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Abstract

Context-awareness is essential to the development of adaptive
information systems. Environmental noise can provide a rich
source of information about the current context. We describe
our approach for automatically sensing and recognising noise
from typical environments of daily life, such as office, car
and city street. In this paper we present our hidden Markov
model based noise classifier. We describe the architecture of
the system, compare classification results from the system
with human listening tests, and discuss open issues in
environmental noise classification for mobile computing.

1. Introduction

The reduction in size of computing devices combined with the
widespread deployment of mobile radio systems has resulted
in an expansion of mobile computing. Users of such systems
expect more and more information services to be made
available to them. To deploy such a range of services it is
necessary to automate these systems through the use of various
input and output modalities. These may include automatic
speech recognition input, text input, pointing devices and so
on. To improve the usability of these information services it is
desirable for the system to gain awareness of the context in
which the user is in. It is further desirable to identify context
implicitly rather than through the user explicitly providing
contextual details. Information service offerings can then be
adapted according to the user’s context to provide a more
intelligent set of responses. A knowledge of context can also
aid automatic speech recognition or handwriting recognition
performance by restricting the search space to consider only
phrases or commands likely to be associated with a particular
context. Up-to-date context information is especially important
in the mobile computing area where the mobility of users
means that context and requirements can change rapidly.

The first notions of context-aware computing were proposed
in 1992 in the form of the Active Badge system [19]. The term
“context-aware” was introduced in 1994 [17] with many
definitions of context having been proposed since. These
include location, time, weather, co-located objects, noise,
recent events, etc. Recent surveys [3] [6] [12] have shown that
the most common contextual inputs are location, user-identity
and time. Sensors used to gather location information are
mainly short range Infra-Red (IR), Radio Frequency (RF)
signals and Global Positioning System (GPS). These require
the use of additional hardware and processing to gain an
indication of location.

A challenge for context-aware computing is to reduce the
complexity of capturing, representing, processing and adapting
to contextual information. In context-aware applications,
contexts can be captured through many different sensors. User

feedback can also be used to confirm context and adapt the
current contextual model if necessary. Services on offer can be
provided according to the current context and user preferences.
It may also be useful to tag context information so that it can
be retrieved at a later time [2].

This work proposes the use of environmental noise as a
contextual cue. Environmental noise can provide a rich source
of information about the current context. For example, humans
often infer the location of a respondent in a mobile phone
conversation by identifying the background noise and
adjusting their response accordingly. The system described in
this work is able to classify a number of different noise
contexts found in environments typical to daily life, such as
office, bar and city street. Once the environment has been
identified it can be used to predict the user's needs and adjust
the mode of operation accordingly. This work forms part of a
larger investigation into the integration of multiple sources of
context information in a unified framework.

Previous work has focused on recognising single sound events.
Couvreur [5] introduced three classifiers for use in separate
noise event recognition (car, truck, airplane etc.). Gaunard
[10] implemented a HMM-based classifier to recognise five
noise events (car, truck, moped, aircraft, train) and observed
that the frame length in noise recognition should be larger than
in speech recognition. Best results came from a five-state
HMM using LPC-cepstral features, which gave better results
than human listeners. Much work has also been done on
separating speech from background noise, following [1]. Only
a few classification systems have been proposed to recognise
auditory scenes. Peltonen [13] demonstrated that mel-
frequency cepstral coefficients out-performed other feature
representations. Sawhney [16] classified five everyday noise
types, comparing several approaches, of which filterbank
features outperformed others. El-Maleh [8] used four pattern
recognition frameworks to design noise classification
algorithms. Five commonly encountered noises in mobile
telephony (car, street, babble, factory, and bus) were
considered and experimental results showed that line spectral
frequencies (LSFs) were best at distinguishing between the
different classes of noises. Other work (e.g. [4], [7]) has been
directed at recognising both the scene and sound subjects in it,
focusing on identifying sound events and their relationships.

This paper describes the development and evaluation of an
environmental noise classifier. Section 2 describes the design
of the environmental noise classification system. Experimental
results are presented in section 3 together with an analysis of
several different kinds of environmental noise. In section 4 a
human listening test is described. Finally a conclusion is made
in section 5 together with some suggestions for further work.



