

postal AddressType streetType, numberType, complementType, cityType, stateType, countryType, zipCodeType.
electronic LocationType urlType, e-mailType, phoneType, icqType.

Time occasionType, dateType, simpleTimeType, durationType,
Activity userActionType, userActivityType,

When describing a user, the developer chooses some
pieces from the library that best match his interests. This
is done using the XML xsi:type tool, the XML Schema re-
source used to indicate which implementation of the abstract
type is being used [30]. For example, if a name is enough
to describe a user, the developer decides how much infor-
mation is needed to represent the name – a more structured
representation composed by given name and family name
(Example 2) or a single string representation (Example 3):

If the library does not have the right piece of informa-
tion, for example in order to represent a nick name, devel-
opers extend one of the PrimaryContext components, in this
case IdentityType (Example 4), so that NickNameType can
be used (Example 5):

4.2 The MediaObject schema

An advanced interactive TV program needs its multimedia
content to be segmented into objects and sub-objects in or-
der to facilitate the reuse of these objects during a new pro-
gram composition – but the media segmentation only it is
not enough. Descriptions relative to whole program and de-
scriptions of each component (the media objects) are nec-
essary so that applications may match the users’ interests
[5, 7, 16, 26, 28, 29]. Contextual information can help this
task, for example supporting the identification of who is in
a scene or where the scene occurs when a user clicks on the
image (see Sect. 3). However, this has being poorly explored
in the interactive video domain. Moreover, reported works
regarding description of multimedia objects present a lack
of important features to the development of advanced inter-
active TV services, such as: (a) low level of metadata granu-
larity; (b) separation of programs and media objects descrip-
tions; (c) description of objects beyond the frame level and
(d) representation of different kinds of relationships (besides
the hierarchical ones only) between media objects. In this
section we discuss how the MediaObject description schema
overcomes the three first limitating aspects; the last one is
discussed in Sect. 5.

One question could arise at this point: what kind of in-
formation need to be described? In order to match users’
interests, applications need to know: the composition and
the segmentation of objects and programs; the media object
features and relationships between objects [5, 10, 16, 26, 31,
32]. We advocate that further information is demanded: con-
text features. A possible solution to describe this information
is the direct use of the MPEG-7 standard. However, as dis-
cussed before, applying this solution to I-TV programs will
generate unnecessary complex descriptions. Besides that,
MPEG-7 does not have a good set of context descriptors.
Instead, our approach is to use MPEG-7 only where it is ex-
ceptionally good: in the description of low level features of
audiovisual objects (details in Sect. 4.2.2).

Context-aware support in structured documents for interactive-TV 373

Fig. 6 a <MediaObject> element as an MPEG-7 extension, (b) an instance of the MediaObject schema

This approach solves the media object features aspect
and provides descriptions with a good level of metadata
granularity. However, it demands a schema that describes
the other aspects in a fashion that can be integrated with the
MPEG-7 media features descriptions – that is, the schema
must be MPEG-7 compliant. This demands the schema to
be defined as an extension of one of the high level MPEG-7
tools [3, 25]. Using the MPEG-7 DDL, we defined the Me-

diaObjectDescriptionType (Fig. 6a, line 5), which is derived
by extension (Fig. 6a, line 7) from the CompleteDescription-

Type MPEG-7 type [3, 25]. The MediaObjectDescriptionType

is a wrap to the <MediaObject> element, which implements
the MediaObject schema in the I-TV namespace (Fig. 6).

Defined in this way, the MediaObject schema becomes an
MPEG-7 complete description type, ensuring MPEG-7 com-
pliance and allowing access to the low level MPEG-7 media
descriptors. In order to be instantiated, it must, first, instan-
tiate the MPEG-7 root element (Fig. 6b). It is also necessary
to indicate which type implements the complete description.
In Fig. 6b, line 4, the type is MediaObjectDescriptionType.

It is now necessary to define the MediaObject elements
that contain the descriptions of the mentioned aspects. We
first presented the overall schema; the next two sub-sections
give details regarding composition/segmentation, media and
context features. Figure 7 shows a UML representation of
the MediaObject description schema. The area limited by
the dot-dashed lines corresponds to the main description
file, where the structural composition/segmentation descrip-
tions will be instantiated. The <MediaObject> element rep-
resents a media object, which can be just one object or can
be composed by several media segments. It must be clear
that the <MediaObject> element in Fig. 7 corresponds to the
<MediaObject> element in Fig. 6a (line 9) and 6b (line 5).

The set of all segments that are components of a me-
dia object is represented by the <ObjectSet> element. The

Fig. 7 UML representation of the MediaObject schema

<ObjectHierarchy> element represents the objects’ compo-
sition structure, which uses <ObjectNode> elements in or-
der to create hierarchies and make references to objects. This
structural organization is based on Benitez’s [22] hierarchi-
cal approach.

