

Context-Awareness on Mobile Devices
- the Hydrogen Approach

Thomas Hofer, Wieland Schwinger, Mario Pichler, Gerhard Leonhartsberger, Josef Altmann
{firstname.surname}@scch.at

tel: +43 (7236) 3343 - 836
Software Competence Center Hagenberg

Hauptstraße 99, A-4232 Hagenberg

Werner Retschitzegger
werner@ifs.uni-linz.ac.at

tel: +43 (732) 2468 - 8883
Department of Information Systems

Johannes Kepler University Linz
Altenbergerstr. 69, A-4040 Linz

Abstract

Information about the user's environment offers new
opportunities and exposes new challenges in terms of
time-aware, location-aware, device-aware and
personalized applications. Such applications constantly
need to monitor the environment – called context - to
allow the application to react accordingly to this context.
Context-awareness is especially interesting in mobile
scenarios where the context of the application is highly
dynamic and allows the application to deal with the
constraints of mobile devices in terms of presentation and
interaction abilities and communication restrictions.

Current context-aware applications often realize
sensing of context information in an ad hoc manner. The
application programmer needs to deal with the supply of
the context information including the sensing of the
environment, its interpretation and its disposal for further
processing in addition to the primary purpose of the
application. The close interweavement of device specific
context handling with the application obstructs its reuse
with other hardware configurations.

Recently, architectures providing support for context-
aware applications have been developed. Up to now such
architectures are not trimmed to the special requirements
of mobile devices regarding particularly the limitations of
network connections, limited computing power and the
characteristics of mobile users.

This paper proposes an architecture and a software
framework - the Hydrogen Context-Framework - which
support context-awareness for considering these
constraints. It is extensible to consider all kind of context
information and comprises a layered architecture.

To prove the feasibility the framework has been
implemented to run on mobile devices. A context-aware
postbox is realized to demonstrate the capabilities of the
framework.

1 Introduction

Ubiquitous computing was first stressed by Marc
Weiser [31], envisioning a scenario where computational
power would be available everywhere embedded in walls,
chairs, clothing etc. Weiser's goal is to achieve the most
effective kind of technology, which is available
throughout the physical environment, while making them
effectively invisible to the user. There is still a long way
to go, but miniaturized devices like PDAs, micro
computers and embedded devices offer already existing
technology as a first step towards ubiquity of applications.

In general, ubiquity enables new opportunities and
challenges for applications in terms of time-aware [18],
location-aware [12], device-aware [23] and personalized
applications [19]. This implies that ubiquitous
applications need to be context-aware, thus taking into
account - individually for each user - time and location of

access, together with the different capabilities of devices
comprising display resolution, memory, computational
capabilities as well as network capacity. Consequently, the
fundamental objective of context-awareness is to provide
services not only to people at any time, any where, with
any media but specifically to communicate the right thing
at the right time in the right way. The pre-requisite for this
is that the application is aware of its context [1], [2], [31].
Therefore the application has to have a representation of
the information about its environment (i.e. context) and
react accordingly. From our point of view, context is all
relevant information about an application’s environment.

From a software-engineering point of view the
application should not be intermingled with the
management and storage of its context. To let an
application concentrate on its very own purpose, an
important architectural principle is to decouple
mechanism for sensing context information and its
interpretation from the provision of context-information to
the application. Finally the context representation should
be generic and thus extensible to cope with future needs.

1.1 Context Characteristics

Context can be used in two ways. On the one hand
applications can customize themselves according to the
context for better usage. Imagine a calendar reminder,
which customizes itself according to location information,
e.g. when the position of a device indicates a meeting
room, a vibrating alarm is used instead of an alarm bell.
On the other hand context information can be used for
creating a new type of applications, e.g. a location aware
reminder tool.

Context can be separated into physical context
representing the level of environment sensors and logical
context representing more abstract information about the
environment. Physical context properties are at a very low
level of abstraction and are continuously updated to take
into account the fact that the environment and the
application state itself continuously changes.

Logical context information is needed to enrich the
semantics of physical context information (e.g., GPS-
coordinates), thus making it meaningful for high-level
purposes (e.g., street name). [16].

