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Abstract

Anticipating future situations from streaming sensor data is a key perception challenge for mobile robotics and automated

vehicles. We address the problem of predicting the path of objects with multiple dynamic modes. The dynamics of such targets

can be described by a Switching Linear Dynamical System (SLDS). However, predictions from this probabilistic model cannot

anticipate when a change in dynamic mode will occur. We propose to extract various types of cues with computer vision to

provide context on the target’s behavior, and incorporate these in a Dynamic Bayesian Network (DBN). The DBN extends the

SLDS by conditioning the mode transition probabilities on additional context states. We describe efficient online inference in

this DBN for probabilistic path prediction, accounting for uncertainty in both measurements and target behavior. Our approach

is illustrated on two scenarios in the Intelligent Vehicles domain concerning pedestrians and cyclists, so-called Vulnerable

Road Users (VRUs). Here, context cues include the static environment of the VRU, its dynamic environment, and its observed

actions. Experiments using stereo vision data from a moving vehicle demonstrate that the proposed approach results in more

accurate path prediction than SLDS at the relevant short time horizon (1 s). It slightly outperforms a computationally more

demanding state-of-the-art method.

Keywords Intelligent vehicles · Path prediction · Situational awareness · Vulnerable road users · Intention estimation ·

Dynamic Bayesian Network · Probabilistic inference

1 Introduction

Anticipating how nearby objects will behave is a key chal-

lenge in various application domains, such as intelligent

vehicles, social robotics, and surveillance. These domains

concern systems that navigate trough crowded environments,
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that interact with their surroundings, or which detect poten-

tially anomalous events. Predicting future situations requires

understanding what the nearby objects are, and knowledge

on how they typically behave. Object detection and tracking

are therefore common first steps for situation assessment, and

the past decade has seen significant progress in these fields.

Still, accurately predicting the paths of targets with multi-

ple motion dynamics remains challenging, since a switch

in dynamics can result in a significantly different trajectory.

People are an important example of such target. For instance,

a pedestrian can quickly change between walking and stand-

ing.

To improve path prediction of objects with switching

dynamics, we propose to exploit context cues that can

be extracted from sensor data. Especially vision can pro-

vide measurements for a diverse set of relevant cues. But

incorporating more observations in the prediction process

also increases sensitivity to measurement uncertainty. In

fact, uncertainty is an inherent property of any prediction

on future events. To deal with uncertainties, we leverage

existing probabilistic filters for switching dynamics, which

are common for tracking maneuvering targets (Bar-Shalom
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(a) Pedestrian path prediction

(b) Cyclist path prediction

Fig. 1 Path prediction of vulnerable road users with switching dynam-

ics. a The pedestrian can cross, or stop. Context for a crossing

pedestrian’s path includes vehicle trajectory, the pedestrian’s awareness

of the approaching vehicle, and pedestrian’s position w.r.t. the curbside.

b The cyclist approaching an intersection can cycle straight or turn left.

Context includes the vehicle trajectory, the cyclist’s expressed intent by

raising an arm, and distance to the intersection

et al. 2001). Our proposed method therefore extends a

Switching Linear Dynamical System (SLDS) with dynamic

latent states that represent context. The resulting model is a

Dynamic Bayesian Network (DBN) (Murphy 2002), where

the latent states control the switching probabilities between

the dynamic modes. We can utilize existing theory for

approximate posterior inference in DBNs to efficiently com-

pute predictive distributions on the future state of the target.

In this paper, we focus on applications in the Intelligent

Vehicle (IV) domain. More specifically, we demonstrate our

method on path prediction of pedestrians and cyclists, i.e. the

so-called Vulnerable Road Users (VRUs). For automated

vehicles, forecasting the future locations of traffic partici-

pants is a crucial input to plan safe, comfortable and efficient

paths though traffic (Althoff et al. 2009; Paden et al. 2016).

However, the current active pedestrian systems are designed

conservatively in their warning and control strategy, empha-

sizing the current pedestrian state (i.e. position) rather than

prediction, in order to avoid false system activations. Small

deviations in the prediction of, say, 30 cm in the estimated

lateral position of VRUs can make all the difference, as this

might place them just inside or outside the driving corridor.

Better predictions can therefore warn the driver further ahead

of time at the same false alarm rate, and more reliably initiate

automatic braking and evasive steering (Keller et al. 2011;

Köhler et al. 2013).

We evaluate our approach on two scenarios. The first

scenario that we target considers a pedestrian intending to

laterally cross the street, as observed by a stereo camera on-

board an approaching vehicle, see Fig. 1a. Accident analysis

shows that this scenario accounts for a majority of all pedes-

trian fatalities in traffic (Meinecke et al. 2003). We argue that

the pedestrian’s decision to stop can be predicted to a large

degree from three cues: the existence of an approaching vehi-

cle on collision course, the pedestrian’s awareness thereof,

and the spatial layout of the static environment. Likewise,

the second scenario considers a cyclist driving on the same

lane as the ego-vehicle, who may turn left at an upcoming

crossing in front of the vehicle, see Fig. 1b. This scenario also

has three predictive cues, namely the cyclist raising an arm to

indicate intent to turn at the crossing, the cyclist’s proximity

to the crossing, and the existence of an approaching vehicle.

Our approach is general though, and can be extended with

additional motion types (e.g. pedestrian crossing the road in a

curved path), or to other application domains, such as robot

navigation in human-inhabited environments. Our method

also does not prohibit the use of other sensors or computer

vision methods than the ones considered here.