The advantages of the explicit use of hierarchy in a
description schema include: it is a more efficient retrieval
structure than graphs; a hierarchy is the most natural way to
define object composition; MPEG-4 objects are built hierar-
chically. The same concept is applied to <MediaHierarchy>,
<ContextHierarchy> and <XLinkHierarchy> elements in or-
der to represent, in a hierarchical manner, the structure of
the media, context and linking descriptions, respectively, as-
sociated with the objects.

Each object <(Object> element) may contain de-
scriptions about its media features, context and linking,
respectively <MediaFeatures>, <ContextFeatures> and
<XLinkObject> elements. These elements are self-contained
description schemas, and can be instantiated as sepa-
rated files or inside the same MediaObject description file

374 R. Goularte et al.

Fig. 8 Segmentaton of a media object

which they refer to. The separation is possible because
each element component of the <Object> was built as a
MPEG-7 description unit (main file, Fig. 7). A description
unit is a MPEG-7 DDL tool designed to allow pieces of de-
scriptions to be instantiated instead of complete descriptions
[3, 25].

4.2.1 Object composition

An object can be composed of (or segmented into) many
other objects. For example, a video can consist of a set of
scenes that can be composed of a set of frames. As illus-
trated in Fig. 8, each component of the segmented object
is represented by an <Object> element, including the main
object. All <Object> elements are encapsulated into the
<ObjectSet> element and each <Object> element has the
following attributes:

• Type: The object type, which can have the values
VIDEO, AUDIO, IMAGE, MEDIA_FEATURES, CON-
TEXT_FEATURES and XLINK_FEATURES.

• Scope: The scope identifier of the object, it can have the
following types:

• GLOBAL: The object being described, which can be
segmented or not.

• SEGMENT: It is generally associated with continuous
media. It is a part of the media object, a set of video
scenes, for example.

• SCENE: A scene of a video object.
• FRAME: A video, audio or animation frame. We are

using only video frames.
• LOCAL: It is a region inside an image or frame.
• Id: A unique identifier for objects.

It is important to observe that objects can be segmented
and segments can be used in the composition of other objects
– therefore an object with SEGMENT scope in one descrip-
tion can have GLOBAL scope in another.

The <ObjectSet> element identifies all objects and sub-
objects. However, it does not provide any information about
how these objects are structured. That is the role played
by the <ObjectHierarchy> element, for example, when de-
scribing the structural composition of the media objects
illustrated in Fig. 9. This figure shows the video frame
represented in Fig. 8 as the <Object> element with the
id=“ID003” attribute. Figure 9 illustrates how Object A is

Fig. 9 A video frame composed by two in-frame objects: Peter’s and
John’s images

Fig. 10 Hierarchy of objects

composed of Object B, representing John, and Object C, rep-
resenting Peter.

Figure 10 shows how the <ObjectHierarchy> element
is used to organize the <ObjectSet> elements: each ob-
ject hierarchy is a tree of <ObjectNode> elements that ref-
erence the objects of the <ObjectSet> element. Figure 10
also shows how a hierarchy allows specifying a relation
of containment from the child nodes to their parent node.
For instance, node002 (parent) is composed of node003 and
node004 (children) which reference (ObjectRef), respec-
tively, the objects ID003, ID004 and ID005 present in the
<ObjectSet>. Moreover, these nodes represent the composi-
tional relationship between the video frame and the “John”
and “Peter” objects in Fig. 9.

Building the MediaObject schema in this way, we deal
with the composition and segmentation limitations. Next we
discuss how the media features and context limitating as-
pects are addressed by the MediaObject schema.

4.2.2 Media and context descriptions

Each object corresponds to an <Object> element (as illus-
trated in Fig. 7) and each of these elements may contain
context and media descriptions, which correspond to the
<ContextFeatures> and <MediaFeatures> MediaObject el-
ements. We will use the example illustrated in Fig. 9 to ex-
plain how these two elements describe (a) the low level fea-
tures of a media object (e.g. file type, compression and frame
size) and (b) the context features about objects (like who is
the scene).

A <MediaFeatures> element consists of a set of MPEG-
7 descriptors and description schemas for audio and video
(MediaFormatType); image (ImageType); and 3D objects
(StillRegion3D). These descriptors and description schemas

Context-aware support in structured documents for interactive-TV 375

Fig. 11 Description of the media characteristics of an object

have been carefully selected in order to keep descrip-
tions simple without loosing representativety and granular-
ity when describing low level media metadata. The flexibil-
ity provided by the selected description schemas goes from
the simple description of the file type (AVI, MOV, WAV, for
example) to a more complete description of a video frame,
such as example in Fig. 9.