1.2 Context-Awareness for Mobile Devices

In the following issues different to non-mobile
scenarios are outlined.

Context-awareness is especially interesting for mobile
devices where the context of the application is highly
dynamic allowing the application to deal with the
constraints of mobile devices in terms of presentation and
interaction abilities and communication restrictions.

At the same time, mobile devices such as PDAs suffer
from a lack of system resources like computing power,
memory and power supply.

This implies special restrictions on the architecture of a
framework supporting context-awareness on mobile
devices, and of context-aware applications in particular.

Furthermore a user, who is moving (with his/her
mobile device) is not permanently connected to a network.
In case that Wireless LAN, Bluetooth or other wireless
connections are used, a user will get out of range of access
points, switches to other access points or simply just
moves out of network coverage. At the moment
permanent connections are not guaranteed, an application
cannot rely on remote servers. This discontinuity of
network connections has to be taken into account when
designing an framework architecture for mobile devices.

But the network connection when using mobile devices
is not the only difference to a traditional use of
applications. Mobile devices are much more personal
meaning that a user of a mobile device normally does not
change. Furthermore personal devices often move with
their users.

Regarding the need to save energy a mobile device can
be turned off or simply some extensions such as network
cards can be disabled when they are not absolutely
required. A deactivated sensor cannot sense any
information about the context and therefore the current
context cannot be determined until the sensor is turned on
again.

On the basis of these special characteristics of a mobile
scenario we identified some requirements for an
architecture of a framework to support context-awareness
on mobile devices
• Lightweightness: The architecture has to take into

account the restrictions of limited processing power.
• Extensibility: Since available sensors and extension

slots are limited, it is not possible for a single device to
sense all context information. Therefore the
architecture should support connections to remote
sensors.

• Robustness: The architecture has to be robust against
disconnections of remote sensors.

• Meta-Information: Due to the fact that remote sensors
could provide controversial information, the context
model has to contain meta-information about the
distance of the device to the sensor, its preciseness and
many more.

• Context-Sharing: In addition to the above-mentioned
requirements we notice that when using mobile devices
the sensed context is almost never complete. This
incompleteness rests upon limited capabilities as well
as the purpose to be mobile, which means not to attach
any available hardware. We claim a mechanism to
share the sensed context with other devices.

Therefore an architecture separating the concerns of

context sensing from the application is needed, a software
framework realizing this architecture would help to
simplify work for an application programmer and would
let an application concentrate on its application purpose.

The rest of this paper structures as follows: Section 2
reflects the state of the art in developing context-aware
applications for mobile devices. For overcoming the
shortcomings of existing approaches the Hydrogen
Context-Framework is proposed in Section 3.
Implementation aspects are outlined in Section 4. Finally,
open issues and future work regarding context-awareness
in mobile scenarios are discussed.

2 Related Work

Current context-aware applications often realize the
sensing of context information in an ad hoc manner.
Application programmers need to deal with the supply of
the context information including the sensing of the
environment, its interpretation and its disposal for further
processing in addition to the primary purpose of the
application. The close interweavement of the device
specific context handling with the application obstructs its
reuse with other hardware configurations (e.g. other
sensors, other devices).

Up to now such architectures are not trimmed to the
special requirements of mobile scenarios regarding
particularly the limitations of network connections, power
supply, CPU-speed, and memory.

Recently some architectures were proposed and
frameworks were developed, which provide support for
context-aware applications in general and mobile
scenarios in particular.

The ContextToolkit [6], [7], [8], [9] provides a basic
architecture for platform-independent supply of context
information to the application. One of the requirements,
which heavily influences the design of the ContextToolkit,
is that "context can come from many, distributed
machines" [5]. So-called widgets read sensors and deliver
it to a server that is responsible for aggregating the
context. Based upon the architecture a framework was
developed.

Using the ContextToolkit the application can subscribe
to a widget remotely but needs to re-subscribe after a
disconnection [9]. Dynamic detection of remote sensors is
not supported, applications must know both, the hostname
and the port the component is being executed on [5].
Applications using this framework are fully depending on
(remote) servers and widgets. Whilst there is no route to
the server, an application cannot access any context, not
even context that has been sensed before.

