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Abstract—With the maturity of visual detection techniques, we are more ambitious in describing visual content with open-vocabulary,
fine-grained and free-form language, i.e., the task of image captioning. In particular, we are interested in generating longer, richer and
more fine-grained sentences and paragraphs as image descriptions. Image captioning can be translated to the task of sequential
language prediction given visual content, where the output sequence forms natural language description with plausible grammar.
However, existing image captioning methods focus only on language policy while not visual policy, and thus fail to capture visual
context that is crucial for compositional reasoning such as object relationships (e.g., “man riding horse”) and visual comparisons (e.g.,
“small(er) cat”). This issue is especially severe when generating longer sequences such as a paragraph. To fill the gap, we propose a
Context-Aware Visual Policy network (CAVP) for fine-grained image-to-language generation: image sentence captioning and image
paragraph captioning. During captioning, CAVP explicitly considers the previous visual attentions as context and decides whether the
context is used for the current word/sentence generation given the current visual attention. Compared against the traditional visual
attention mechanism that only fixes a single visual region at each step, CAVP can attend to complex visual compositions over time. The
whole image captioning model — CAVP and its subsequent language policy network — can be efficiently optimized end-to-end by
using an actor-critic policy gradient method. We have demonstrated the effectiveness of CAVP by state-of-the-art performances on
MS-COCO and Stanford captioning datasets, using various metrics and sensible visualizations of qualitative visual context.

Index Terms—Image captioning, reinforcement learning, visual context, policy network
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1 INTRODUCTION

Vision and natural language machine comprehension —
the ever-lasting goal in Artificial Intelligence — is rapidly
evolving with the help of deep learning based AI technolo-
gies [1], [2], [3], [4]. The effective visual [2], [3], [5] and
textual representations [1], [4] empower computer vision
systems to migrate from fixed-vocabulary, coarse-grained,
and low-level visual analysis, e.g., image classification [3]
and object detection [5], to open-vocabulary, fine-grained,
and high-level visual description, e.g., image captioning [6],
[7] and visual question answering [8]. The former has be-
come relatively mature. However, the latter is still far from
satisfactory, due to the lack of reasoning capability of deep
neural networks [9]. Machine reasoning requires a series
of complicated decisions, including inferring task-related
context, identifying its efficacy for the current on-going task,
as well as modeling the relationships between the context
and task. How to build machines that can reason as humans
is still a very challenging task [10].

A prime example is image captioning — the task describ-
ing images with natural language — which demonstrates
a machine’s visual comprehension in terms of its ability
of grounded natural language modeling [6], [7]. In order
for this AI-complete task [11], researchers have attempted
to combine the most advanced computer vision (CV) tech-
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niques like object recognition [5], relationship detection [12],
and scene parsing [13], as well as the modern natural
language processing (NLP) techniques such as language
generative models [4], [14]. In a nutshell, the CV-end acts as
an encoder and the NLP-end plays as a decoder, translating
from “source” image to “target” language. Such encoder-
decoder architecture is trained using human-annotated im-
age and sentence pairs in a fully-supervised way. The de-
coder is supervised to maximize the posterior probability
of each ground-truth word given the previous ground-truth
subsequence and “source” image. Unfortunately, due to the
exponentially large search space of language compositions,
recent studies have shown that such conventional super-
vised training tends to learn data bias but not machine
reasoning [15], [16], [17]. This issue is especially severe
when dealing with the more challenging image paragraph
captioning task, where much more fine-grained and detailed
paragraphs are expected to be generated from the given
image. Hence, it is arguably impossible to build a practical
image-to-language system without machine reasoning.

An emerging line of endowing machine reasoning is to
execute deep reinforcement learning (RL) in the sequence
prediction task of image captioning [3], [18], [19], [20].
As illustrated in Figure 1a, we first frame the traditional
encoder-decoder image captioning into a decision-making
process, where the visual encoder can be viewed as Visual
Policy (VP) that decides where to hold a gaze in the image,
and the language decoder can be viewed as Language Policy
(LP) that decides what the next word is. As highlighted in
Figure 1b, the sequence-level RL-based framework directly
injects the previously sampled word (sampling by probabil-
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(c) Our Framework

Fig. 1: The evolution of the encoder-decoder framework for image captioning. LP: language policy. VP: visual policy.
vt: visual feature at step t. yt: predicted word at step t. ygtt : ground-truth word at step t. (a) The traditional framework
focuses only on word prediction by exposing the ground-truth word ygtt−1 as input to step t for language generation.
(b) RL-based framework focuses on sequence training by directly feeding the predicted word yt−1 to LP at step t. (c)
Our proposed framework explicitly takes historical visual actions {vi<t} as visual context at step t.

A brown horse walking on
the road. A man wearing a
uniform and a hat. He is
riding the horse. There are
some trees in the distance.

A man in uniform riding a
brown horse.

Image Paragraph Captioning

Image Sentence Captioning

Fig. 2: The intuition of using visual context in fine-grained
image captioning. The proposed CAVP is the first RL-
based image captioning model which incorporates visual
context into sequential visual reasoning.

ity distribution) to influence the next prediction. This brings
the following two benefits: 1) the training supervision is
delayed to the whole sequence generated. Hence, we can use
non-differentiable sequence-level metrics such as CIDEr [21]
and SPICE [22], which are more suitable than word-level
cross-entropy loss for language quality evaluation; 2) it
avoids the “exposure bias” [23] by performing exploration
over sequence compositions at a large scale, leading to
fruitful sentences without undesirable overfitting.

However, existing RL-based framework neglects to turn
VP into decision-making, e.g., the input of VP is identical in
every step as shown in Figure 1b. This disrespects the nature
of sequence prediction, where the historical visual actions
(e.g., previously attended regions) should significantly influ-
ence the current visual policy. One may argue that current
visual attention based models would take a hidden memory
vector from LP at each time step, which encodes historical
cues. However, as we will demonstrate in experiments, this
strategy is not able to guide VP to concentrate on the correct
regions due to that 1) the LP hidden vector is responsible
to memorize linguistic context and hence lacks capacity for
storing visual context; 2) it is crucial to exploit visual context
to facilitate the production of fine-grained image description
with complete story-line.