2 RelatedWork

In this section we discuss existing work on state estimation

and path prediction, especially for pedestrians and cyclists.

We also present different context cues from vision that have

been explored to improve behavior prediction.

2.1 Detection and Tracking

Object Detection The classical object detection pipeline first

applies a sliding window on the input image to extract image

features at candidate regions, and classify each region as

containing the target object. In recent years, state-of-the-art

detection and classification performance is instead achieved

by deep ConvNets trained on large datasets. For online

applications, ConvNet architectures are now also achieving

real-time performance by combining detection and classifi-

cation in a single forward pass, e.g. Single Shot Multibox

Detector (Liu et al. 2016) or YOLO (Redmon et al. 2016).

There are many datasets for pedestrian detection, e.g.

those presented in Enzweiler and Gavrila (2009), and Dol-

lár et al. (2012). For an overview on vision-based pedestrian

detection, see surveys from Enzweiler and Gavrila (2009),

Dollár et al. (2012) and Ohn-Bar and Trivedi (2016). For

cyclists, there is the Tsinghua-Daimler Cyclist Benchmark

from Li et al. (2016). These datasets make it possible to

create sophisticated models that require large amounts of
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training data, for instance for unified pedestrian and cyclist

detection (Li et al. 2017), or recovering the 3D pose of vehi-

cles and VRUs (Braun et al. 2016). Indeed, the IV domain

is used in many challenging Computer Vision benchmarks,

e.g. KITTI (Geiger et al. 2012; Menze and Geiger 2015) and

ADE20K (Zhou et al. 2017), hence we expect VRU detection

to improve even further in the near future.

State Estimation In the IV domain, state estimation is typ-

ically done in a 3D world coordinate system, where also

information from other sensors (e.g. lidar, radar) is fused.

Image detections can be projected to this world coordinates

through depth estimation from monocular or stereo-camera

setup (Hirschmüller 2008).

The per-frame spatial position of detections can then be

incorporated in a tracking framework where the measure-

ments are assigned to tracks, and temporally filtered. Filtering

provides estimates and uncertainty bounds on the objects’

true position and dynamical states. State estimation often

models the state and measurements as a Linear Dynamical

System (LDS), which assumes that the model is linear and

that noise is Gaussian. In this case, the Kalman filter (KF)

(Blackman and Popoli 1999) is an optimal filtering algo-

rithm. In the intelligent vehicle domain, the KF is the most

popular choice for pedestrian tracking (see Schneider and

Gavrila 2013 for an overview). The Extended and Unscented

KF (Meuter et al. 2008) can, to a certain degree, account

for non-linear dynamical or measurement models, but mul-

tiple motion models are needed for maneuvering targets that

alternate various dynamics.

The SLDS is a type of DBN which can model multiple

possible dynamics. It extends the LDS with a top-level dis-

crete Markov chain. At each time step, the state of this chain

determines which of the various possible motion dynam-

ics is applied to the underlying LDS, allowing to ‘switch’

the dynamics through discrete state transitions. Unfortu-

nately, exact inference and learning in an SLDS becomes

intractable, as the number of modes in the posterior distri-

bution grows exponential over time in the number of the

switching states (Pavlovic et al. 2000). There is however a

large body of literature on approximate inference in such

DBNs. One solution is to approximate the posterior by sam-

ples using some Markov Chain Monte Carlo method (Oh

et al. 2008; Rosti and Gales 2004; Kooij et al. 2016). How-

ever, sampling is impractical for online real-time inference

as convergence can be slow. Instead, Assumed Density Fil-

tering (ADF) (Bishop 2006; Minka 2001) approximates the

posterior at every time step with a simpler distribution. It

has generally been applied to mixed discrete-continuous state

spaces with conditional Gaussian posterior (Lauritzen 1992),

and to discrete state DBNs, where it is also known as Boyen-

Koller inference (Boyen and Koller 1998). ADF will be

further discussed in Sect. 3.2.

The Interacting Multiple Model (IMM) KF (Blackman

and Popoli 1999) is another popular algorithm to track a

maneuvering target, mixes the states of several KF filters

running in parallel. It has been applied for path prediction

in the intelligent vehicle domain for pedestrian (Keller and

Gavrila 2014; Schneider and Gavrila 2013), and cyclists (Cho

et al. 2011) tracking. IMM can be seen as doing an alternative

form of approximate inference in a SLDS (Murphy 2002).

2.2 Context Cues for VRU Behaviors

Even though SLDSs can account for changes in dynamics, a

switch in dynamics will only be acknowledged after sufficient

observations contradict the currently active dynamic model.

If we wish to anticipate instead of reacting to changes in

dynamics, a model should include possible causes for change.

Various papers provide naturalistic studies on pedestri-

ans behavior, e.g. during encounters at unsignalized cross-

ing (Chen et al. 2017), to predict when a pedestrian will

cross (Völz et al. 2016), or to categorizing danger in vehicle-

pedestrian encounters (Otsuka et al. 2017). Similar studies

are also being performed for cyclists. Zernetsch et al. (2016)

collected data at a single intersection for path prediction of

a starting cyclists, and Hubert et al. (2017) used the same

data to find indicators of cyclist starting behavior. Some

studies have used naturalistic data to detect and classify crit-

ical vehicle-cyclist interactions at intersections (Sayed et al.

2013; Vanparijs et al. 2015; Cara and de Gelder 2015), while

others use simulations to study bicycle motion at intersec-

tions (Huang et al. 2017; Zhang et al. 2017).