GeoNotes by Espinoza et al. is a system for abstracting
location information for location-aware applications [10].
The system architecture is constructed to support shared
information for mobile devices, exactly to leave notes at
specific places for other users to be read. A user creates
notes and sticks it to certain places, where other users can
read them. Notes can be targeted at a single user or a
whole user group. Vice versa a specific user can create
and apply filters to perceive only a subset of the notes
associated to a certain place.

GeoNotes considers context very limited in that they
consider location context only. GeoNotes makes a central
server necessary for the storage of the notes and the
transmission to users reaching the associated places,
because creator and receiver of a note do not have any
direct connection. They are not at the same place at the
same time.

Ferscha et al. [11] present a multi-user team awareness
framework called CampusSpace for gathering the
geographical position using WLAN access points. The
idea is based on using signal strength and signal quality to
determine spatial proximity either to an access point or
another device also equipped with WLAN.

Nord et al. present an architecture for location aware
applications [22]. The architecture combines the diffent
ways of reading the location information with peer-to-peer
position sharing.

Couderc et al. [4] propose an architecture to improve
the level of quality of a service for mobile users using
context-awareness. To handle changing context like
bandwidth or available services the proposed general
architecture bases on contextual objects to design and
develop adaptive distributed information systems. These
contextual objects are objects, which can adapt
themselves according to a certain context. A first part of
this architecture has been already implemented realizing a
location aware web service.

The framework by Couderc et al. reads context
information from a client and delivers it to a (remote)
server, responsible for certain adaptations before
responding to the client. The content management and the
business logic are situated on this remote server. This
approach fits for client/server architectures like web-
applications, but does not support stand-alone applications
or disconnected devices.

In general architectures, which require vast memory or
system resources, are not feasible for mobile devices. This
has to be regarded already while defining the architecture
of a framework. Features like the storage of vast historical
context information or the assumption of future context
should be handled with care.

3 Hydrogen Context-Framework

In the following we propose a three-layered
architecture for a context framework called Hydrogen
Context-Framework in order to overcome the
shortcomings of existing approaches in dealing with
mobile scenarios. It is trimmed to the special needs of
mobile devices as and thus taking care of the requirements
discussed in Section 1.2

3.1 Framework Architecture

As shown in Figure 1 the proposed architecture
comprises three layers to separate the concerns of
interacting with the physical sensors, storing and
maintaining the context from the applications itself. These
layers are the Adaptor Layer, the Management Layer, and
the Application Layer.

The core component is a storage for the context, which
can be queried by applications, called ContextServer.
Context is stored once for the whole device and provided
to all applications.

Application Layer

Management Layer

Adaptor Layer

ContextServer

ApplicationApplication Application

!

" 7" """ 7" "7" "

#

User
Adaptor

$ Location
Adaptor

Time
Adaptor

Network
Adaptor

.......
Adaptor

%%

%%

#

$ $ $ $

%% %% %% %%

%%%%

"

Figure 1: Overview of the Architecture

The Adaptor Layer 2 is responsible to get information
from sensors 1 about the physical context [16], possibly
enriches this information with logical context information
[16] and delivers it to the Management Layer.
Additionally the ContextServer ! embedded in the
Management Layer provides simple methods for the
application for retrieving or subscribing to a context.

In addition to issues concerning the aimed devices
application development is simplified and reusability and
exchangeability of sensors and adaptors increases.

3.1.1 Adaptor Layer. Another important reason for
separating context sensing, storing and the use in an
application is the simultaneous access of two or more
applications to one context. This often would not be
possible when accessing the sensors directly because of

exclusive locking of system resources, e.g. a serial
interface can only be accessed from one application at the
same time. Using this special layer means accessing
sensors only once and delivering the gained data to the
management layer, which solves the problem of multiple
applications reading data from the same sensor(s).