Motivated by the above observations, we propose a
novel Context-Aware Visual Policy (CAVP) network for fine-
grained image captioning. As shown in Figure 1c, CAVP
allows the previous visual features, i.e., the previous output
of CAVP, to serve as the visual context for the current

action. Different from the conventional visual attention [7],
where the visual context is implicitly encoded in a hidden
RNN state vector from LP, our visual context is explicitly
considered in a sequence prediction process. Our motivation
is in line with the cognitive evidence that the visual memory
recall plays a crucial role in compositional reasoning [24]. As
illustrated in Figure 2, for image sentence captioning, it is
necessary to consider the related regions, e.g., the previously
selected “man”, when generating the composition “man
riding a horse”. For image paragraph captioning, while
generating the interaction “riding” between “man” and
“horse”, we should memorize the regions within blue and
red bounding boxes, which had already been concentrated
in generating previous sentences. The proposed CAVP ex-
plicitly models visual context in visual policy network,
leading to context-aware visual feature at each time step,
which is more informative and is beneficial to fine-grained
image captioning.

We decompose CAVP into four sub-policy networks,
which together accomplish the visual decision-making task
(cf. Figure 3), each of which is a Recurrent Neural Net-
work (RNN) controlled by shared Long Short-Term Memory
(LSTM) parameters and produces a soft visual attention
map. As we will show in Section 3.2, this CAVP design
reduces the exponentially large search complexity to linear
time. By reducing search complexity, it thus stabilizes the
conventional Monte Carlo policy rollout. It is worth noting
that CAVP and its subsequent language policy network
can efficiently model higher-order compositions over time,
e.g., relationships among objects mentioned in the generated
sub-sequence. Moreover, for generating a paragraph with a
hierarchical structure of paragraph-sentence-word, we fur-
ther develop a hierarchical CAVP network to exploit visual
context at both sentence and word levels. We also design
a hierarchical reward mechanism consisting of paragraph-
level and sentence-level rewards.

The whole framework is trained end-to-end using an
actor-critic policy gradient with a self-critic baseline [19].
It is worth mentioning that the proposed CAVP can be
seamlessly integrated into any policy-based RL models [25].
We show the effectiveness of the proposed CAVP through
extensive experiments on the MS-COCO image sentence
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captioning benchmark [26] and Stanford image paragraph
captioning dataset [27]. In particular, we significantly im-
prove every SPICE [22] compositional scores such as object,
relation, and attribute without optimizing on it. We also
show promising qualitative results of visual policy reason-
ing over the time of generation.

2 RELATED WORK

2.1 Image Sentence Captioning

Inspired by the recent advances in machine translation [4],
existing image captioning approaches [6], [7], [28], [29], [30]
typically follow an encoder-decoder framework, which can
be considered as a neural machine translation task from
image to text. It uses CNN-RNN architectures that encode
an image as feature vectors by CNN [2], [31] and decode
such vectors to a sentence by RNN [1].

More recently, attention mechanisms which allow dy-
namic feature vectors have been introduced to the encoder-
decoder framework. Xu et al. [7] incorporated soft and hard
attention mechanisms to automatically focus on salient ob-
jects when generating corresponding words. Chen et al. [30]
introduced channel-wise attention besides spatial attention.
Lu et al. [28] proposed a visual sentinel to deal with the
non-visual words during captioning. Besides the spatial
information comes from CNN feature maps, Anderson et
al. [29] used an object detection network to propose salient
image regions with an associated feature vector as bottom-
up attention. However, these captioning approaches only
focus on the current time step’s visual attention and neglect
to consider the visual context over time, which is crucial for
language compositions. Hence, we propose to incorporate
historical visual attentions to current time step as visual
context.

2.2 Image Paragraph Captioning

Describing images with a coherent paragraph is challenging.
A paragraph contains richer semantic content with longer
and more descriptive descriptions. Moreover, a paragraph
presents coherent and unified stories. Krause et al. [27]
proposed a two-stage hierarchical recurrent neural net-
work (RNN) to generate a generic paragraph for an im-
age. The first RNN generates sentence topic vectors and
decides how many sentences within the paragraph. The
second RNN translates the topic vectors into a sentence.
Liang et al. [32] incorporated attention mechanism into the
hierarchical RNN framework to focus on dynamic salient
regions while generating corresponding sentences. They
also extended the model with a Generative Adversarial
Network (GAN) setting, to encourage coherence among
successive sentences. They proposed a GAN-based model
consisting of a paragraph generator and two discriminators
for personalized image paragraph captioning. Chatterjee et
al. [33] explicitly introduced coherence vectors and global
topic vectors to guide paragraph generation, pursuing the
coherence among sentences. Moreover, they cast the model
into a variational auto-encoder (VAE) framework to enhance
the diversity of paragraphs. Despite the performance of
image paragraph captioning has been steadily improved,
existing approaches neglect to consider visual context over

time, resulting in the lack of correlation among sentences in
a paragraph. Meanwhile, without reinforcement learning,
they suffer from the “exposure bias” between training and
sampling. To address these issues, we introduce a hierar-
chical CAVP model which can generate more coherent and
descriptive paragraphs.

2.3 Sequential Decision-Making
Most recent captioning approaches are typically trained via
maximum likelihood estimation (MLE), resulting in the “ex-
posure bias” [23] between the training and testing phases.
To mitigate it, reinforcement learning has been applied to
image captioning, which introduces the notion of sequential
decision-making. The idea of making a series of decisions
forces the agent to take into account future sequences of
actions, states, and rewards. In the case of image caption-
ing, the state consists of visual features, preceding words
and visual context, the action is choosing next word and
visual representation, and the reward could be any metric
of interest.

Several attempts have been made to apply sequential
decision-making framework to image captioning. For ex-
ample, Ranzato et al. [23] trained an RNN-based sequence
model by policy gradient algorithm based on Monte Carlo
search. The policy gradient was used to optimize a sentence-
level reward. Rennie et al. [19] modified the classic RE-
INFORCE algorithm [34] with a learned baseline which
obtained by greedy sampling under the current model to
reduce variance of the rewards. As a result, for each sampled
caption, it has a sentence level value indicating how good
or bad this sentence is. It assumes that each token makes
the same contribution towards the sentence. Actor-Critic
based method [20] was also applied to image captioning
by utilizing two networks as Actor and Critic respectively.
Ren et al. [3] recast image captioning into decision-making
framework and utilized a policy network to choose the next
word and a value network to evaluate the policy.

In our work, we formulate the image captioning task into
a sequence training framework where each word prediction
policy is based on the action performed by the proposed
CAVP. Our framework is optimized using policy gradient
with a self-critic value which can directly optimize non-
differentiable quality metrics of interest, such as CIDEr [21].

3 APPROACH

In this section, we elaborate the proposed fine-grained im-
age captioning framework. We first formulate the image
captioning task into a sequential decision-making process
and profile the proposed models in Section 3.1. Then, we in-
troduce the proposed Context-Aware Visual Policy network
(CAVP) in Section 3.2 and language policy network (LP) in
Section 3.3. We discuss the sequence training strategy for the
entire framework in Section 3.4.