2. HMM-based Noise Classification

This section describes a hidden Markov model (HMM)
framework for classifying a range of different environmental
noises. Classification is based on the successful approach of
combining digital signal processing (DSP) technology with
pattern recognition methods that has been central to progress
in automatic speech recognition [11] over the last 20 years.
However, it is important to note that there are significant
differences between recognising speech and identifying an
environment from a sample of acoustic noise. For example
speech is produced from a single point source (namely the
human speech production mechanism) which is reasonably
well modelled. The character of sounds which speech can
adopt is restricted through physical limits on the movement
and rate of change of the vocal chords and vocal tract. Speech
is also constrained to emanate from a single location in an
environment. Environmental noise, however, has none of these
constraints and is a complex sound made up from a mixture of
different acoustic events. There is no constraint on the form in
which these sound components take and they may emanate
from many different localities in the environment. For
example consider an office environment; a stationary
component may come from an air conditioning fan, a quasi-
stationary component from keyboard clicks, and non-
stationary events from people moving around, opening doors
and talking. The fan noise can be modelled quite accurately
while the other components are much less stationary and need
more sophisticated models.

In this paper we are only interested in modelling the slow-
changing attributes of environmental noise in the acoustic
signal. This means the focus is on identifying the
environmental context as opposed to analysing and
interpreting discrete sound events as is the case with speech
recognition. The three phases which have been used to
construct a set of noise models suitable for identifying the
underlying environment are environmental noise database
capture via portable recording devices, feature exaction and
finally training and testing a set of hidden Markov models
(HMMSs). These experiments have been performed using the
HTK (Hidden Markov Model Toolkit) developed at the
Speech, Vision and Robotics Group of the Cambridge
University Engineering Department (CUED) [18].

2.1. Data Collection

A high quality microphone and portable recording device were
used to capture background noise samples from a range of
different environments. The recordings were designed to cover
everyday environments from where users would be likely to
access information services from mobile devices. The
recordings took place in and around the University of East
Anglia (UEA) during the spring and summer of 2002. In total
ten different noise environments were used to form the
database and these are shown in table 1.

For each noise environment a total of 80 examples were
collected. Each example was recorded as a 3 second duration
audio file as this was expected to be a reasonable estimate of
the likely length of noise data from which a practical system
would operate. The audio was collected at a sampling
frequency of 22.050kHz using 16-bit quantisation.

Scene Location

Bar Graduate student bar in UEA
Beach Great Yarmouth beach

Bus Across a range of buses

Car Small car in urban driving

Football match Football match at Norwich City

Laundrette Laundrette at UEA

Lecture Taken at UEA

Office Wolfson Lab at UEA

Railway station Norwich railway station

Street Norwich city centre on a Saturday

Table 1: Description of environmental noise database

Of the 80 examples from each of the 10 noise environments,
60 were used for training and 20 for testing. Figures 1-a and 1-
b show example spectrograms of two different environmental
noises.

Figure 1: Spectrograms of a) Office noise, b) Bus noise

The spectrogram in figure 1-a is taken from a sample of office
noise and displays several distinctive characteristics. For
example the vertical lines result from the impulsive noise of
keyboard clicks — a feature reasonably characteristic of an
office environment. The continuous horizontal line comes
from the air conditioning fan which provides another
important cue to underlying environment. The spectrogram
shown in figure 1-b is bus noise. The darker regions show the
low frequency noise caused by the bus engine.

2.2. Feature Extraction

The purpose of feature extraction is to extract useful
discriminative information from the time-domain waveform
which will result in a compact set of feature vectors. Many
different feature extraction techniques have been proposed
[S5][11][13]. One of the most successful for speech recognition
applications is Mel-Frequency Cepstral Coefficients (MFCCs).
As it is likely that features used for noise classification will be
used by integrated systems that also perform speech
recognition it was decided to adopt the same MFCC features
for noise classification. This is particularly useful given the
recent work on distributed speech recognition (DSR) by the
European Telecommunication Standards Institute (ETSI)
Aurora committee which has defined a standard MFCC-based
feature extraction algorithm for implementation on mobile
devices [9].

Feature extraction was performed by first pre-emphasising the
audio signal and then applying a Hamming window to extract
25ms duration frames. These frames were extracted every
10ms. A 23-channel mel filterbank was applied to the resultant
magnitude spectrum of the audio frame. This was transformed
into a 12-D MFCC vector which was augmented by a log




energy term to give a 13-D static feature vector. To improve
classification accuracy both the velocity and acceleration
derivatives were computed augmented onto the feature vector.
This gave a 39-D feature vector used for training and testing.

2.3. HMM-based Noise Modelling

To model the different environmental noises a set of HMMs
was generated. These provide a powerful statistical method of
dynamically characterizing a time-varying signal in time and
frequency and have been successfully deployed in the area of
speech recognition [15]. For this work a left-right topology
was used. An important parameter to determine is the number
of states in the model. To a certain extent this depends on the
amount of training data available and the typical duration of
the signal to be classified. For the time-varying nature of
environment noise, more states are generally required. For the
three second noise signals used in this work the number of
states has been varied from 3 to 21 states.