3.1.2 Management Layer. The context server stores all
contextual information about the current environment of
the device. Furthermore the context server has the
possibility to share its information with other devices in
range. This enables devices to use information, which they
cannot retrieve themselves by working with values sensed
by others. As we will outline in Section 5.3 this context
sharing is an open issue including the problems, such as a
hop-dependent degree of exactness (e.g. for location
information), which are posed by sharing context
information.

The Management Layer is responsible for providing
and retrieving these contexts and shares this information
with other devices using peer-to-peer communication.

The ContextServer offers two ways of usage for
applications referring to the context.

The first one is asynchronous and simply allows
querying a specific context from the context server in a
pull-based manner.

Due to the nature of context-aware applications, which
often react to changes of the context during their
execution, a second way is provided. A subscription-based
push mechanism provides synchronous access to the
context. Using this possibility the application is informed
about changes or the invalidation of the subscribed
context.

3.1.3 Application Layer. Applications, which use the
context provided by the underneath layers, are part of the
Application Layer #.

3.1.4 Context Architecture. In addition to this
architecture we propose an architecture for the context.
Basically we distinguish between local and remote
context. Because devices in range can communicate with
each other, a device can store additional information
about those other devices. This context of the connected
devices can be used to approximate values for the own
context, e.g. for location or temperature, or to provide
additional information about remote, connected devices
for applications, e.g. which users are in range.

The main benefit of this architecture in comparison to

other approaches is that the three layers are located on one
device thus making the approach robust against network
disconnections

The three layered architecture makes it possible, that
all applications have access to all context data by querying
the ContextServer. Without this partition each application
would have to read the sensors directly.

3.2 Benefits of the Framework Architecture

As already pointed out in Section 1.2 mobile scenarios
including limited devices like PDAs influence the
requirements for the Hydrogen Context-Framework.

Due to the fact that applications do not deal with
remote servers but only with a local server, which
provides any kind of available contextual information, the
architecture is robust with respect to frequent
disconnections.

For these reasons the Hydrogen Context-Framework
abandons some concepts of other approaches like storing
a vast amount of history of the context to meet the
requirement of lightweightness identified in Section 1.2.

Context Sharing is supported on basis of a peer-to-peer
connection without the need of a centralized server to
serve dozens of clients.

4 Implementation Aspects

To prove the feasibility of the architecture presented in
Section 3, a prototypical implementation has been
developed using the PersonalJava [25] virtual machines
Jeode [13] and the J2ME [26] J9 [14] on iPAQs (3660
and 3870) [3] with the PocketPC 2002 operating system.

Due to the fact that Java virtual machines for mobile
devices are at an early stage of development we had to
overcome some technical challenges caused by
insufficient documentation and unforeseeable behaviour
of our beta-releases.

To simplify the work of an application programmer the
framework provides a set of predefined context classes
and a so-called ContextClient [cf. # in Figure 2], which is
responsible for communication with the Context Server.

Application Layer

Management Layer

Adaptor Layer

ContextServer

ContextClient
ContextObjects

ContextClient
ContextObjects

ContextClient
ContextObjects

ContextClient
ContextObjects

Location
Adaptor

Time
Adaptor

User
Adaptor

Network
Monitor
Adaptor

ApplicationApplication Application

3

"

2

% % %
&

'
&

$
&

ContextClient
ContextObjects

ContextClient
ContextObjects

$
&$

'
&
'
&

XML
over

TCP/IP

XML
over

TCP/IP

'' ''

%% %% '
&
'
&

#

#

$

" " "
Java
any language

Context Framework
Legend:

Java
any language

Context Framework
Legend:

Figure 2: Framework Implementing Architecture

Inter-layer communication (cf. ' and '&) is based on
an XML-protocol and can be performed either by using
the ContextClient # or directly (cf. '&) by using the
XML-protocol. But note that in the second case all
communication issues like opening a port, sending data
and listening on ports to receive answers must be handled
by the application or adaptor itself, while the
ContextClient provides this functionality.

4.1 Context

As already mentioned, applications cannot only
consider context of the executing device, but also should
be able to consider the context of devices it is
communicating with.

We propose an architecture, which not only contains
the context of the location device, but is open to represent
the context of remote devices, too.