3.1 Overview
We formulate the task of image captioning into a sequential
decision-making process where an agent interacts with the
environment, and then executes a series of actions, so as
to optimize the reward return when accomplishing a goal.
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Fig. 3: Overview of the proposed RL-based image sentence captioning framework. It consists of the proposed CAVP
for visual feature composition and the language policy for sentence generation. CAVP contains four sub-policy (SP)
networks: Single SP, Context SP, Composition SP, and Output SP. t is the current time step and yt is the predicted
word.

Specifically, the agent is the captioning model consisting of a
context-aware visual policy network (CAVP) and a language
policy network (LP). The goal is to generate a language
description (sentence or paragraph) Y for a given image
I . To accomplish the goal, at each time step t, the action of
CAVP is to generate a visual representation vt, the action of
LP is to predict a word yt. The observed state is the image
I , the visual context {v1, · · · vt−1}, and the predicted words
{y1, · · · yt−1} so far. The environment is the image I to be
captioned. The reward could be any evaluation metric score
between the ground-truth and the prediction.

Fig. 3 illustrates the overview of the proposed image
sentence captioning framework. At each time step t, the
CAVP takes image I and visual context {v1, · · · vt−1} as
input to produce a visual representation vt. The LP takes
the visual representation vt and the preceding word yt−1 as
input to predict the next word yt.

Fig. 4 illustrates the overview of the proposed image
paragraph captioning framework. The task of generating
a paragraph could be accomplished into two steps, i.e., 1)
producing a series of topic vectors t, and 2) translating each
topic vector ti into a sentence of words. In particular, we
design a hierarchical CAVP-LP architecture for paragraph
captioning. We first utilize a sentence-level CAVP-LP which
takes image I and visual context {v1, · · · vi−1} as input and
produces a visual representation vi, a topic vector ti and a
stop probability pistop. Then, the topic vector ti is injected
into a word-level LP to constraint the generation of each
word yi,j of the i-th sentence.

3.2 Context-Aware Visual Policy Network

To generate a fine-grained description, we perform a series
of complicated reasoning processes by decomposing the
Context-Aware Visual Policy network (CAVP) into four sub-
policy networks (SP): 1) a single SP to obtain the on-going
task representation; 2) a context SP to infer task-related con-
text; 3) a composition SP to model the relationship between

the context and the on-going task; 4) an output SP to identify
the efficacy of context. We first elaborate the four sub-policy
networks of CAVP in Section 3.2.1 and then introduce the
hierarchical CAVP designed for paragraph captioning in
Section 3.2.2.

3.2.1 Sub-Policy Networks
In general, a sub-policy network SP encodes the observed
state by an RNN with LSTM cell [1] and performs a real-
valued action by soft attention selection. The selection can
be considered as an approximation of Monte Carlo rollouts,
reducing the sampling variance [35] caused by the diverse
image regions. Specifically, at time step t, a sub-policy
network as an agent observes a state st and performs an
action at ∼ π(at|st; θ). It then translates this action into a
representation f as a weighted sum of a series of input
features Qt = {q1, · · · , qd}, where d is the number of
features. Here, without loss of generality, we first introduce
the general structure of the sub-policy networks denoted
as SP without any superscripts. The general formulation is
given by:

f = SP(st, Qt) =
d∑
i=1

π(at = i)qi. (1)

To compute the probability distribution of the action, we
follow the attention mechanism [7] as:

π(at = i) = softmax(wTa tanh(Whht +Wqqi)), (2)

where π(at = i) ∈ [0, 1], wa, Wh and Wq are trainable
parameters, and ht is the LSTM hidden state calculated by:

ht = LSTM(st, ht−1). (3)

In this way, if we have the state st and the input fea-
tures Qt at each time step, the sequence decision-making is
known.

Next, we elaborate the implementation of each sub-
policy network by introducing the corresponding state st
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and the input features Qt. We use a superscript to distin-
guish four sub-policy networks, i.e, ·s for single SP, ·c for
context SP, ·p for composition SP, and ·o for output SP.
Single Sub-policy Network Before Single sub-policy net-
work, we first use Faster R-CNN [5] to extract image region
features {r1, · · · , rk} from image I , where k is the number
of regions. The observed state sst at time step t consists of the
previous LSTM hidden state hlt−1 of the language policy net-
work, concatenated with the mean-pooled region features
r̄ = 1

k

∑k
i=1 ri, and word embedding of the preceding word

yt−1:
sst = [hlt−1, r̄,WeΠ(yt−1)], (4)

where We ∈ RE×Σ is a word embedding matrix of a
vocabulary learned from scratch, and Π is a one-hot en-
coding function. The input features at each time step are
the detected region features, i.e.Qst = {r1, r2, · · · , rk}. The
output of the single sub-policy network is the single feature
at time step t:

vst = fst = SPs(sst , Q
s
t ), (5)

which is in turn fed into the subsequent output SP.
Context Sub-policy Network At time step t, visual context
includes the historical visual outputs {v1, · · · , vt−1}. How-
ever, not every visual context is useful for the current word
generation. Therefore, we introduce the context sub-policy
network SPc to choose the most informative context and
combine it with the detected region features. In particular,
we define the observed state as:

sct = [hlt−1, r̄,WeΠ(yt−1)], (6)

and the input features as Qct = {v1, · · · , vt−1}.
By the context sub-policy network, we get the visual

context representation f ct at time step t as Eqn. 1. Then we
fuse f ct with region features into context features ct,i as:

ct,i = WT
c [f ct ; ri], i = 1, 2, · · · , k, (7)

where [·; ·] indicates the concatenation of vectors and WT
c

projects context features to the original dimension as region
features. The context features will be used in the composi-
tion SP.