For online prediction of VRU behavior, cues must be

extracted from sensor data. Especially computer vision

provides many types of context cues, as the following sub-

sections will discuss. From the extract features, behavior

predicting can then be treated as a classification prob-

lem (Bonnin et al. 2014; Köhler et al. 2013). However,

probabilistic methods integrate the inherent detection uncer-

tainty directly into path prediction (Schulz and Stiefelhagen

2015a, b; Keller and Gavrila 2014; Kooij et al. 2014a).

Static Environment Cues The relation between spatial regions

of an environment and typical behavior has been exten-

sively researched in visual surveillance, where the viewpoint

is static. For instance, different motion dynamics may fre-

quently occur at specific space coordinates (Morris and

Trivedi 2011; Kooij et al. 2016; Robicquet et al. 2016; Yi et al.

2016; Jacobs et al. 2017). Another approach is to interpret

the environment, e.g. detect semantic regions and learn how

these affect agent behavior (Kitani et al. 2012; Rehder and

Kloeden 2015). Such semantics enable knowledge transfer

to new scenes too (Ballan et al. 2016). In surveillance, agent

models are also used to reason about intent (Bandyopadhyay

et al. 2013), i.e. where the pedestrian intends to go.
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In the IV domain, behavior is typically tied to road infras-

tructure (Oniga et al. 2008; Geiger et al. 2014; Kooij et al.

2014b; Sattarov et al. 2014; Pool et al. 2017). Road layout

can be obtained from localization using GPS and INS sen-

sors (Schreiber et al. 2013) to retrieve information map data

on the surrounding infrastructure. SLAM techniques pro-

vide another means for accurate self-localization in a world

coordinate frame, and are also used in automotive research

(Geiger et al. 2012; Mur-Artal and Tardós 2017). Another

approach is to infer local road layout directly from sensor

data (Geiger et al. 2014; Yi et al. 2017). Here, too, semantic

scene segmentation with ConvNets can be used to identify

static and dynamic objects, and drivable road [c.f. Cityscapes

benchmark (Cordts et al. 2016)].

Dynamic Environment Cues VRU behavior may also be influ-

enced by other dynamic objects in their surrounding. For

instance, social force models (Antonini et al. 2006; Helbing

and Molnár 1995; Huang et al. 2017) expect agents to avoid

collisions with other agents. Tamura et al. (2012) extended

social force towards group behavior by introducing sub-goals

such as “following a person”. The related Linear Trajectory

Avoidance model (Pellegrini et al. 2009) for short-term path

prediction uses the expected point of closest approach to fore-

shadow and avoid possible collisions.

Neural nets can also learn how multiple agents move in

each others presence (Alahi et al. 2016; Yi et al. 2016), even

from a vehicle perspective (Karasev et al. 2016; Lee et al.

2017). In the IV domain, interaction of road users with the

ego-vehicle is especially important. An often used indicator is

the Time-To-Collision (TTC) which is the time that remains

until a collision between two objects occurs if their course and

speeds are maintained (Sayed et al. 2013). A related indicator

is the minimum future distance between two agents, which

like TTC assumes both travel with fixed velocity (Pellegrini

et al. 2009; Cara and de Gelder 2015).

Beyond accounting for the presence of other road users,

traffic participants also negotiate right of way to coordinate

their actions. Rasouli et al. (2017) presents a study of such

interactions between drivers and pedestrians.

Object Cues People may not always be fully aware of their

surroundings, and inattentive pedestrians are an important

safety case in the IV context. A study on pedestrian behavior

prediction by Schmidt and Färber (2009) found that human

drivers look for body cues, such as head movement and

motion dynamics, though exactly determining the pedes-

trian’s gaze is not necessary. Hamaoka et al. (2013) presents

a study on head turning behaviors at pedestrian crosswalks

regarding the best point of warning for inattentive pedestri-

ans. They use gyro sensors to record head turning and let

pedestrians press a button when they recognize an approach-

ing vehicle. Continuous head estimation can be obtained by

interpolating the results of multiple discrete orientation clas-

sifiers, adding physical constraints and temporal filtering to

improve robustness (Enzweiler and Gavrila 2010; Flohr et al.

2015). Benfold and Reid (2009) uses a Histogram of Oriented

Gradients (HOG) based head detector to determine pedes-

trian attention for automated surveillance. Ba and Odobez

(2011) combines context cues in a DBN to model the influ-

ence of group interaction on focus of attention. Recent work

uses ConvNets for real-time 2D estimation of the full body

skeleton (Cao et al. 2017).

The full body appearance can also be informative for

path prediction, e.g. to classify the object and predict a

class-specific path (Klostermann et al. 2016), or to identify

predictive poses. Köhler et al. (2013) rely on infrastructure-

based sensors to classify whether a pedestrian standing at the

curbside will start to walk. Keller and Gavrila (2014) esti-

mates whether a crossing pedestrian will stop at the curbside

using dense optical flow features in the pedestrian bounding

box. They propose two non-linear, higher order Markov mod-

els, one using Gaussian Process Dynamical Models (GPDM),

and one using Probabilistic Hierarchical Trajectory Matching

(PHTM). Both approaches are shown to perform similar, and

outperform the first-order Markov LDS and SLDS models,

albeit at a large computational cost.

3 Proposed Approach

We are interested in predicting the path of an object

with switching motion dynamics. We consider that non-

maneuvering movement (i.e. where the type of motion is not

changing) is well captured by a LDS with a basic motion

model [e.g. constant position, constant velocity, constant

turn rate (Blackman and Popoli 1999)]. An SLDS combines

multiple of such motion models into a single model, using

an additional switching state to indicate which of the basic

motion model is in use at any moment. These probabilistic

models can express the state probability given all past posi-

tion measurements (i.e. online filtering), or given all past and

future measurements (i.e. offline smoothing). Similarly, it is

also possible to infer future state probability given only the

current past measurements (i.e. prediction). Details on infer-

ence will be presented in Sect. 3.2.