In case of encountering another device, context
information can be mutually exchanged enabling a local
representation of the remote device's context. The context,
which is based on this architecture, is depicted in an UML
class-diagram in Figure 3.

DeviceContextTimeContext

LocationContext

NetworkContext

UserContext

Context

LocalContext

11

RemoteContext
0..n0..n

ContextObject
0..n0..n 0..n0..n

...

Figure 3: Context Architecture

The local context contains several ContextObjects,
holding context information as provided by any attached
sensor. Additionally any device can store remote contexts
of devices, which are accessible over the network.

The Context-Framework comprises five types of
context, but is extensible by specializing the
ContextObject. The implemented contexts in the current
version are in specific:
• Time: Time comprises the current time, as provided by

the system clock of the used device
• Location: Location represents the current (physical)

position of the device using GPS-coordinates and a
value for the altitude. This context is typically set by a
adaptor, which reads a GPS-receiver.

• Device: Device consists of an identifier, which should
be unique, and a device type, which can be used to
distinguish between different types of devices such as
Desktop PCs, Laptops, and PDAs.

• User: User contains information about the current user
of the device, currently holding only the name of the
user.

• Network: Network context contains information about
the available network connection types of the device.
This context can be used for additional information
about the likeliness of an abort of the connections or
the available bandwidth.
More specialized types of context can be added to the

framework by specializing the ContextObject class, which
is the base for all context objects. It provides a
standardized interface and a possibility to convert it into
XML.

4.2 Context Server

The ContextServer itself is a Java-executable object,
which stores all information about the current context. It is
accessible through a user-defined port and waits for
commands by adaptors and applications. Adaptors supply
information to the ContextServer, which can be queried or
subscribed by applications.

Subscribed applications can specify the interval for
pushing updates in order to keep communication overhead
and system resource usage low.

This communication is possible in two forms, using
either XML-streams ['& in Figure 2], which ensures
compatibility and interoperability, or serialized Java
objects [' in Figure 2].

4.3 Adaptors and Applications

As already illustrated in Figure 2 the Context-
Framework comprises mechanisms for handling the
communication between adaptors and applications. When
developing applications in Java these tools can be used,
otherwise pure XML communication can be used by non-
Java applications.

The ContextClient does all the communication issues,
opens ports, queries data from and sends data to the
ContextServer. It provides methods for querying a context
once, or subscribing to a context and waiting for updates
provided by the ContextServer. This class can be simply
used by any Adaptor or Application, as depicted in Figure
4.

Figure 4 illustrates the use of these classes and
characterizes a typical usage scenario. The shown code
fragment is part of a context-aware application and
enables this application to react to the change of a location
by calling the method doSomething().

The call of the method doSomething() is linked to an
event; by subscribing a listener to it the application
expresses its interest to receive updates.

LocationContext lc;
lc = new LocationContext();"
lc.addContextChangedListener(new
 ContextChangedListener()$
 {
 public void
 contextChanged(ContextChangedEvent e)
 {
 doSomething(); !
 }
 });
ContextClient cc;
cc = new ContextClient();#
cc.subscribeTo(lc); %

Figure 4: Code Fragment

In our example the application subscribes a listener to
changes of the context (c.f. ContextObject) utilizing

the Java event subscription mechanism. If the change of
the context is detected the appropriate adaptation is
triggered (c.f. doSomething()).

This context subscribed to the ContextServer using the
ContextClient (cf. Class ContextClient), which is part
of the framework and simplifies communication with the
ContextServer. Otherwise opening a socket to the server
and sending the XML-formed command directly to it
could also do this subscription to the ContextServer.

Explaining the code into detail, a developer has to
instantiate a new object ", and add a listener to it $. It
waits for ContextChangedEvents, which are fired when a
change of a context occurs.

Listeners express their interest in receiving updates by
subscribing to one or more classes of events.

They execute some code !, when they catch an event,
which is, in our case, fired by the ContextObjects.

Finally a ContextClient is created # and told to
subscribe the LocationContext %.

Setting and retrieving a context is similar to the code
fragment above.