The example in Fig. 9 contains three objects: Object A,
representing the video frame, and Object B and Objects C,
representing regions inside the video frame. A description
of the physical characteristics of the video frame (Object

A) is given in Fig. 11 using the <MediaFormat> MPEG-7
description schema (instantiated from MediaFormatType).
Like most MPEG-7 description schemas, the MediaFormat-

Type is a complex type. However, since most elements in
that description schema are optional, there is room to make
customized descriptions. The <MediaFeatures> element,

Fig. 12 Description of the context characteristics of a local object

employed here to describe a segment type object, may also
be used to describe global objects or even local objects
(such as “John” and “Peter” in Fig. 9).

When describing low level metadata of media objects,
the developer’s task is just to select the MPEG-7 descriptors
that best match a particular object. Similarly, when describ-
ing context features of media objects, the developer must
choose context descriptors, like that ones provided by the
context framework discussed in Sect. 4.1. This can be done
using the <ContextFeatures> element.

In the same way we have used <MediaFeatures>

nested inside an <Object> element, meaning that this
<MediaFeatures> element belongs to the <Object> ele-
ment with ID = “ID003,” we can describe the contextual
characteristics of an object (in Fig. 9: Object A) by nesting a
<ContextFeatures> element inside the same <Object> el-
ement (Fig. 11). However, a more interesting example of
context description, which uses the <ContextHierarchy> el-
ement to describe the context characteristics of Object B in
Fig. 9 (John), is given in Fig. 12.

Figure 12 shows the <ContextFeatures> element used
as a wrap for the element defined in the context namespace,
<Context> in the example. In order to describe the object’s
content features, the developer can create an <Object> el-
ement of the type CONTEXT_FEATURES, which contains
the description (Fig. 12), and associate this object with the
“John” object via the <ContextHierarchy> element. Fig-
ure 13 shows the node “node26” referencing John’s de-
scription: this node is a child of “node25,” which refer-
ences the object “John,” thus establishing a hierarchical
relationship whereby “John’s description” is contained in
“John.”

376 R. Goularte et al.

Fig. 13 Association between an object and its description

All information needed to describe “who John is” (Iden-
tity) and “where John is” (Location) came from the context
library (observe the “ctx:” namespace identifier at the be-
ginning of each tag) and the compositional information say-
ing that “John’s description” object belongs to (or is part of)
“John” object is given by the context hierarchy described in
the media object id “MO010” (Fig. 13).

In the examples given so far, the descriptions are inside
the same file that defines the media object. Figure 14 illus-
trates another description approach using the previous con-
text features example. The context features of the in-frame
object “John” are described in a separate file. In this way,
we have two files: one, instance of MediaObjectDescription-

Type, defining a media object and its composition; and an-
other, instance of ContextFeaturesDescriptionType, describ-
ing the contextual features of a specific <Object> ele-
ment (“John”). The link between the context description
and its related object is made via the ObjectRef attribute
(Fig. 14, line 2) that refers to the object “John” (“ID004”).
The file containing the definition of the object “John” must
indicate which file contains John’s context description –

Fig. 14 Example of a description as a third party file

achieved via the URI attribute (Fig. 15, line 5). This ap-
proach is useful when the descriptions are voluminous,
since one can organize and classify descriptions in separate
files.

So far we cover the media features and context descrip-
tion limitating aspects, contributing to overcome the lack of
structured context representation in the interactive video do-
main. Using object segmentation allied with good descrip-
tions of the compositional, physical and context aspects of
media objects, it is possible to facilitate the development
of advanced interactive systems, like the in-frame context
queries presented in Sect. 3. One last issue in these descrip-
tions is related to the establishment of relationships between
objects, beyond the hierarchical ones, and the linking of de-
scriptions – this issue is addressed next.

5 Linking objects

5.1 Establishing relationships

An <XLinkObject> element is one of the <Object>’s com-
ponents, as shown in Fig. 7, which provides support to an
underlying linking structure associated with object descrip-
tors – the aim is to allow for relationships between objects
and descriptions.

As depicted in Fig. 16, an <XLinkObject> element uses
the XLink standard [21] to describe the link between ob-
jects in a MediaObject description schema, to establish rela-
tionships between the objects in a MediaObject description

Context-aware support in structured documents for interactive-TV 377

Fig. 15 Reference to the file containing the context description of the object ID004 (“John.”)

Fig. 16 Relationship between two objects

schema and to establish links between media objects and
programs. Figure 16 describes the link between the objects
“John” and “Peter” depicted in Fig. 9, and the relationship
between these two objects – John is at Peter’s right:

The <Locator> elements are locators in the context of
the XLink standard and represent the “John” and “Peter” ob-
jects.

The <Locator> elements are associated with the objects
through the object identifiers (IDs) as XLink labels (e.g.,
xlink:label=“ID004”).

The XLink locator type uses an XPointer expression [33]
(XPointer_expression, in Fig. 16) to locate a specific portion
of text inside a valid document (http://www.acme.org/ITV/
MO010.xml, in Fig. 16), where the document is a MediaOb-
ject description schema instance.