While the SLDS can provide good predictions overall, we

shall demonstrate that this unfortunately comes at the cost of

bad predictions when a switch in dynamics occurs between

the current time step and the predicted time step. To tackle

the shortcomings of the SLDS, we propose an online filter-

ing and prediction method that exploits context information

on factors that may influence the target’s motion dynamics.

More specifically, for VRU path prediction we consider three

types of context, namely interaction with the dynamic envi-

ronment, the relation of the VRU to the static environment,

and the VRU’s observed behavior.
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The presented work offers several contributions:

1. We present a generic approach to exploit context cues

to improve predictions with a SLDS. The cues are rep-

resented as discrete latent nodes in a DBN that extends

the SLDS. These nodes influence the switching probabil-

ities between dynamic modes of the SLDS. An algorithm

for approximate online inference and path prediction is

provided.

2. We apply our approach to VRU path prediction. Var-

ious context cues are extracted with computer vision.

The context includes the dynamic environment, the static

environment, and the target’s behavior. The proposed

approach goes beyond existing work in this domain that

has considered no or limited context. We show the influ-

ence of different types of context cues on path prediction,

and the importance of combining them.

3. Our work targets online applications in real-world envi-

ronments. We use stereo vision data collected from

a moving vehicle, and compare computational perfor-

mance to a state-of-the-art method in the IV domain.

We shall now formalize the SLDS, and demonstrate with a

simple example how context can improve prediction quality

when an actual switch in dynamics occurs. Afterwards, we

discuss approximate inference, and specify how our general

approach can be applied to VRU path prediction.

3.1 Contextual Extension of SLDS

Given noisy positional measurements Yt of a moving tar-

get, the target’s true dynamics can be modeled as a Linear

Dynamical System (LDS) with a latent continuous state X t .

The process defines the next state as a linear transformation A

of the previous state, with process noise ǫt ∼ N (0, Q) added

through linear transformation B. Observation Yt results from

a linear transformation C of the true state X t with also

Gaussian noise ηt ∼ N (0, R) added, referred to as the mea-

surement noise.

A Switching LDS (SLDS) conditions the dynamics on

a discrete switching state Mt . We shall consider that the

switching state Mt selects the appropriate state transforma-

tion matrix A(Mt ) for the process model, though generally

other LDS terms could also be conditioned on Mt , if needed.

Accordingly, the SLDS process is here defined as

X t = A(Mt ) X t−1 + Bǫt ǫt ∼ N (0, Q) (1)

Yt = C X t + ηt ηt ∼ N (0, R). (2)

These equations can be reformulated as conditional distri-

butions, i.e. P(X t |X t−1, Mt ) = N (X t |A
(Mt ) X t−1, B Q B⊤)

and P(Yt |X t ) = N (Yt |C X t , R). The first time step is defined

x →

y
→

current pos

future pos

LDS (1st-order)

LDS (2nd-order)

SLDS

C-SLDS

time →

lo
g
-l

ik
el

ih
o
o
d

P(E|Z=true) used in C-SLDS

Fig. 2 Best viewed in color. Toy example of path prediction for a target

(moving left to right) with two motion types. Four models are con-

sidered: a LDS with 1st- and 2nd-order state space, a SLDS, and the

proposed Context-based SLDS (C-SLDS). Each model extrapolates the

filtered dynamics three time steps ahead, resulting in a Gaussian dis-

tribution over the future state. Top: Spatial view where gray dots show

the target’s actual path. The noisy measurements are omitted for clarity.

Black circles mark the target’s position t = 5, 10 and 15. Stars mark

its corresponding future position. Colored lines and uncertainty ellipses

show the predicted path, and the distribution at the prediction horizon of

each model. Middle: Log likelihood over time of the true future position

under the predictive distributions. Bottom: The evidence from the spa-

tial context over time, used by the C-SLDS. If this context is ‘activated’

(white) the state transition probabilities are high and the C-SLDS acts

like the 1st-order LDS, otherwise (black) it acts like the SLDS

by initial distributions P(X0|M0) and and P(M0). The for-

mer expresses our prior knowledge about the position and

movement of a new target for each switching state, the lat-

ter expresses the prior on the switching state itself. Note

that the SLDS describes a joint probability distribution over

sequences of observations and latent states. It is therefore a

particular instance of a DBN.

As an example, consider predicting the future position of

a moving target which exhibits two types of motion, namely,

moving in positive x direction (type A), and moving in pos-

itive x and y direction (type B). The target performs motion

type A for 10 time steps, and then type B for another 10

time steps. The target’s motion dynamics are known, and a

LDS is selected to filter and predict its future position for

three steps ahead. An LDS with a 1st-order state space only

includes position in its state, X t = [xt ]. The target velocity is

assumed to be fixed. Each time step, this LDS adds the fixed

velocity and random Gaussian noise to the position. For the

considered target, the optimal fixed velocity of the LDS is an
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Z0

M0

X0

E0 Y0

Z1

M1

X1

E1 Y1

Fig. 3 Context-based SLDS as directed graph, unrolled for

two time slices. Discrete/continuous/observed nodes are rectangu-

lar/circular/shaded

average of the two possible motion directions. Figure 2 illus-

trates this example, and shows predictions made using this

LDS in blue. The LDS provides poor predictive distribution

which do not adapt to the target motion.