4.4 Extending the Framework

Extending the framework with new types of context is
simple. A new context just has to extend a class called
ContextObject and to implement two abstract methods,
namely toXML() and fromXML(). These two methods
ensure compatibility with non-Java applications, because
toXML() converts the values of the object into an XML-
stream, which can be parsed by fromXML() and filled into
an object. Furthermore, due to the fact that ContextObject
implements the interface Serializable, a new, user-defined
class may only contain data, which is serializable, or has
to overwrite the methods readObject and writeObject.
These methods are called, when an object is transmitted
over a connection.

4.5 Exemplary Application

The feasibility of the architecture and the framework
are demonstrated realizing a context-aware postbox. It
sends and receives multimedia data such as images, text,
and business cards and adapts it accordingly with respect
to the network and device context.

The context-aware post box has to be executed on both
devices, the sending device and the receiving device. The
receiver is permanently listening for incoming data, while
the sender can send data to any reachable device. The
target has to be specified on application startup, but can
be changed at any time during execution.

The context-aware postbox contains two different
kinds of multimedia objects for demonstration purposes.
They are adapted according to the network context of the

transmission channel from one device to another, and
alternatively the device properties of the target device are
used, where the item should be sent.

The first kind of multimedia data is an image. The
resolution of this image is adapted according to the
available bandwidth or the device type of the recipient.

The second implemented object for demonstration is an
intelligent business card. It decides dependent on the
context, if it contains an image of the person or not.

Mag. Thomas Hofer
SCCH
Hauptstr. 99
Tel: +43 (7236) 3343-836
Fax: +43 (7236) 3343-888
E-Mail: thomas.hofer@scch.at

Figure 5: Objects to be Transmitted using the Context Aware
Postbox

Figure 5 shows the original data, which is used by our
prototype. The first object is an image displaying the
Java-logo. The business card shows the details of one of
the authors including his image.

Figure 6: Image and Business Card received on a PDA

In the case that the data shown in Figure 5 is
transmitted to a PDA [3] using a wireless connections, the
data is adapted to the needs of a handheld device with its
slow network connections. The resolution of the image is
reduced, and it is converted to black-and-white, while the
image of the business card is totally omitted.

Figure 6 shows the data received on the PDA.

Figure 7: Image and Business Card received on a Desktop
Computer

Figure 7 shows same data transmitted to a Desktop PC.
The data is not reduced because of a fast connection and
much better device capabilities. This version contains an
image within the business card and the Java-logo is
colored and at a higher resolution.

4.6 Other Prototypical Applications

Other prototypical applications utilizing the framework
like a location aware reminder have been realized. It
reminds the user on predefined notes when reaching the
places associated to the notes.

5 Open Issues and Future Work

This section discusses open issues and future work
comprising the need for a comprehensive context model,
an open XML-based interface and context sharing.

5.1 Comprehensive Context Model

At the moment the context-framework comprises some
basic context classes only. One of the future tasks will be
the integration of comprehensive context models like
presented in [16]. The World Wide Web Consortium
(W3C) is already working on a framework for the
management of device and user profile information called
"Composite Capabilities / Preference Profiles" (CC/PP)
[29], which seems to be applicable to approach.

CC/PP is a framework for the management of device
profile information, which is based on the Resource
Description Framework (RDF) [28]. At the moment
CC/PP tends to pay increased attention to well know
contexts like device properties and user profiles, but new
properties can be defined and included into the
description.

5.2 XML-Protocol

Currently the framework provides a TCP/IP
communication interface for applications, which are not

implemented in Java. Therefore we use XML. All
functionality, which is available for Java applications, is
also available for XML-based commands. Furthermore all
Context Objects can be converted into an XML-
representation, which ensures that the Context Object can
be processed by every application.

In further releases it is planned to use an XML-Schema
[27] thus being able to validate commands and responses
according to their syntactical correctness.

5.3 Context Sharing

Context-Sharing will offer the opportunity to gain
information about the context of other context-aware
devices, which are in physical proximity. This enriches
any device with more context information than it can
retrieve by itself.