The <Relation> element describes an XLink arc from
the object ID004 (“John”) to the object ID005 (“Peter”).
The relationship among these two objects is described by the
XLink arcrole attribute, where object ID004 RightOf object
ID005 indicates that John is at Peter’s right.

In this way, a variety of relationships like temporal,
spatial, directional and topological relationships can be es-
tablished between objects. The link between an <Object>

element and its media and context descriptions is done
pointing a <Locator> element to the related <Object>’s
<MediaFeatures> and <ContextFeatures> elements.

It is very important to observe that this approach allows
the complete separation of link, media, context and struc-
tural descriptions.

The given examples show all descriptions inside
the same MediaObject instance XML file. However, it
is possible to have each type of description in sepa-
rate files. The <MediaFeatures>, <ContextFeatures> and
<XLinkObject> elements, children of an <Object> element,
have an optional URL attribute. This attribute points to sepa-
rated XML MediaObject instances files containing only me-
dia features, context or linking information (Fig. 17). In this
case, the <Locator> elements must point to these XML files
and each file has references to its related <Object> (Fig. 18).
This separation facilitates the reutilization of descriptions;
MPEG-4 objects can be reused to compose new objects and
their descriptions do not need to be edited in order to de-
scribe the components of another object.

The same approach is used to link an <Object> with its
related I-TV program description, using a <Locator> ele-
ment pointing to an external file. Figure 19 illustrates a case

378 R. Goularte et al.

Fig. 17 Elements pointing to separated description files

in which a link is established between the object identified
as “MO010” (“from” attribute) and the program identified
as “Program005” (“to” attribute).

The ITV_Program description schema describes I-TV
programs such as News, Sports, Series, etc. Figure 20
shows a UML representation of the ITV_Program description
schema. The elements Copyright, Classification and Descrip-

tion are imported from the TV-Anytime namespace. These
elements describe the program’s characteristics, such as the
classification of the program (movie, news, social life, en-
tertainment, etc.), which group this program is part of, the
program’s schedule, credits, reviews, genre, title, synopsis,
languages, etc. A complete discussion of each of these el-
ements and their sub-elements are outside the scope of this
paper. Our aim here is to show how program descriptions are
linked with media object descriptions, the linking is done via
XLink, using the ObjectsList element.

The <ObjectsList> element is the set of all links, link-
ing the program with its media objects. In Fig. 21 the first
<Locator> element represents the program and the subse-
quent <Locator> elements represent its objects. The <Arc>

elements are XLink arcs and establish links between the pro-
grams and their component objects.

5.2 Associating MPEG-7 descriptions with related
MPEG-4 media

Examining the description schemas presented in Sect. 4 and
the applications examples given in Sect. 3, a question arises:
how to associate MPEG-7 media object descriptions with
their related MPEG-4 content?

The same question is under investigation inside the
MPEG-7 and MPEG-4 committees. At the time this pa-
per was being written the committees had not published a

Fig. 18 XL_ID003.xml file.

Fig. 19 Example of linking between an object and a program

Fig. 20 UML representation of the I-TV Program schema

standardized solution for this question. The ideas being dis-
cussed by the committees are about to code MPEG-7 de-
scriptions into a binary format, and to insert these coded
descriptions into a MPEG-4 presentation as a MPEG-4 ele-
mentary stream [1, 3]. This solution has its target in the effi-
ciency of the processing and retrieving of the semantic infor-
mation associated with the content, in special when working
with high volumes of data. As a disadvantage, the commit-
tees’ solution requires the acquisition of a MPEG-7 codec in
addition to the MPEG-4 codec.

An alternative solution is to use the descriptions in their
textual format (XML files), making the processing and the
retrieving of semantic information via an MPEGLet [2]
(see Appendix A). The technique we have developed uses

Context-aware support in structured documents for interactive-TV 379

Fig. 21 Link from a program to its objects

MPEG-4 elementary streams IDs as the IDs of the <Object>

schema elements. In this way, the MPEGLet application ob-
tains an object’s ID during users’ interactions and retrieves
the associated descriptions.

The IDs association starts in the authoring phase. As dis-
cussed in Appendix A, the XMT file is where an MPEG-4
author defines a scene. To do that, the author specifies the
objects present in the scene and, for each object, actions, be-
haviors, positions in the space and time and an ID. The XMT
file is coded in a binary representation (the MPEG-4 file for-
mat .mp4) containing: the objects in the form of MPEG-4
elementary streams and a graph representation of the scene,
where each node in the graph points to an elementary stream.

After the MPEG-4 authoring phase comes the descrip-
tion authoring phase, in which the author describes the pro-
gram and the media objects using our model. Some informa-
tion can be described using the tool presented in Sect. 2.1,
but meanwhile the objects’ IDs are assigned manually.

The final step in the ID association is done by an MPE-
GLet application, in three parts: a client-server socket con-
nection, to send the descriptions to the user’s machine, a
monitor for the user’s interactions over objects and a de-
scription parser.