An LDS with a 2nd-order state space also includes the

velocity in the state, X t = [xt , ẋt ]
⊤. Through process noise

on the velocity, this LDS can account for changes in the tar-

get direction. However, its spatial uncertainty grows rapidly

when predicting ahead as the velocity uncertainty increases

without bounds. The figure shows its predictions in purple.

An SLDS can instead combine multiple LDS instances,

each specialized for one motion type. This example consid-

ers an SLDS combining two 1st-order LDSs, one with fixed

horizontal, and one with fixed diagonal velocity. Less process

noise is needed compared to the single LDS. The switching

state is to 1/20 chance of changing motion types. The pre-

dictions of this SLDS, shown in red in the figure are better

during each mode. It exploits that changes between modes

are rare, and the prediction uncertainty is therefore smaller.

However, this notion leads to bad results when half-way the

rare switch does occur, as the log-likelihood plots shows. The

SLDS thus delivers good predictions for typical time steps

where the dynamics do not change, at the cost of inaccurate

predictions for rare moments where the dynamics switch. But

a switch could be part of expected behavior for maneuvering

targets. Preferably, the model should deliver good predictions

for typical or ‘normal’ tracks, even if these switch, at the cost

of inaccurate predictions during rare tracks with anomalous

behavior.

We make a simple observation to tackle the poor SLDS

performance during a switch. Consider having information

that the target approaches a region with higher probability of

switching than usual, i.e. spatial context. Outside this region

the SLDS behaves as before. But inside, the switching proba-

bility is set to 1/2, which makes every dynamic mode equally

likely in the future such. The SLDS then behaves as the orig-

inal 1st-order LDS. By selectively adapting the transition

probabilities based on the spatial context, this model can

ideally take best of both worlds, as the yellow log-likelihood

plot in Fig. 2 confirms.

To obtain this behavior, the transition probability of the

SLDS switching state is conditioned on additional discrete

latent context variables (which will be specified in more

detail later). These different context states can collectively

be represented by a single discrete node Z t . Each contex-

tual configuration Z t = z defines a different motion model

transition probability,

P(Mt = mt |Mt−1 = mt−1, Z t = zt ) = P(Mt |Mt−1, Z t )

(3)

P(Z t = zt |Z t−1 = zt−1) = P(Z t |Z t−1) (4)

Here we use P(·) to denote probability tables.

We also introduce a set of measurements Et , which

provide evidence for the latent context variables through

conditional probability P(Et |Z t ). The bottom plot in Fig. 2

demonstrates this likelihood for the example. Even though

the context Z t is discrete, during inference the uncertainty

propagates from the observables to these variables, resulting

in posterior distributions that assign real-valued probabilities

to the possible contextual configurations.

Like the SLDS, this extended model is also a DBN.

Figure 3 shows all variables as nodes in a graphical represen-

tation of the DBN. The arrows indicate that child nodes are

conditionally dependent on their parents. The dashed arrows

show conditional dependency on the nodes in the previous

time step.

3.2 Online Inference

The DBN is used in a forward filtering procedure to incorpo-

rate all available observations of new time instances directly

when they are received. We have a mixed discrete-continuous

DBN where the exact posterior includes a mixture of |M |T

Gaussian modes after T time steps, hence exact online infer-

ence is intractable (Pavlovic et al. 2000). We therefore resort

to Assumed Density Filtering (ADF) (Bishop 2006; Minka

2001) as an approximate inference technique. The filtering

procedure consists of executing the three steps for each time

instance: predict, update, and collapse. These steps will also

be used for predicting the target’s future path for a given

prediction horizon, as described later in Sect. 3.4.

We will let P t (·) ≡ P(·|Y1:t−1, E1:t−1) denote a predic-

tion for time t (i.e. before receiving observations Yt and Et ),

and P̂t (·) ≡ P(·|Y1:t , E1:t ) denote an updated estimate for

time t (i.e. after observing Yt and Et ). Finally, P̃t (·) is the

collapsed or approximated updated distribution that will be

carried over to the predict step of the next time instance t +1.

Figure 4 shows a flowchart of the computational performed

in the steps, which will now be explained in more detail.
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Fig. 4 Flowchart of the three ADF steps in a single time instance. For

simplicity, two motion models and three context states are assumed,

and no example numbers are shown in the probability tables, except

for the likelihoods of the context evidence Et and observed position Yt .

Table rows correspond to the model M and/or context state Z of the

previous time step t − 1, columns correspond to the model M and/or

context state Z of the time step t . Within each probability table, cell

blocks with thick lines correspond to a single Z value, cell blocks with

solid lines are normalized and therefore sum to one

3.2.1 Predict

To predict time t we use the posterior distribution of t − 1,

which is factorized into the joint distribution over the latent

discrete nodes P̃t−1(Mt−1, Z t−1), and into the conditional

distribution and the dynamical state, P̃t−1(X t−1|Mt−1) =

N (X t−1|μ̃
(Mt−1)

t−1 , Σ̃
(Mt−1)

t−1 ).

First, the joint probability of the discrete nodes in the pre-

vious and current time steps is computed using the factorized

transition tables of Eqs. (3) and (4),

P t (Mt , Mt−1, Z t , Z t−1) = P(Mt |Mt−1, Z t )

× P(Z t |Z t−1) × P̃t−1(Mt−1, Z t−1). (5)

Then for the continuous latent state X t we predict the

effect of the linear dynamics of all possible models Mt on

the conditional Normal distribution of each Mt−1,

P t (X t |Mt , Mt−1) =

∫
P(X t |X t−1, Mt )

× P̃t−1(X t−1|Mt−1) d X t−1. (6)

With the dynamics of Eq. (1), we find that the parametric

form of (6) is the Kalman prediction step, i.e.