The idea implies that two (or more) devices encounter
each other, both with a Context Server executed. These
two devices can have complementary context information,
e.g. one device knows about the current location, the other
device knows the temperature.

Location
Adaptor

Temperature
Adaptor

ContextServer

G
PS

-R
ec

ei
ve

r

ContextClient
ContextObjects

Application

ContextClient
ContextObjects

Application

ContextClient
ContextObjects

Application

ContextServer

Temperature

Location

<TEMPERATURE>21
</ TEMPERATURE>

<LOCATION><LONGITUDE>22.222
</LONGITUDE><LATI[....]</LOCATION>

Network
(LAN, WLAN, BlueTooth)

"

"

" simplified for visualization
Figure 8: Context-Sharing on Multiple Devices

Context Sharing enables, as seen in Figure 8, both
devices to have information about both kinds of context
information. Simply to exchange all available information,
however, is not enough. This idea raises additional open
issues about security and reliability of this shared
information.

Context, e.g. the user, must not be provided to all
devices in range, in order to respect privacy and
anonymity. The user has to keep in control which context
information is allowed to be shared and which has to
remain private.

Concerning reliability two (or even more) devices can
provide contradictory information. Reasons for

inconsistencies of shared data can be the use of sensors of
different precision, or simply the scanning of "real"
different values.

The Context-model should be extended to cover
predefined testimonies about reliability of certain kinds of
context in conjunction with device categories, possibilities
to state the reliability in the runtime system and, finally,
an (extensible) set of rules how to deal with the problems
discussed above.

6 Conclusion

Motivated by the new possibilities, which context-
awareness offers for applications, we proposed an
architecture trimmed to the special needs of users using
mobile devices. We identified requirements for a context-
aware architecture, such as lightweightness, extensibility,
robustness and the possibility to add meta-information. To
meet these requirements we proposed a-three layered
architecture, which comprises an application layer, a
management layer and an adaptor layer.

We presented a framework, which implements our
architecture and demonstrated its feasibility by a usage
scenario.

7 Acknowledgements

The authors gratefully acknowledge support of the
K plus Competence Center Program, which is funded by
the Austrian Government, the Province of Upper Austria,
and the Chamber of Commerce of Upper Austria.

8 References

[1] G. D. Abowd: “Software Engineering Issues for Ubiquitous
Computing” Int. Conf. on Software Engineering, Los Angeles,
1999.

[2] G. D. Abowd and E. D. Mynatt, “Charting past, present, and
future research in ubiquitous computing”, ACM Trans.
Comput.-Hum. Interact. 7, 1 (Mar. 2000), Pages 29 – 58

[3] http://athome.compaq.com/showroom/static/
iPAQ/handheld_jumppage.asp

[4] P. Couderc, A.M. Kermarrec, “Improving Level of Service
for Mobile Users Using Context-Awareness”, 18th IEEE
Symposium on Reliable Distributed Systems, Lausanne,
Switzerland, October 18 - 21, 1999

[5] A. K. Dey, D. Salber, G. D. Abowd, M. Futakawa , “An
Architecture To Support Context-Aware Applications”, 12th
Annual ACM Symposium on User Interface Software and
Technology, 1999

[6] A. K. Dey and G. D. Abowd, “The Context Toolkit: Aiding
the Development of Context-Aware Applications”, In the

Workshop on Software Engineering for Wearable and Pervasive
Computing, Limerick, Ireland, June 6, 2000.

[7] A. K. Dey and G. D. Abowd, “CybreMinder: A Context-
Aware System for Supporting Reminders”, Proceedings of the
2nd International Symposium on Handheld and Ubiquitous
Computing (HUC2K), Bristol, UK, September 25-27, 2000. pp.
172-186.

[8] A. K. Dey, “Understanding and Using Context”, Personal
and Ubiquitous Computing, http://www.personal-ubicomp.com/,
ISSN: 0949-2054, Volume 5 Issue 1 (2001) pp 4-7, Springer

[9] A. K. Dey, D. Salber and G. D. Abowd, “A Context-based
Infrastructure for Smart Environments”, In Proceedings of the
1st International Workshop on Managing Interactions in Smart
Environments (MANSE '99) , Dublin, Ireland, December 1999.