As discussed in Appendix A, an MPEGLet is coded into
an MPEG-4 file as an elementary stream. When the user
loads the MPEG-4 video, the decoder extracts the MPEGLet
elementary stream and sends it to the user’s Java Virtual Ma-
chine. From this point the MPEGLet is a regular Java pro-
gram. The MPEGLet we have developed establishes a socket
connection with a server retrieving the description associ-
ated with the program (video) being played. The retrieving
of the program’s objects descriptions is done following the
link information present in the program’s <ObjectsList> el-
ement (see Sect. 5.1). At the user’s machine, these descrip-
tions are transformed into DOM tree representations [34]
(using the Xerces API [35]), which are used in order to lo-
cate a specific element into a description and in the process-
ing of XLink information.

Using the MPEG-J API, it is possible to manipulate the
graph of the scene changing or retrieving objects’ proper-
ties previously defined in the XMT file. The MPEGLet ob-
tains the ID of a specific object every time the user clicks
on this object. Based on this ID, the MPEGLet searches the
DOM tree representations of the program and media object’s
descriptions to locate the correct <Object> element and its
associated <XLinkObject> element. From this point on, an
XLink parser can use the DOM trees in order to process the
xlinks, locate the requested kind of description (context or
media features) and retrieve information (Figs. 1 and 2). The
XLink parser was built on top of the Fujitsu XLink processor
[36].

6 Discussion

The problem on how to produce specific documents to Inter-
active TV has been addressed by many [5, 6, 11, 16, 17, 26]
– however, these works do not provide adequate representa-
tions of I-TV programs and media objects in order to facil-
itate the development of advanced interactive services. The
problem occurs, mainly, because: (a) these representations
do not allow to go deep with metadata granularity in general,
and with context metadata in special, limiting the precision
that a media object can be described with [6, 16, 17, 26];
and (b) they do not decouple objects descriptions from the
program descriptions [5, 11, 18, 27].

An important work in the I-TV area is being done by the
TV-Anytime Forum [27] (see Sect. 2). TV-Anytime covers
important features when describing an I-TV program, like
copyright, program classification, synopsis, media content
and media segmentation. Most of these items are described
using the MPEG-7 standard. This model is very complete
and it is a reference for I-TV development. However, their
work leaves some issues that must be tackled.

First, the TV-Anytime’s program concept is a monolithic
object; it is not based on objects composition. A program

380 R. Goularte et al.

like the “X Files” TV series can be segmented into chapters,
but the chapters cannot be segmented into video sequences
or scenes. Besides that, program’s information like genre
and synopsis are not separate from media’s information like
frame size and coding method. Our MediaObject model goes
on other direction – programs are composed by a set of ob-
jects and objects can be segmented until the in-frame level.

Second, as TV-Anytime widely uses MPEG-7 its in-
stances may lead to descriptions that are unnecessary com-
plex (as discussed in Sects. 2 and 4). In contrast, our Me-

diaObject model makes a selective use of the MEPG-7 –
where it does the best job: description of low level media
features. The structural information about media segmenta-
tion and composition is done in a simple way using explicit
hierarchies. As an example, using MediaObject to describe
the frame media features in Fig. 9 we have three descriptions
levels before to reach the MPEG-7 descriptors (see Fig. 11).
Using the TV-Anytime model we have six descriptions lev-
els, and TV-Anytime does not go beyond the video level. Us-
ing the MPEG-7 pure approach, like used by Cosmas et al.
[11], we have seven descriptions levels.

Last but not least, neither TV-Anytime nor MPEG-7 has
structured context descriptors. MPEG-7 provides a set of
seven semantic descriptors: who, what object, what action,

where, when, why and how. These descriptors are, however,
simple tags for textual strings, lacking a more structured or-
ganization of context information. On the other hand, our
MediaObject schema uses the context framework and allows
structured descriptions of context information about media
objects.

The approaches adopted by the TV-Anytime and oth-
ers have important impacts in the offering of advanced ser-
vices such as searching for specific information and reusing
objects in the composition of new ones. To illustrate the
first case, consider the “content suggestion” service exam-
ple given in Sect. 3. Since the MediaObject model decouples
composition, media features, context and linking descrip-
tions, it facilitates the searching process: searches can be di-
rected to look for the information in the right place. From
the example, in order to select related objects, the system
retrieves the “who” context information about the in-frame
objects and looks for matches only at other objects’ con-
text descriptions – composition and media features descrip-
tions can be discarded since the name of person in the scene
(John) is not be there. In the other approaches this kind of
search is more difficult since the context information, when
present, can be everywhere in the description files.

Another question is related with more specific queries,
like “video objects where John is at Peter’s right.” Since
the MediaObject model makes it possible to describe rela-
tionships (spatial, temporal, positional, etc.) between objects
(<XLinkObject> element), it is simple, for instance, to re-
strict the query to select only objects with the target po-
sitional relationship. None of the mentioned related works
discuss a similar feature.