To investigate the importance of visual context, we pro-
pose another way to represent context features, i.e., only
considering preceding time step t− 1 as visual context:

ct,i = WT
c [vt−1, ri], i = 1, 2, · · · , k, (8)

We will discuss this approximation in Section 4.4.1.
Composition Sub-policy Network The composition sub-
policy network is similar to the single sub-policy network
that takes the previous hidden state of the language policy
network, the mean-pooled region features, and an embed-
ding of the preceding word as observed state:

spt = [hlt−1, r̄,WeΠ(yt−1)]. (9)

The input features of the composition sub-policy network
are the context features from the context sub-policy network:

Qpt = {ct,1, ct,2, · · · , ct,k}. (10)

Then we take the output of composition sub-policy network
as composition features at time step t:

vpt = fpt = SPp(spt , Q
p
t ). (11)

Output Sub-policy Network After obtaining the single and
compositional features from Single SP and Composition SP,
we produce the visual output vt at time step t by Output SP.
We define the observed state as:

sot = [hlt−1, r̄,WeΠ(yt−1)], (12)

and the input features as Qot = {vst , v
p
t , r̄}. Inspired by [28],

we append an extra feature r̄ to input features for non-visual
words. We take the output of Output SP as the visual feature
vt:

vt = fot = SPp(sot , Q
o
t ). (13)

The visual feature vt will be used in language policy net-
work at time step t and also will be seen as visual context in
subsequent time steps.
Weight Sharing We notice that the observed state of above
sub-policy networks are identical as:

sct = sst = spt = sot = [hlt−1, r̄,WeΠ(yt−1)]. (14)

To reduce the model complexity and computational over-
head of CAVP, we share the LSTM parameters among those
sub-policy networks in experiments. More ablation studies
of the weight sharing will be detailed in Section 4.4.1.

3.2.2 Hierarchical Context-aware Visual Policy Network
We design a hierarchical context-aware visual policy net-
work, consisting of a sentence-level CAVP and a word-
level CAVP, for image paragraph captioning. For the sake
of simplicity, we denote CAVP as

vt = CAVP(R,St). (15)

At time step t, CAVP takes a set of region features R and
a sequential visual context St as input and produces a
sequential visual representation vt.
Sentence-level CAVP In a paragraph, each sentence should
keep continuity to all the previous sentences. This requires
that the model is aware of visual context. We thus construct
a sentence-level CAVP with the same structure of the CAVP
for image sentence captioning in Section 3.2.1. Formally,
given the region features R = {r1, r2, ..., rk} and visual con-
text {v1, v2, ..., vi−1}, we apply the four sub-policy networks
including single SP, context SP, comp. SP and output SP. The
output of sentence-level CAVP will be used to guide the
word-level visual policy network and feed into the sentence
LSTM. Such process is given as:

vi = CAVP(R, {v1, ..., vi−1}), i = 1, 2, ..., Ts (16)

where vi denotes the visual representation of i-th sentence,
Ts is the number of sentences.
Word-level CAVP We construct a word-level CAVP to gen-
erate words in sentences. A single sentence in a paragraph
generally describes a certain region of the image. We set the
visual context as the previous word-level visual representa-
tions:

vi,j = CAVP(R, {v1, ..., vi−1}), j = 1, 2, ..., Tw (17)
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where vi,j denotes the visual representation of the j-th word
of the i-th sentence of a paragraph, Tw is the length of
sentence. In this way, we can generate the whole paragraph
by repeatedly applying the hierarchical language policy
network.

3.3 Language Policy Network

We employ a language policy (LP) network towards gener-
ating a coherent image description. We first introduce the
language policy network for image sentence captioning and
then describe the hierarchical language policy network for
image paragraph captioning.

At each time step, CAVP generates a context-aware vi-
sual representation that is most fitting to the current word.
Language policy network take the visual representation and
the hidden state hst of Single SP as input, then use them to
update LSTM hidden state:

hlt = LSTM([hst , vt], h
l
t−1). (18)

To compute the distribution over all words in vocabulary,
we apply an FC layer to hidden state, and after softmax
layer it outputs the probability distribution of each word,
given by:

πl(yt|y1:t−1) = softmax(Wyh
l
t + by), (19)

where Wy and by are learnable weights and biases. For a
whole sentence, the distribution is calculated as the product
of all time step’s conditional distributions:

πl(y1:T ) =
T∏
t=1

πl(yt|y1:t−1). (20)

3.3.1 Hierarchical Language Policy Network
We design a hierarchical language policy network for image
paragraph captioning, consisting of a sentence-level LP and
a word-level LP, which correspond to the sentence-level
and word-level CAVPs, respectively. The sentence-level LP
is fed by the visual representation vi from the sentence-
level CAVP, while the word-level LP takes vi,j by the word-
level CAVP as input. The sentence-level LP is designed to
produce a topic vector for each sentence and predict the
number of sentences of a paragraph. Given a topic vector
and visual representation for a sentence, the word-level LP
generates each word to form the sentence.
Sentence-level LP Sentence-level language policy network
consists a one-layer LSTM and two FC-layers. For each
sentence in a paragraph, the LSTM receives visual repre-
sentation vi and produces hidden state hsi . The hidden state
hsi is used to generate a topic vector ti by linear projection as
well as a distribution pistop over two states {CONTINUE=0,
STOP=1} by a softmax classifier. pistop indicates whether the
current sentence is the last one in the paragraph.
Word-level LP Given a topic vector from the sentence
LSTM, the word LSTM is to generate the words to form
the corresponding sentence. At each time step, we feed the
topic vector concatenated with word embedding vector to
word LSTM. The hidden state of the word LSTM is used to
predict a distribution over all possible words in vocabulary
by an FC-layer and a softmax classifier.
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Fig. 4: Overview of the proposed hierarchical CAVP-LP
framework for image paragraph captioning, consisting of
a sentence-level CAVP-LP and a word-level CAVP-LP.

3.4 Sequence Training
The sequence training process consists of two phases, in-
cluding pre-training by supervised learning and fine-tuning
by reinforcement learning.

For pre-training, we follow the traditional captioning
training strategy and optimize the cross-entropy loss be-
tween the ground-truth and the probability distribution we
produce. Given a target ground-truth sequence ygt1:T and
a captioning model with parameters θ, the objective is to
minimize the cross-entropy loss:

LS(θ) = −
T∑
t=1

log(πl(y
gt
t | y

gt
1:t−1)). (21)

However, the “teacher-forcing” training strategy leads to
“exposure bias” which means the model can hardly expo-
sure to real sequential data beyond ground-truth dataset.

Therefore, at the fine-tuning stage, we adopt the REIN-
FORCE algorithm [34] to directly optimize the sequence-
level metrics and address the exposure bias issue. Specifi-
cally, we follow the self-critical method [19]. First, we sam-
ple a greedy sequence ŷ1:T in greedy manner, i.e., sampling
each word with the maximum probability. Then we Monte-
Carlo sample another sequence ys1:T , i.e., sampling each
word according to the probability distribution the model
predicts. The objective is to minimize the negative expected
relative score:

LR(θ) = −Ey∼πl
[r(ys1:T )− r(ŷ1:T )], (22)

where r(·) could be any evaluation score metric, e.g., CIDEr,
BLEU, or SPICE. We will discuss the influence of different
metrics in Section 4.4.2.