P t (X t |Mt , Mt−1) = N (X t |μ
(Mt ,Mt−1)
t ,Σ

(Mt ,Mt−1)

t ) (7)

μ
(Mt ,Mt−1)
t = A(Mt )μ̂

(Mt−1)

t−1 (8)

Σ
(Mt ,Mt−1)

t = A(Mt )Σ̂
(Mt−1)

t−1 A(Mt )
⊤

+ B Q B⊤. (9)

3.2.2 Update

The update step incorporates the observations of the current

time step to obtain the joint posterior. For each joint assign-

ment (Mt , Mt−1), the LDS likelihood term is

P(Yt |Mt , Mt−1) =

∫
P(Yt |X t ) × P t (X t |Mt , Mt−1) d X t

= N (Yt |Cμ
(Mt ,Mt−1)
t ,Σ

(Mt ,Mt−1)

t + R),

(10)

where we make use of Eq. (2). Combining this with the pre-

diction [Eq. (5)] and context likelihood P(Et |Z t ), we obtain

the posterior as one joint probability table

P̂t (Mt , Mt−1, Z t , Z t−1) ∝ P(Yt |Mt , Mt−1)

× P(Et |Z t ) × P t (Mt , Mt−1, Z t , Z t−1). (11)

Here we normalized the r.h.s. over all possible assignments

of (Mt , Z t , Mt−1 Z t−1) to obtain the distribution on the l.h.s.

The posterior distribution over the continuous state,

P̂t (X t |Mt , Mt−1) ∝ P(Yt |X t ) × P t (X t |Mt , Mt−1)

= N (X t |μ̂
(Mt ,Mt−1)
t , Σ̂

(Mt ,Mt−1)
t ) (12)
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has parameters
(
μ̂

(Mt ,Mt−1)
t , Σ̂

(Mt ,Mt−1)
t

)
for the |M |2 pos-

sible transition conditions, which are obtained using the

standard Kalman update equations.

In case there is no observation for a given time step,

there is no difference between the predicted and updated

probabilities, which means both Eqs. 11 and 12 simplify to

P̂t (·) = P t (·).

3.2.3 Collapse

In the third step, the state of the previous time step is

marginalized out from the joint posterior distribution, such

that we only keep the joint distribution of variables of the

current time instance, which will be used in the predict step

of the next iteration.

P̃t (Mt , Z t ) =
∑

Mt−1

∑

Zt−1

P̂t (Mt , Mt−1, Z t , Z t−1) (13)

Similarly, P̃(Mt−1|Mt ) is straightforward to obtain,

P̃(Mt−1, Mt ) ∝
∑

Zt

∑

Zt−1

P̂t (Mt , Mt−1, Z t , Z t−1) (14)

P̃(Mt−1|Mt ) = P̃(Mt−1, Mt )/
∑

Mt−1

P̃(Mt−1, Mt ). (15)

We approximate the |M |2 Gaussian distributions from

Eq. (12) by just |M | distributions,

P̃t (X t |Mt ) =
∑

Mt−1

P̂t (X t |Mt , Mt−1) × P(Mt−1|Mt )

= N (X t |μ̃
(Mt )
t , Σ̃

(Mt )
t ). (16)

Here, the parameters
(
μ̃

(Mt )
t , Σ̃

(Mt )
t

)
are found by Gaussian

moment matching (Lauritzen 1992; Minka 2001),

μ̃
(Mt )
t =

∑

Mt−1

P(Mt−1|Mt ) × μ̂
(Mt ,Mt−1)
t (17)

Σ̃
(Mt )
t =

∑

Mt−1

P(Mt−1|Mt ) ×

[
Σ̂

(Mt ,Mt−1)
t

+

(
μ̂

(Mt ,Mt−1)
t − μ̃

(Mt )
t

)
·

(
μ̂

(Mt ,Mt−1)
t − μ̃

(Mt )
t

)⊤
]

.

(18)

3.3 Context for VRUMotion

Until now the use of context in a SLDS has been described

in general terms, but for VRU path prediction we distin-

guish a four binary context cues, Z t = {ZDYN
t , ZSTAT

t , ZACT
t ,

ZACTED
t }, which affect the probability of switching dynam-

ics:

Z
DYN
0

Z
ACT
0

Z
ACTED
0

M0

Z
STAT
0

X0

E
DYN
0 E

ACT
0

Y0 E
STAT
0

Z
DYN
1

Z
ACT
1

Z
ACTED
1

M1

Z
STAT
1

X1

E
DYN
1 E

ACT
1

Y1 E
STAT
1

Fig. 5 DBN with context cues for VRU path prediction, unrolled

for two time slices. Discrete/continuous/observed nodes are rectan-

gular/circular/shaded. The binary context nodes represent interaction

with the dynamic environment ZDYN
t , relation to the static environment

ZSTAT
t , and object behavior (i.e. how VRU acts, ZACT

t , or has acted,

ZACTED
t )

– Dynamic environment context: the presence of other traf-

fic participants can deter the VRU to move too closely. In

our experiments we only consider the presence of the ego-

vehicle. Context indicator ZDYN
t thus refers to a possible

collision course, and therefore if the situation is poten-

tially critical.

– Static environment context: the location of the VRU in

the scene relative to the main infrastructure. ZSTAT
t is

true iff the VRU is at the location where change typically

occurs.