To illustrate the second case, consider the M4Note exam-
ple presented in Sect. 3. Each ink mark made by a user must
be transformed into an annotation media object that must

be used to enrich the content being annotated. To achieve
this, the tool composes a new object – an annotated object
– from the previous ones. This is possible because M4Note
uses the MediaObject model to describe objects, including
the annotation marks. As that model gives support to object
composition and segmentation, the process of creating an
annotated object is simple. In the example in Sect. 3, the ob-
ject being annotated is the video frame showing a bear and
the annotation marks are an asterisk and an arrow. Using our
model, these annotations are included in the video frame as
in-frame objects; the <Object> elements for asterisk and ar-
row are inserted into the <ObjectSet> element of the main
video description (Example 6) and two nodes are inserted in
the video frame hierarchy description (Example 7, lines 7,
12 and 13):

As a result, the video frame is now composed by itself
and the asterisk and arrow annotation objects (Fig. 3). None
of the mentioned related works can reuse objects to compose
new ones keeping the description management this simple.

7 Final remarks

This paper has presented a flexible way for linking and de-
scribing I-TV programs and media objects, providing sup-
port for context awareness. We have revisited our previous
model [20], which uses the best from two worlds: high level

Context-aware support in structured documents for interactive-TV 381

program descriptions from the TV-Anytime model and low
level media descriptions from MPEG-7, with extensions to
support our context framework and a complete separation of
descriptions: media features, media composition, context in-
formation, linking and programs. This separation facilitates
the reuse of descriptions and of pieces of descriptions dur-
ing object composition, easing the development of appealing
interactive applications such as those presented in Sect. 3.

Structured descriptions of media objects are made in
the MediaObject schemas via selectively use of MPEG-7
standard. Using the MPEG-7 DDL, we have integrated in
our model selected MPEG-7 descriptors and our context
framework. The context framework aims allowing context
descriptions, being a superset of our context library [20].
The elements of the library are imported by the MediaObject

schema, allowing for descriptions with semantic informa-
tion about objects such as video, video scenes, video frames
and areas inside a frame. This is useful, for instance, during
searches for related material, recommendation of relevant
material, previewing content before access, and in context-
aware systems that use this kind of information to make
adaptations [9, 37, 38].

The context framework represents a contribution towards
a comprehensive classification for context, which stills an
open question. We have used a user context model in the
framework, allowing description of any entity in that con-
text. As described in Sect. 4, the framework can be used to
describe other types of context, like systems or applications.

The underlying linking structure presented in our model,
based on the XLink recommendation, is used to provide
a mechanism that associates MPEG-4 media objects with
their related descriptions (an open issue inside the MPEG
committees). At the same time, this linking structure keeps
the previous features [20] of both establishing links and
describing relationships (spatial, temporal, directional, etc.)
between descriptions.

As on going work, we are modeling system context in or-
der to enhance the context framework. The system and user
contexts can lead towards a future work where applications
use context information to adapt content (I-TV programs)
automatically, according to user’s interests or system’s capa-
bilities. Also as a future work, we intent to automate the pro-
cess of to acquire an MPEG-4 object and associate this ID
with the object’s MPEG-7 description. Another future work
is to adapt our schemas to be MPEG-21 [39] compliant. The
intention is to provide different users with different views of
metadata and content at the same time.

Appendix A: Related technologies:
MPEG-4 and MPEG-7

The MPEG-4 standard [1, 2] was developed to provide solutions to
the new multimedia applications through features like: composition of
presentations built from multimedia objects; streaming; error recover-
ing; high compression and synchronization. The functionality of this
standard is based on interactions with objects (video, audio, 2D and
3D graphics, 2D and 3D animations, text, etc.) present into a scene. A
possible list of interactions types could be: to change objects’ position

Fig. 22 MPEG-4 coding

and scale; to rotate objects; to change the speed; to add or to remove
objects from the scene [1, 2].

The authoring of interactive multimedia presentations is done ar-
ranging objects into a scene. To do that, the MPEG-4 species a lan-
guage, called Extensible MPEG-4 Textual Format (XMT [2]), which
has two versions: XMT-A and XMT-�. The XMT-A, based on VRML,
represents a textual version of the MPEG-4 BIFS (Binary Format for
Scenes [1, 2]). The XMT-� is a more readable (for authors) higher
level approach, based on SMIL [13]. XMT allows authors to define
objects, define and change objects’ properties, place objects in space
and time and associate actions with the objects. All these informa-
tion, present in a XMT file, forms what the standard calls a scene’s
graph (Fig. 22). In order to produce a binary MPEG-4 presentation,
both XMT-A and XMT-� must be translated to BIFS by the means of
a MPEG-4 codec.