2.4. Context-Awareness Using Noise Classification

The HMM-based environmental noise classifier has been
integrated into a client-server context-aware system. The
server uses the database (offline) to produces a set of noise
models which are then used for classification (online). The
client can communicate with the server to update the noise
models. The architecture of the distributed system enables the
central control on server side and lightweight processes on
client side which can easily run on limited capacity devices.
The current system senses two contexts, environmental noise
and time. A microphone forms the environmental noise sensor
and the built-in clock is the time sensor. These sensors are
sampled periodically and the identified contexts continually
fed into an extensible log in XML format.

3. Experimental Results

Each HMM was trained using the 60 noise examples from
each of the 10 different noise scenes to give a set of 10
HMMs. A preliminary test was performed to identify the
optimal number of states needed for the models. Ten different
numbers of states were tested; 3, 5,7, 9, 11, 13, 15, 17, 19 and
21 states. The noise classification performance for each of
these configurations is shown in figure 2.
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Figure 2: Noise classification accuracy using 3 to 21 states

The figure shows that noise classification accuracy using a set
of 3-state HMMs is 78.0%. As the number of states increases,
classification accuracy also increases up to a peak of 91.5%
with 11, 13 and 15 states. As the number of states is increased
still further, classification accuracy begins to reduce. This
indicates that the number of states in the HMM has a

significant impact on the overall classification accuracy. In
practical applications it is important to consider the likely
duration of the noise segment as this will affect the optimal
number of states in the set of HMMs.

Using the result from the 11-state HMM configuration, figure
3 shows a confusion matrix which gives the individual
classification accuracy of the set of noise environments.
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Figure 3: Confusion matrix of noise classification

Classification accuracy ranged from 75% to 100%, with
office, football match, beach and laundrette giving 100%
classification accuracy for the 20 examples tested of each.
Lowest performance was obtained with street noise which
attained only 75% accuracy. This may be attributed to the fact
that street noise is one of the most diverse noise types and may
contain noise components found in other environmental
categories which results in misclassification.

The accuracy of noise classification depends on a number of
factors such as the amount and coverage of the training data,
the feature extraction component, the allowable computational
complexity, and the model parameters. The noise classifier
designed in this system is not capable of recognising multiple
and simultaneously occurring environmental noises. For
example sitting in an office with a car passing by would cause
conflict. Further problems also occur when attempting to
identify acoustically similar noise scenes.

For simultaneous classification, and to get improved
discrimination when classifying similar scenes, we may
consider how humans solve these sorts of classification
problems. Peltonen’s [14] human listening test shows that
humans distinguish similar scenes by identifying a number of
sound components which make up the overall noise (e.g.
music, clinking glasses and conversation in a bar). The short
sampling strategy we use does not require a dedicated audio
channel and can obtain noise samples during periods of speech
inactivity. The use of a dedicated noise channel would
facilitate alternative recognition strategies.

4. Human Listening Tests

A human listening test was conducted using the same test
dataset in order to obtain a baseline for evaluating the
classifier. The test was performed in a small listening room
free from external distractions. A supervisor controlled the



test. A set of 14 subjects was employed which comprised 8
males and 6 females between 21 and 45 years old, all with
normal hearing and no previous experience of this type of test.
The test was presented on a PC connected to an external hi-fi
amplifier and noise-cancelling headphones; playback volume
was adjusted to a comfortable volume by each subject.

Each subject was required to listen to 30 randomly ordered
noise samples selected from the test dataset (3 samples of each
scene). The subjects listened to each sample and then decided
upon the noise category from a list of the ten scenes. Subjects
were not given any examples of the noise environments before
the tests. They were allowed to repeat the listening and refine
their answers. After completing the test, their submissions
were inserted into the database for subsequent analysis. Figure
4 shows the confusion matrix for the human listening tests
which gave an overall accuracy of 35.0%.
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Figure 4: Confusion matrix of human listening test

This is considerably worse than the HMM-based system which
attained 91.5%. Subjects reported that the recognition was
very difficult as the samples were very short and many
sounded similar. Some noises were very distinct, such as the
office, while other noises proved very difficult to identify such
as the street. This correlates with results from obtained from
the HMM-based system.

5. Conclusions and Future Work

We have described our HMM-based environmental noise
classifier which was trained on a database comprising 10
different noise environments. The overall classification
accuracy of the ten environments is 91.50%. The recognition
accuracy of individual scenes ranged from 75% to 100%. A
human listening test was also performed on the same test set,
but only yielded 35% classification accuracy. This indicates
that our classifier has the advantage in recognising
environmental noise by short samples.

We intend undertaking further experiments, using more
samples and more scenes from different locations, to compare
the result of using different features, classification methods
and algorithms. We are developing context-aware system to
provide a range of customisable output responses and
modalities appropriate to the user's situation. To aid this we
are also extending the range of input modalities and increasing
the range of context data.
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