– Object context: ZACT
t indicates if the VRU’s current

actions provide insight in the VRU’s intention (e.g. sig-

naling direction), or awareness (e.g. line of gaze). The

related context ZACTED
t captures whether the VRU per-

formed the relevant actions in the past.

These cues are present in both the pedestrian and the

cyclist scenario. The temporal transition of the context in Z

is now factorized in several discrete transition probabilities,

P(Z t |Z t−1) = P

(
ZSTAT

t |ZSTAT
t−1

)
× P

(
ZDYN

t |ZDYN
t−1

)

× P

(
ZACTED

t |ZACTED
t−1 , ZACT

t

)
× P

(
ZACT

t |ZACT
t−1

)
.

(19)

The graphical model of the DBN obtained through this con-

text factorization is shown in Fig. 5.

The latent object behavior variable, ZACT, indicates

whether the VRU is currently exhibiting behavior that sig-

nals a future change in dynamics. The related object context

ZACTED acts as a memory, and indicates whether the behav-

ior has occurred in the past. For instance, the behavior of a
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crossing pedestrian is affected by the pedestrian’s awareness,

i.e. whether the pedestrian has seen the vehicle approach at

any moment in the past, ZACT
t ′

= true for some t ′ ≤ t . The

transition probability of ZACTED
t encodes simply a logical

OR between the Boolean ZACTED
t−1 and ZACT

t nodes:

P

(
ZACTED

t |ZACTED
t−1 , ZACT

t

)
=

{
true iff

(
ZACTED

t−1 ∨ ZACT
t

)

false otherwise.

(20)

The context states have observables associated to them,

except ZACTED which is conditioned on the ZACT state only.

Hence, there are only three types of context observables,

E =
{

EDYN, ESTAT, EACT
}
, which are assumed to be con-

ditionally independent distributed given the context states.

This yields the following factorization,

P(Et |Z t ) = P
(

EDYN
t |ZDYN

t

)
× P

(
ESTAT

t |ZSTAT
t

)

× P
(

EACT
t |ZACT

t

)
. (21)

3.4 VRU Path Prediction

The goal of probabilistic path prediction is to provide a useful

distribution P tp |t on the future target position,

P tp |t (X t+tp ) ≡ P(X t+tp |Y1:t ). (22)

Here tp is the prediction horizon, which defines how many

time steps are predicted ahead from the current time t . This

formulation can reuse the steps from approximate online

inference of Sect. 3.2, treating the unknown observations

of the future time steps as ‘missing’ observations. Iterative

application of these steps creates a predictive distribution of

each moment in the future path, until the desired prediction

horizon is reached.

However, the static environment context ZSTAT exploits

the relation between VRU’s position and the static environ-

ment. Since the expected position is readily available during

path prediction, we can estimate the future influence of the

static environment on the predicted continuous state of the

VRU. For instance, while predicting a walking pedestrian’s

path, we can also predict the decreasing distance of the pedes-

trian to the static curbside.

Accordingly, to obtain prediction P(X t+tp |Y1:t ) at time

t for tp time steps in the future, we use the current filtered

state distribution and iteratively apply the Predict, Update

and Collapse steps as before. However, the Update step now

only includes measurements for the future static environment

context using the expected VRU position. It does not have

measurements for the object and dynamic environment indi-

cators, thereby effectively skipping these context cues. Thus,

to predicting future time steps, we replace Eq. (11) by

P̂t (Mt , Mt−1, Z t , Z t−1) ∝

P
(

ESTAT
t |ZSTAT

t

)
× P t (Mt , Mt−1, Z t , Z t−1). (23)

This enables the method to predict when the change in

dynamics will occur, if the VRU is inclined to do so.

4 VRU Scenarios

The previous section explained the general approach of using

a DBN to incorporate context cues, infer current and future

use of dynamics, and ultimately perform future path predic-

tion. This section now specifies the dynamics and context

used for the two VRU scenarios of interest.

4.1 Crossing Pedestrian

The first scenario concerns the pedestrian wanting to cross the

road, and approaching the curb from the right, as illustrated

in Fig. 1a.

Motion Dynamics In this scenario, we consider that the

pedestrian can exhibit at any moment one of two motion

types, walking (Mt = mw) and standing (Mt = ms). While

the velocity of any standing person is zero, different peo-

ple can have different walking velocities, i.e. some people

move faster than others. Let xt denote a person’s lateral posi-

tion at time t (after vehicle ego-motion compensation) and

ẋt the corresponding velocity. Furthermore, ẋmw is the pre-

ferred walking speed of this particular pedestrian. The motion

dynamics over a period Δt can then be described as,

xt = xt−Δt + ẋtΔt + ǫtΔt ẋt =

{
0 iff Mt = ms

ẋmw iff Mt = mw

(24)

Here ǫt ∼ N (0, Q) is zero-mean process noise that allows

for deviations of the fixed velocity assumption. We will

assume fixed time-intervals, and from here on set Δt = 1.

Since the latent ẋmw is constant over the duration of a

single track, ẋ
mw
t = ẋ

mw

t−1. Still, it varies between pedestrians.

We include the velocity ẋmw in the state of an SLDS together

with the position xt such that we can filter both. The prior on

ẋ
mw

0 represent walking speed variations between pedestrians.

By filtering, the posterior on ẋ
mw
t converges to the preferred

walking speed of the current track.

The switching state Mt selects the appropriate linear state

transformation A(Mt ), and the matrices from Eq. (1) become

X t =

[
xt

ẋ
mw
t

]
, A(ms ) =

[
1 0

0 1

]
, A(mw) =

[
1 1

0 1

]
, B =

[
1

0

]
.