Note that the Eqn. (22) is non-differentiable, we approx-
imate the gradient by the REINFORCE algorithm as:

∇θLR(θ) ≈ −(r(ys1:T )− r(ŷ1:T ))∇θ log πθ(y
s
1:T ). (23)

While training, this gradient tends to increase the probabil-
ity of each words in the sampled captions if r(ys1:T ) higher
than r(ŷ1:T ), which can been seen as the relative baseline
score, and vice versa.
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A brute force search of all possible contextual regions
requiresO(2N ) complexity for multinomial combinations of
N image regions. For linear efficiency, we follow the “divide
and rule” principle and divide the overall search process
into several compositional reasoning steps by approximat-
ing the overall visual policy network as four sub-policy
networks. Each sub-policy network only needs to perform
specific sub-task which only requires O(N) complexity, e.g.,
the single SP only needs to select one region from N image
regions and the context SP only needs to select one historical
visual output as the current visual context. As a result, the
CAVP reduces the complexity exponentially.

3.4.1 Hierarchical Sequence Training
To train the image paragraph captioning model, we adopt
the cross-entropy loss from a single sentence to a paragraph
containing several sentences. Given a target ground-truth
paragraph ygt1:Ts×Tw

, where y has Ts sentences, and each
sentence contains Tw words1. Besides a word prediction
loss, we also add a sentence ending prediction loss, given:

LS(θ) = −λw
Ts×Tw∑
i=1

log(πl(y
gt
i ))− λs

Ts∑
i=1

log(pgtstop), (24)

where λw and λs are balancing factors.
While sampling, we run the visual policy network and

sentence LSTM until the stopping probability pstop > 0.5
or after maximum number of sentences. After training by
cross-entropy loss, we also use the policy gradient method
to optimize the metric score directly.
Paragraph-level Reward The straightforward extend
method is following Eqn. 23, given:

∇θLR(θ) ≈
− (r(ys1:Ts×Tw

)− r(ŷ1:Ts×Tw
))∇θ log πl(y

s
1:Ts×Tw

)
(25)

where ys1:Ts×Tw
is a paragraph sampled according to dis-

tribution, and ŷ1:Ts×Tw is a greedy searched paragraph
description. But in these settings, sharing one reward in a
whole paragraph is insensitive, while individual rewards
for each word is unstable. A trade-off is using the sentence-
level reward.
Sentence-level Reward Since the model generates the para-
graph sentence by sentence, each sentence is based on
previous sentences, besides the evaluation of NLP metrics
are designed for complete strings, it can’t get each sen-
tence’s reward directly. To get the sentence-level reward,
we design a sampling schedule. For example, to get the i-
th sentence reward, we first use the previous i − 1 ground
truth sentences to guide the model, i.e. Teacher-Forcing, then
sampling the next sentence according to word distribution
as ysi , or greedy search the next sentence as ŷi. Therefore,
according to Eqn. (23), given:

∇θLR(θ) ≈ −(r(ys1:Tw
)− r(ŷ1:Tw))∇θ log πl(y

s
1:Tw

) (26)

3.4.2 Behavior Cloning
The learning would be easier if we have some additional
knowledge of the output policy. While there is no any addi-
tional knowledge in the caption datasets e.g. MS-COCO, we

1. For simplicity, we ignore the variant length of each sentence.

can use a language parser [36] as an existing expert output
policy that can be used to provide additional supervision.
More generally, if there is an expert output policy πe that
predicts a reasonable output policy πo, we can first pre-
train our model by behavioral cloning from πe. This can
be done by minimizing the KL-divergence DKL(πe||πo)
between the expert output policy πe and our output policy
πo, and simultaneously minimizing the captioning loss LXE
with expert output policy πe. This supervised behavioral
cloning from the expert output policy can provide a good
set of initial parameters in our output sub-policy network.
Note that the above behavioral cloning procedure is only
done at cross-entropy training time to obtain a supervised
initialization for our model, and the expert output policy is
not used at test time.

The expert output policy is not necessarily optimal, for
behavioral cloning itself is not sufficient for learning the
most suitable output policy for each image. After learning a
good initialization by cloning the expert output policy, our
model is further trained end-to-end with gradient ∇θLR(θ)
computed using Eqn. (23), where the output policy πo is
sampled from the output policy network in our model, and
the expert output policy πe can be discarded.

4 EXPERIMENTS ON SENTENCE CAPTIONING

In this section, we first introduce the experiment settings.
Then, we go through the implementation details. Finally, we
report both quantitative and qualitative evaluation results,
followed by detailed ablation studies.

4.1 Experiment Settings
4.1.1 Dataset
We used the most popular benchmark MS-COCO [26]
image sentence captioning dataset, which contains 82,783
images for training and 40,504 for validation. Each image
is human-annotated with 5 sentence captions. As the an-
notations of the official test set are not publicly available,
for validating model hyperparameters and offline testing,
we follow the widely used “Karpathy” splits [37] in most
prior works, containing 113,287 images for training, 5,000
for validation, and 5,000 for testing. We reported the results
both on “Karpathy” offline split and MS-COCO online test
server.

4.1.2 Metric
The most common metrics for caption evaluation are based
on n-gram similarity of reference and candidate descrip-
tions. BLEU [38] is defined as the geometric mean of n-
gram precision scores, with a sentence-brevity penalty. In
CIDEr [21], n-grams in the candidate and reference sen-
tences are weighted by term frequency-inverse document
frequency weights (i.e. tf-idf). Then, the cosine similar-
ity between them is computed. METEOR [39] is defined
as the harmonic mean of precision and recall of exact,
stem, synonym, and paraphrase matches between sentences.
ROUGE [40] is a measures for automatic evaluation for
summarization systems via F-measures.

All the above metrics are originally developed for the
evaluation of text summaries or machine translations. It has
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been shown that there exist bias between those metrics and
human judgment [22]. Therefore, we further evaluated our
model using SPICE [22] metric, which is defined over tuples
that are divided into semantically meaningful categories
such as objects, relations, and attributes.

4.2 Implementation Details
4.2.1 Data Pre-processing
We performed standard minimal text pre-processing: first
tokenizing on white space, second converting all words
into lower case, then filtering out words that occur less
than 5 times, finally resulting in a vocabulary of 10,369
words. Captions are trimmed to a maximum of 16 words for
computational efficiency. To generate a set of image region
features R, we take the final output of the region proposed
network [5] and perform non-maximum suppression. In our
implementation, we used an IoU threshold of 0.7 for region
proposal non-maximum suppression, and 0.3 for object class
non-maximum suppression. To select salient image regions,
we simply selected the top k = 36 features in each image
for computation consider.