Figure 22 shows the coding, multiplexing and streaming processes
of MPEG-4 objects: media files (like AVI videos) and a textual de-
scription of a scene composition are sent to the coder. The coder gen-
erates compressed primitive audiovisual MPEG-4 objects and outputs
MPEG-4 elementary streams. These elementary streams are sent to the
multiplexer, which outputs a single MPEG-4 stream holding the scene
composition information and the elementary streams. The MPEG-4
stream can be stored in the file system or streamed over a network.

An interesting feature of the MPEG-4 standard is that one of those
elementary streams can be a Java program – called MPEGLet [2]. The
MPEGLets are decoded and executed at the client side. MPEGLets
have access to the scene’s graph and to the elementary streams, pro-
viding the developers with the means to build advanced interaction
mechanisms with the MPEG-4 content being presented to the user.

The MPEG-7 standard [3] has the aim to standardize the descrip-
tion of data with multimedia content. This is done through the speci-
fication of a set of standard Descriptors, which can used to describe a
variety of kinds of multimedia information. The MPEG-7 specifies pre-
defined structures of descriptors and its relationships, and also specifies
ways to the user build their own structures. These structures are called
Description Schemes and the definition of new description schemes is
made using a specific language called Description Definition Language
– DDL [3, 4]. The DDL is based on the XML Schema language [30],
containing structural and data type specifications of the XML Schema.
However, the DDL adds some extensions related to the arrays and ma-
trices data types, as well as some extensions related to description of
time (duration and time point) [3, 25].

It is important to observe that the MPEG-7 standard do not aims
to produce coding formats, searching mechanisms neither authoring
tools. It is also important to observe that the MPEG-7 DLL is not a
modeling language. The DDL is a language to represent the results of
audiovisual data modeling [3, 4]. MPEG-7 descriptions are not limited
to multimedia objects. Printed photos and documents, objects, animals
and persons of the real world, or even abstractions like a TV program
can be described in MPEG-7. Another important point is that MPEG-7
is independent of the others MPEG standards. It can used to describe
objects in any format, like AVI, MOV, WAV, SMIL, etc.

382 R. Goularte et al.

References

1. ISO/IEC JTC1/SC29/WG11 N4668: Overview of the MPEG-
4 Standard (2002): http://www.chiariglione.org/mpeg/standards/
mpeg-4/mpeg-4.htm

2. Pereira, F., Ebrahimi, T. (eds.): The MPEG-4 Book. Prentice Hall
(2002)

3. ISO/IEC JTC1/SC29/WG11 N5525: MPEG-7 Overview (2003):
http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-
7.htm.

4. Nack, F., Lindsay, A.T.: Everything you wanted to know about
MPEG-7: Part 1. IEEE MultiMedia 6(3), 65–77 (1999)

5. Merialdo, B., Lee, K.T., Luparello, D.: Automatic construction
of personalized TV news programs. In: Proceedings of the ACM
Multimedia, pp. 323–331 (1999)

6. Smyth, B., Wilson, D., O’ Sullivan, D.: Improving the quality of
the personalized electronic programme guide. In: Proceedings of
the 2nd Workshop of Personalization in Future TV at the 2nd
International Conference on Adaptive Hypermedia and Adaptive
Web Based Systems, pp. 48–51 (2002)

7. Srivastava, H.O.: Interactive TV Technology and Markets. Artech
House (2002)

8. Yu, B., Nahrstedt, K.: Internet-based interactive HDTV. Multime-
dia Syst. 9, 477–489 (2004)

9. Abowd, G.D., Mynatt, E.D., Rodden, T.: The Human Experience.
Pervasive Computing, pp. 48–57 (2002)

10. Dey, A.K.: Understanding and using context. Pers. Ubiq. Comp.
J. 5(1), 4–7 (2001)

11. Cosmas, E., Parker, Y., Schoonjas, P., Vaduva, A., Dosch, C.,
Schäfer, R., Erk, A., Mies, R., Bais, M., Schäfer, R., Stammnitz, P.,
Selinger, T., Klunsoyr, G., Pedersen, L., Bauer, S., Engelsberg, A.,
Klock, B., Evensen, G.: Custom TV with MPEG-4 and MPEG-7.
In: Proceeding of the Colloquium on Interactive Television. IEE,
Savoy-Place, London, UK (1999)

12. Santos Jr., J.B. dos, Goularte, R., Moreira, E.S., Faria, G.B.: The
modeling of structured context-aware interactive environments.
Trans. SDPS J. Integr. Des. Process Sci. 5(4), 77–93 (2001)

13. World Wide Web Consortium (W3C). Synchronized Multimedia
Integration Language (SMIL 2.0). http://www.w3.org/TR/smil20/

14. Macromedia, Inc.: Flash MX. http://www.macromedia.com/ soft-
ware/flash/ (2003)

15. Apple Computers, Inc: QuickTime File Format. http://developer.
apple.com/techpubs/quicktime/qtdevdocs/

16. Boll, S., Klas, W., Wandel, J.: A cross-media adaptation strategy
for multimedia presentations. In: Proc. ACM Multimedia, pp. 37–
46 (1999)