[10] F. Espinoza, P. Persson, A. Sandin, H. Nyström, E.
Cacciatore, M. Bylund, “GeoNotes: Social and Navigational
Aspects of Location-Based Information Systems”, HUMLE Lab,
Swedish Institute of Computer Science (SICS), in Abowd,
Btummit & Shafer (eds): Ubicomp 2001, Ubiquitous
Bcomputing, Internetation Conference Atlanta, Sep. 30 – Oct. 2,
Berlin, Springer, p. 2-17

[11] A. Ferscha, W. Beer, W. Narzt, “Location Awareness in
Community Wireless LANs”, 31. Jahrestagung der deutschen
Gesellschaft für Informatik, Jahrestagung der Österreichischen
Computer Gesellschaft, Mobile internet based services and
information logistics, Workshop, GI/ÖCG-Jahrestagung 2001,
Vienna, Austria, September 2001.

[12] M. Großmann, A. Leonhardi, B. Mitschang, K. Rothermel:
“A World Model for Location-Aware Systems”. Informatik,
8(5), 2001.

[13] www.insignia.com

[14] www.ibm.com

[15] G. Kappel, W. Schwinger, B. Pröll, W. Retschitzegger, T.
Hofer, “Modeling Ubiquitous Web Applications - A
Comparison of Approaches”, In: W. Winiwarter, St. Bressan,
I.K. Ibrahim (editors), Third International Conference on
Information Integration and Web-Based Applications &
Services (iiWAS 2001), 10.-12.09.2001, ISBN 3-85403-150-5,
pp. 163-174

[16] G. Kappel, W. Retschitzegger, E. Kimmerstorfer, B. Pröll,
W. Schwinger, T. Hofer, “Towards a Generic Customisation
Model for Ubiquitous Web Applications”, 2nd International
Workshop on Web Oriented Software Technology;
IWWOST'2002; Málaga, Spain; 10 June, 2002

[17] G. Kappel et al, “Customising Web Applications Towards
Ubiquity - The Notion and the Issues”, W3C Workshop on
Delivery Context, Sophia-Antipolis, France, March 2002

[18] L. Kleinrock: “Nomadicity: Anytime, Anywhere In A
Disconnected World”, Mobile Networks and Applications, Jan.
1996

[19] A. Kobsa: “Generic User Modeling Systems”, User
Modeling and User-Adapted Interaction, Vol. 11, 2001.

[22] J. Nord et al., “An Architecture for Location Aware
Applications ", Department of Computer Science,Lulea
University of Technology, Sweden, Proceedings of the Hawai'i
International Conference on System Sciences (HICSS35), Big
Island, Hawaii, January 7 – 10, 2002

[23] J. R. Rodriguez et al. :”Extending e-business to Pervasive
Computing Devices - Using WebSphere Everplace Suite
Version 1.1.2”, IBM Redbooks, International Technical Support
Organisation, SG24-5996-00, 2001.

[24] A. Schmidt, M. Beigl and H. W. Gellersen. “There is more
to Context than Location”. In: Computers & Graphics Journal,
Elsevier, Volume 23, No.6, December 1999, pp 893-902.

[25] http://Java.sun.com/products/personalJava/

[26] http://Java.sun.com/j2me

[27] WORLD WIDE WEB CONSORTIUM (W3C) 2000, XML
Schema, http://www.w3.org/XML/Schema, 2000

[28] World Wide Web Consortium (W3C), Resource
Description Framework (RDF), http://www.w3.org/RDF, 2000.

[29] WORLD WIDE WEB CONSORTIUM (W3C) 2001a.
Composite Capabilities/Preference Profiles,
http://www.w3.org/Mobile/CCPP/, 2001

[30] S. Weber, J. Jennings, “Architectural Issues for Pervasive
Computing”, IBM TJ Watson Research, Workshop on Software
Engineering for Wearable and Pervasive Computing, ICSE 2000

[31] M. Weiser: "The Computer for the 21st Century", Scientific
American, 265, 3, September 1991.