4.2.2 Parameter Settings
We set the number of hidden units of each LSTM to 1,300,
the number of LSTM layers to 1, the number of hidden
units in the attention mechanism we described in Eqn. (2)
to 1,024, and the size of word embedding to 1000. During
the supervised learning for the cross-entropy process, we
use Adam optimizer [41] with base learning rate of 5e-4
and shrink it by 0.8 every 3 epochs. We start reinforcement
learning after 37 epochs, we use Adam optimizer with base
learning rate of 5e-5 and shrink it by 0.1 every 55 epochs.
We set the batch size to 100 images and train up to 100
epochs. During the inference stage, we use a beam search
size of 5. While training Faster R-CNN, we follow [29]
and first initialize it with ResNet-101 [31] pretrained with
classification on ImageNet [42], then fine-tune it on Visual
Genome [43] with attribute labels.

4.3 Comparisons to State-of-The-Arts
4.3.1 Comparing Methods
Traditional Approaches We first compared our models to
classic methods including Google NIC [6], Hard Atten-
tion [7], Adaptive Attention [28] and LSTM-A [44]. These
methods follow the popular encoder-decoder architecture,
trained with cross-entropy loss between the predicted and
ground-truth words, that is, no sequence training is applied.
RL-based Approaches We also compared our models to
the RL-based methods including PG-SPIDEr-TAG [18],
SCST [19], Embedding-Reward [3], and Actor-Critic [20].
These methods use sequence training with various reward
returns.

4.3.2 Quantitative Analysis
As shown in Table 1, we evaluated our model compared to
multiple state-of-the-art methods. We found that almost all
RL-based methods outperform traditional ones. The reason
is that RL addresses the loss-evaluation mismatch problem
and included the inference process in training to address

Model B@4 M R C S
Google NIC [6] 32.1 25.7 - 99.8 -
Hard-Attention [7] 24.3 23.9 - - -
Adaptive [28] 33.2 26.6 54.9 108.5 19.4
LSTM-A [44] 32.5 25.1 53.8 98.6 -
PG-SPIDEr [18] 32.2 25.1 54.4 100.0 -
Actor-Critic [20] 34.4 26.7 55.8 116.2 -
EmbeddingReward [3] 30.4 25.1 52.5 93.7 -
SCST [19] 35.4 27.1 56.6 117.5 -
StackCap [45] 36.1 27.4 56.9 120.4 20.9
Up-Down [29] 36.3 27.7 56.9 120.1 21.4
Ours 38.6 28.3 58.5 126.3 21.6

TABLE 1: Performance comparisons on MS-COCO
“Karpathy” offline split. B@n is short for BLEU-n, M is
short for METEOR, R is short for ROUGE, C is short for
CIDEr, and S is short for SPICE.
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Fig. 5: The performance comparison of the CAVP model
and the Up-Down method. All SPICE category scores are
improved by CAVP.

the exposure bias problem. We can also find that our CAVP
outperforms other non-context methods. This is because the
visual context information is useful for current word gen-
eration and the policy makes better decisions. In particular,
we achieved state-of-the-art performance under all metrics
on “Karpathy” test split. Table 2 reports the performance
comparison without any ensemble on the official MS-COCO
evaluation server1. It is worthy to note that our approach is
a single captioning model while the others are based on the
ensemble of multiple captioning models.

To evaluate the compositional reasoning ability of our
CAVP model, we also provide SPICE semantic category
scores in Fig. 5. Since SPICE parses the language into scene
graph and compares the graph similarity, it can provide
finer-grained information such as relation, attribute, color,
size, and cardinally. We can find that our CAVP model im-
proves all SPICE semantic category scores while comparing
with Up-Down [29] model which neglects visual context.
Specifically, the Relation score indicates the reasoning ability
of object relationships, e.g., “man riding horse”. The At-
tribute, Color, and Size scores indicate the reasoning ability
of visual comparisons, e.g., “small(er) cat”. Note that in
most cases, the visual comparisons are implicit, for example,
when we describe a cat is “small”, it means the cat is
relatively “smaller” than other objects.

4.3.3 Qualitative Analysis
To better reveal our CAVP model, we show some qualitative
visualizations as well as the output of sub-policy network’s

1. https://competitions.codalab.org/competitions/3221#results

https://competitions.codalab.org/competitions/3221#results
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BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

Google NIC [6] 71.3 89.5 54.2 80.2 40.7 69.4 30.9 58.7 25.4 34.6 53.0 68.2 94.3 94.6
MSR Captivator [46] 71.5 90.7 54.3 81.9 40.7 71.0 30.8 60.1 24.8 33.9 52.6 68.0 93.1 93.7
M-RNN [47] 71.6 89.0 54.5 79.8 40.4 68.7 29.9 57.5 24.2 32.5 52.1 66.6 91.7 93.5
Hard-Attention [7] 70.5 88.1 52.8 77.9 38.3 65.8 27.7 53.7 24.1 32.2 51.6 65.4 86.5 89.3
Adaptive [28] 74.8 92.0 58.4 84.5 44.4 74.4 33.6 63.7 26.4 35.9 55.0 70.5 104.2 105.9
PG-SPIDEr-TAG [18] 75.1 91.6 59.1 84.2 44.5 73.8 33.6 63.7 25.5 33.9 55.1 69.4 104.2 107.1
SCST:Att2all [19] 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7
LSTM-A3 [44] 78.7 93.7 62.7 86.7 47.6 76.5 35.6 65.2 27 35.4 56.4 70.5 116.0 118.0
Stack-Cap [45] 77.8 93.2 61.6 86.1 46.8 76.0 34.9 64.6 27.0 35.6 56.2 70.6 114.8 118.3
Up-Down [29] 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5

Ours 80.1 94.9 64.7 88.8 50.0 79.7 37.9 69.0 28.1 37.0 58.2 73.1 121.6 123.8

TABLE 2: Highest ranking published image captioning results on the online MSCOCO test server. Except for BLUE-1
which is of little interest, our single model optimized with CIDEr, outperforms previously published works using all
the other metrics.

predictions in Figure 6. Take Figure 6a as an example, after
we generated “a young boy”, we first focus on the visual
context, i.e., the boy’s hand which is holding something.
Then we want to find visual regions that the boy is holding,
so we focus on the toothbrush in the boy’s mouth. Finally,
focusing on both hand and toothbrush, we generated the
exact word “brushing”. In Figure 6c and 6d, although
the model generated the same words, the context of the
two words are different. In Figure 6c, the context is “kite”
for captioning the relation between the kite and sky, while
in Figure 6d, the context is “people” for captioning the
action of the people. By applying the CAVP model, we
can generate those captions both successfully with deep
understanding of image scenes.