17. Chorianopoulos, K., Lekakos, G., Spinellis, D.: Intelligent user
interfaces in the living room: Usability design for personal-
ized television applications. In: Proc. ACM UIST, pp. 230–232
(2003)

18. Hu, M.J., Ye, J.: MD2L: Content description of multimedia docu-
ments for efficient process and search/retrieval. In: Proceedings of
the IEEE Forum on Research and Technology Advances in Digital
Libraries, pp. 200–213 (1999)

19. Tsinaraki, C., Papadomanolakis, S., Christodoulakis, S.: Towards
a two-layered video metadata model. In: Proceedings of the 12th
International Workshop on Database and Expert Systems Appli-
cations, pp. 937–941 (2001)

20. Goularte, R., Moreira, E.D.S., Pimentel, M.G.C.: Structuring In-
teractive TV Documents. In: Proceedings of the ACM DocEng
2003, pp. 42–51 (2003)

21. World Wide Web Consortium (W3C): XML Linking Language
(XLink) Version 1.0: http://www.w3.org/TR/xlink/

22. Benitez, A.B., Paek, S., Chang, S., Puri, A., Huang, Q., Smith,
J.R., Li, C., Bergman, L.D., Judice, C.N.: Object-based multime-
dia content description schemes and applications for MPEG-7.
Signal Process.: Image Communi. 16(1,2), 235–269 (2000)

23. Dublin Core Metadata Initiative. http://dublincore.org
24. Lagoze, C., Hunter, J.: The ABC ontology and model

(v3.0). J. Dig. Info. 2(2) (2001) http://jodi.tamu.edu/Articles/
v02/i02/Lagoze/

25. Salembier, P., Smith, J.R.: MPEG-7 multimedia description
schemes. IEEE Trans. on Circuits Syst. Video Technol. 11(6),
748–759 (2001)

26. Hjelsvold, R., Vdaygiri, S., Léauté, Y.: Web-based personalization
and management of interactive video. In: Proceedings of the 10th
International World Wide Web Conferece, pp. 129–139 (2001)

27. TV-Anytime Forum: Specification Series: S3: Metadata (Nor-
mative) (2001): ftp://tva:tva@ftp.bbc.co.uk/pub/Specifications/
SP003v11.zip

28. Goularte, R., Cattelan, R.G., Camacho-Guerrero, J.A., Inácio,
V.R. Jr., Pimentel, M.G.C.: Interactive multimedia annotations:
Enriching and extending content. ACM DocEng 2004, pp. 84–86
(2004)

29. Goularte, R., Camacho-Guerrero, J.A., Inácio, V.R. Jr., Cattelan,
R.G., Pimentel, M.G.C.: M4Note: a multimodal tool for multi-
media annotation. In: Proceedings of the Latin-American Web
Congress, pp. 142–149 (2004)

30. World Wide Web Consortium (W3C): XML Schema Part 0:
Primer: http://www.w3.org/TR/xmlschema-0/

31. Tsinaraki, C., Fatourou, E., Christodoulakis, S.: An otology-
driven framework for the management of semantic metadata de-
scribing audiovisual information. Lecture Notes on Computer
Sciences 2681, pp. 340–356 (2003)

32. Zhu, X., Wu, X., Fan, J., Elmargamid, A.K., Aref, W.G.: Explor-
ing video content structure for hierarchical summarization. Multi.
Syst. 10, 98–115 (2004)

33. World Wide Web Consortium (W3C): XML Pointer Language
(XPointer) Version 1.0: http://www.w3.org/TR/xptr/

34. World Wide Web Consortium (W3C): Document Object
Model (DOM) Level 3 Core Specification. http://www.w3.org/
TR/2002/WD-DOM-Level-3-Core-20020409/

35. Apache Software Foundation. Xerces Java Parser Readme.
http://xml.apache.org/xerces-j/index.html

36. Fujitsu XLink Processor. http://www.labs.fujitsu.com/free/xlip/en/
index.html

37. Harrison, B.L., Fishkin, K.P., Gujar, A., Mochon, C., Want R.:
Squeeze me, hold me, tilt me! An exploration of manipulative user
interfaces. In: Proceedings ACM CHI 1998, pp. 17–24 (1998)

38. Truong, K.N., Abowd, G.D., Brotherton, J.A.: Who, what, when,
where, how: design issues of capture & access applications. Lec-
ture Notes on Computer Science 2201, Proc. Ubicomp, pp. 209–
224 (2001)

39. ISO/IEC JTC1/SC29/WG11 N5231: MPEG-21 Overview (2001):
http://www.chiariglione.org/mpeg/standards/mpeg-21/mpeg-21.
htm.

40. Ebrahimi, T., Horne, C.: MPEG-4 natural video coding – an
overview. Signal Process. Image Commun. 15(4,5), 365–385
(2000)