Besides showing a single important word of the gener-
ated sequence, we also visualize the whole policy decision
across the whole sentence generation in Figure 7. Take the
first sentence as an example, we notice that our context-
aware model can not only focus on some single objects such
as “man”, “skis”, and “snow”, but also the compositional
word “standing”, connecting “man standing in snow”.

4.4 Ablation Studies
We extensively investigated ablation structures and settings
of the CAVP model to gain insights into how and why it
works.

4.4.1 Architecture
We investigate multiple variants of the CAVP model.
• Up-Down [29]: The CAVP degrades to the existing Up-

Down model if we only use the single sub-policy network.
• CAVP scratch: In CAVP, the context sub-policy network

only takes the last visual feature as visual context and
the sub-policy network is trained from scratch rather than
using expert policy.

• CAVP cloning: The context sub-policy network takes the
last visual feature as visual context. The output sub-policy
network is behavior cloned from expert policy.

• CAVP non-sharing: The context sub-policy does not share
weights with the other three sub-policy networks.

Table 3 reports the performance comparison between the
CAVP model and its variants on MS-COCO dataset. We

(a) brushing (b) holding

(c) flying (d) flying

Fig. 6: Qualitative examples where top matrix shows the
output policy network action probabilities and the bottom
image shows the decision with maximum probability for
composition features. The red bounding boxes are the
context regions and the blue bounding boxes are the
current regions which concatenated with context regions.

Model B@4 M R C S
1 Up-Down [29] 37.5 27.7 57.9 121.9 21.0
2 CAVP scratch 37.8 28.0 58.2 124.5 21.3
3 CAVP cloning 38.3 27.8 58.0 124.6 21.4
4 CAVP non-sharing 38.3 28.2 58.4 126.4 21.6
5 CAVP 38.6 28.3 58.5 126.3 21.6

TABLE 3: Ablation performance on MS-COCO. B@n is
short for BLEU-n, M is short for METEOR, R is short for
ROUGE, C is short for CIDEr, and S is short for SPICE.
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a man

standing on skis

in the snow

(a) a man standing on skis in the snow

a man sitting in

the grass flying a kite

(b) a man sitting in the grass flying a kite

Fig. 7: For each generated word, we visualized the attended image regions, outlining the region with the maximum
policy probability in bounding box. The red bounding boxes are the visual context representation regions and the blue
bounding boxes are the regions decided by single policy network.

Model # of Parameters Training Testing
Up-Down [29] 77.6M 66 44.40
CAVP non-sharing 108.5M 78 58.51
CAVP 83.0M 72 56.48

TABLE 4: Efficiency comparison in terms of parameter
number, training time (hour) and testing time (ms/image).
Experiments are performed on two Nvidia 1080Ti GPUs.

Training
Metric

Evaluation Metric
BLEU4 ROUGE METEOR CIDEr SPICE

BLEU 38.8 57.7 27.3 114.5 20.7
ROUGE 38.1 59.1 27.8 120.0 20.8

METEOR 33.6 57.6 29.6 113.0 22.8
CIDEr 38.3 58.4 28.2 126.4 21.6
SPIDEr 37.8 58.0 27.8 125.3 23.1

TABLE 5: Ablation performance on the MS-COCO
“Karpathy” offline split with respect to various metrics
as the reward.

can have the following observations: (a) The performance
improvements of the other four models over Up-Down
method [29] indicates the effectiveness of visual context
for fine-grained image captioning. (b) The CAVP scratch
and CAVP cloning obtain comparable performance. This
shows that the off-the-shelf language parser is not very
suitable to the visual-language task and the output sub-
policy network can be learned from scratch without any
expert policy guiding. (c) CAVP outperforms CAVP scratch
and CAVP cloning. By memorizing historical visual context
rather than only using the last visual feature, CAVP is
able to generate more effective visual representations for
subsequent sentence/paragraph generation.

Table 4 reports the parameter number, training and
testing time costs. From the results, we can see that the
CAVP model slightly increase the parameter number, train-
ing and testing computational overhead as compared to
the existing up-down method [29]. Moreover, by sharing
parameters among the four sub-policy networks, CAVP has
fewer parameters and lower computational cost than the
model without parameter sharing.

4.4.2 Reward

For sequence training by policy gradient, the reward func-
tion r(·) can be any metrics, e.g. BLEU, ROUGE, METEOR,
CIDEr, and SPIDEr [18] (which combining the CIDEr and
SPICE scores equally as the reward). Optimizing for differ-
ent metrics leads to different performance. In general, as
shown in Table 5, we found that optimizing for a specific
metric results in the best performance on the same metric.
And optimizing for CIDEr and SPIDEr gives the best overall
performance, but the SPIDEr is more time consuming as the
SPICE metric evaluation is very slow. Thus, we chose the
CIDEr as the optimizing objective in most of our experi-
ments.

5 EXPERIMENTS ON PARAGRAPH CAPTIONING

5.1 Experiment Settings

We conducted the experiments on the publicly available
Stanford image-paragraph dataset collected by Krause et
al. [27], which is divided into three subsets, including
14,575 images for training, 2,487 for validation and 2,489 for
testing. Each image is annotated with one paragraph that
contains an average of 5.7 sentences. where each sentence
contains 11.9 words in average. For performance evaluation,
we reported six widely used performance metrics: BLEU-
{1,2,3,4}, METEOR, and CIDEr.

We performed the standard minimal textual pre-
processing as in Section 4.2.1, leading to a vocabulary of
4,237 words. To generate a set of image region features, we
followed the dense captioning [48] settings. In particular,
we first resized each image so that its longest edge is 720
pixels and passed it through VGG-16 [49] network. Then, we
extracted 50 region features in 4,096 dimensions. For policy
network, we set LSTM size to 512, the number of hidden
units in Eqn. (2) to 512, and embedding dimension to 512.
We set λw = 1.0 and λs = 5.0 in Eqn. (24). During the
training, we used Adam optimizer [41] with base learning
rate of 5e-4 and shrank it by 0.8 every 20 epochs. We set
the batch size to 64 images and trained up to 75 epochs for
cross-entropy loss and up to 150 epochs for RL loss. Besides,
we set maximum number of sentences to 6 and maximum
sentence length to 30 words.
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METEOR CIDEr BLEU-1 BLEU-2 BLEU-3 BLEU-4
Sentence-Concat [27] 12.05 6.82 31.11 15.10 7.56 3.98
Template [27] 14.31 12.15 37.47 21.02 12.30 7.38
DenseCap-Concat [27] 12.66 12.51 33.18 16.92 8.54 4.54
Image-Flat [27] 12.82 11.06 34.04 19.95 12.20 7.71
Regions-Scratch [27] 13.54 11.14 37.30 21.70 13.07 8.07
Regions-Hierarchical [27] 15.95 13.52 41.90 24.11 14.23 8.69
RTT-GAN [32] 17.12 16.87 41.99 24.86 14.89 9.03
RTT-GAN* [32] 18.39 20.36 42.06 25.35 14.92 9.21
Hierarchical CAVP CIDEr 16.79 20.94 41.38 25.40 14.93 9.00
Hierarchical CAVP BLEU 16.83 21.12 42.01 25.86 15.33 9.26
Human 19.22 28.55 42.88 25.68 15.55 9.66

TABLE 6: Performance comparison on image paragraph captioning task. The proposed models outperform the state-
of-the-art methods in terms of most metrics.

METEOR CIDEr BLEU-1 BLEU-2 BLEU-3 BLEU-4
Single Policy 16.29 16.36 40.11 22.31 12.39 6.86
Sentence CAVP 16.41 17.29 41.79 24.47 13.67 7.82
Hierarchical CAVP XE 17.14 19.63 42.49 25.80 15.04 9.00
Hierarchical CAVP CIDEr 16.79 20.94 41.38 25.40 14.93 9.00
Hierarchical CAVP BLEU 16.83 21.12 42.01 25.86 15.33 9.26

TABLE 7: Ablation performance on image paragraph captioning task.

a stop sign is attached to a pole . there are
a bunch of mountains and mountains
shown from the side of the road . there is
a small mountain in the distance .

a person is skiing in a snow covered area .
the person is wearing a black helmet and
goggles . there is loose snow all around
them from him jumping . the person is
holding two ski poles in their hands .

there are two zebras in the grass . they are
in a very small area of grass . there is a
large tree behind the zebra that is
partially visible on the top of it . there is a
tree trunk behind the zebra .

a man is surfing in the ocean . the
surfboard is white . the man is wearing a
black wet suit . there is a large wave in
the water .

Fig. 8: Examples of image paragraph captioning results of
our model. For each image, a paragraph description with
a variable number of sentences is generated.

5.2 Comparison to State-of-the-Arts

We compared our hierarchical CAVP model to the following
state-of-the-art methods. Sentence-Concat [27] combines
five sentences sampled from a sentence captioning model
trained on MS-COCO dataset. Image-Flat [27] directly treats
a paragraph as a long sentence and applies a standard image
captioning method [37]. Template [27] converts a structured
representation of images into text via a pre-defined tem-
plate. DenseCap-Concat [27] concatenates DenseCap [48]
predictions to form a paragraph. Region-Scratch [27] uses
a flat model, which initialized from scratch, to decode
paragraph. Region-Hierarchical [27] uses a hierarchical
structure contained a sentence RNN and a word RNN.
RTT-GAN [32] is an recurrent topic-transition generative
adversarial network coupled with an attention mechanism

proposed recently. RTT-GAN* [32] is the version using
additional training data. Moreover, we performed a Human
evaluation by collecting an additional paragraph for 500
randomly chosen images.

Table 6 reports the performance comparison of image
paragraph captioning on the Stanford image-paragraph
dataset. We found that the proposed Hierarchical CAVP
model optimized with either CIDEr or BLEU both outper-
forms the state-of-the-art methods in terms of most metrics.
Note that even comparing with RTT-GAN* [32] which uses
additional training data, the proposed model achieves better
performance in terms of most metrics. Moreover, Human
produce superior description to all the automatic methods,
especially in CIDEr and METEOR which are more correlated
with human judgment.

Figure 8 presents some examples generated by the pro-
posed models. We can find that our models can generate
successive sentences with a storyline. For example, the
paragraph for the image in the first row moves its attention
from near to far. The successive sentences first focus on the
nearest sign, then mountains at the side of road, and the
farthest mountain in the background finally.

5.3 Ablation Studies

We conducted ablation experiments to compare the pro-
posed model and its following variants. Single Policy and
Sentence CAVP treat a paragraph as a long sentence. While
Single Policy only uses the sentence-level single sub-policy
network without any visual context, Sentence CAVP uses
the sentence-level CAVP without hierarchical fortification.
Hierarchical CAVP XE is the proposed hierarchical CAVP
trained by cross-entropy loss.

Table 7 reports the performance comparison among the
proposed modes and the variants. From the results, we can
obtain the following observations. (a) The Sentence CAVP
outperforms Single Policy in terms of all the metrics. This
indicates that the context-aware visual policy network can
generate better long sentences by exploiting visual context.
(b) Hierarchical CAVP XE performs better than Sentence
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CAVP by using sentence-level and word-level visual poli-
cies augmented with visual context at both levels. (c) Hierar-
chical CAVP CIDEr or Hierarchical CAVP BLEU achieves
performance improvements in terms of some metrics and
causes performance degradation on the others as compared
to Hierarchical CAVP XE. The main reason is the lack
of sufficient ground-truth paragraphs for model training.
There is only one ground-truth paragraph for each image
in the dataset. Given more ground-truth paragraphs, the
models optimized by CIDEr or BLEU would be more supe-
rior over that by cross entropy, as shown in the evaluation
of image sentence captioning, where each image has five
ground-truth captions. (d) Hierarchical CAVP BLEU per-
forms better than Hierarchical CAVP CIDEr. This indicates
that BLEU is more stable than CIDEr when dealing with
limited ground-truth and small dataset.

6 CONCLUSION

In this paper, we proposed a novel Context-Aware Visual
Policy network (CAVP) for fine-grained image-to-language
generation, including both image sentence captioning and
image paragraph captioning. Superior to existing RL-based
methods, the proposed CAVP based framework takes ad-
vantage of visual context in compositional visual reasoning,
which is beneficial for image captioning. Compared against
traditional visual attention which only fixes a single image
region at every step, CAVP can attend to complex visual
compositions over time. To the best of our knowledge,
CAVP is the first RL-based image captioning model which
incorporates visual context into sequential visual reasoning.
We conducted extensive experiments as well as ablation
studies to investigate the effectiveness of CAVP. The ex-
perimental results have shown that the proposed approach
can significantly boost the performances of the RL-based
image captioning methods and achieves top ranking perfor-
mances on MS-COCO server and Stanford image paragraph
captioning dataset. We will continue our future works in
two directions. First, we will integrate the visual policy
and language policy into a Monte Carlo search strategy for
image sentence/paragraph captioning. Second, we will also
apply CAVP to other sequential decision-making tasks such
as visual question answering and visual dialog.
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