(25)
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Fig. 6 Context observables used in the crossing pedestrian scenario. a The closest distance between pedestrian and the ego-vehicle. b The pedestrian

head orientation. c The distance to the curb

The observations Yt ∈ R from Eq. (2) are the observed lateral

position. The observation matrix is defined as C = [1 0]. The

initial distribution on the state X0 and both the process and

measurements noise are estimated from the training data (see

Sec. 5.4).

Context Following the study on driver perception (Schmidt

and Färber 2009), the context cues in the pedestrian scenario

are collision risk, pedestrian head orientation, and where

the pedestrian is relative to the curb. The context obser-

vations Et for this scenario are illustrated in Fig. 6. The

related Fig. 7 shows the empirical distributions of the con-

text observations estimated on annotated training data from

a pedestrian dataset. The dataset will be discussed in more

detail in Sect. 5.1.

The dynamic environment context ZDYN indicates whether

the current trajectories of the ego-vehicle and pedestrian cre-

ates a critical situation. Namely, if there is a possible collision

when both pedestrian and vehicle continue with their current

velocities. For the interaction cue, we consider the minimum

distance Dmin between the pedestrian and vehicle if their

paths would be extrapolated in time with fixed velocity (Pel-

legrini et al. 2009), see Fig. 6a. While this indicator makes

naive assumptions about the vehicle and pedestrian motion,

it is still informative as a measure of how critical the situa-

tion is. As part of our model, will thereby assist to make path

prediction more accurate. We define a Gamma distribution

over Dmin conditioned on the latent interaction state ZDYN,

parametrized by shape a and scale b,

P
(

EDYN
t |ZDYN

t = z
)

= Γ (Dmin
t |az, bz). (26)

This distribution is illustrated in Fig. 7a.

The object behavior context ZACT describes if the pedes-

trian is seeing the approaching vehicle. ZACTED indicates

whether this was the case at any moment in the past, i.e. if

the pedestrian did see the vehicle. It therefore indicates the

pedestrian’s awareness: a pedestrian will likely stop when he

is aware of the fact that it is dangerous to cross. The Head-

Orientation observable HOt serves as evidence EACT
t for the

behavior. A head orientation estimator is applied to the head

image region. It consists of multiple classifiers, each trained

to detect the head in a particular looking direction, and HOt

is then a vector with the classifier responses, see Fig. 6b. The

values in this vector form different unnormalized distribu-

tions over the classes, depending on whether the pedestrian is

looking at the vehicle or not, see Fig. 7b. However, if the head

is not clearly observed (e.g. it is too far, or in the shadow), all

values are typically low, and the observed class distribution

provides little evidence of the true head orientation. We there-

fore model HOt as a sample from a Multinomial distribution

conditioned on ZACT
t , thus with parameter vectors ptrue and

pfalse for ZACT = true and ZACT = false respectively,

P
(

EACT
t |ZACT

t = z
)

= Mult(HOt |pz). (27)

As such, higher classifier outputs count as stronger evidence

for the presence of that class in the observation. In the other

limit of all zero classifier outputs, HOt will have equal like-

lihood for any value of ZACT
t .

The static environment context ZSTAT indicates if the

pedestrian is currently at the position next to the curb where

a person would normally stop if they wait for traffic before

crossing the road. The relative position of the pedestrian with

respect to the curbside therefore serves as observable for

this cue. As shown in Fig. 6c, we detect the curb ridge in

the image. It is then projected to world coordinates with the

stereo disparity to measure its lateral position near the pedes-

trian. These noisy measurements are filtered with a constant

position Kalman filter with zero process noise, such that

we obtain an accurate estimate of the expected curb posi-

tion, xcurb
t . Distance-To-Curb, DTCt , is then calculated as

the difference between the expected filtered position of the

pedestrian, E[xt ], and of the curb, E[xcurb
t ]. Note that for

path prediction we can estimate DTC even at future time

steps, using predicted pedestrian positions. The distribution

over DTCt given ZSTAT is modeled as a Normal distribution,

see Fig. 7c,

P
(

ESTAT
t |ZSTAT

t = z
)

= N (DTCt |μz, σz). (28)
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Fig. 7 Histograms and the fitted distributions of the context observa-

tions Et for the pedestrian scenario, conditioned on their GT context

states Z t : a the minimum future distance between pedestrian and ego-

vehicle, conditioned on ZDYN
t (critical vs non-critical situation). b The

head orientation conditioned on ZACT
t (pedestrians sees vs does not see

the ego-vehicle). c The pedestrian’s distance to the curb, conditioned

on conditioned on ZSTAT
t (not at curb vs at the curb)
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Fig. 8 Context observables used in the cyclist scenario. a The extrap-

olated time till ego-vehicle reaches cyclist. b Detection of the cyclist’s

raised arm. c An static environment map is built offline through SLAM.

The map’s coordinate system is aligned with the intersection center.

By projecting tracked cyclist positions to this coordinate system, their

longitudinal distance to the intersection is obtained
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Fig. 9 Histograms and the fitted distributions of the context observa-

tions Et for the cyclist scenario, conditioned on their GT context states

Z t : a the time until the ego-vehicle would approach the cyclist, if both

kept moving at the same speed, conditioned on ZDYN (critical vs non-

critical). b The arm detector’s confidence conditioned on ZACT (cyclists

has arm up vs arm down). c The cyclists’ longitudinal position condi-

tioned on ZSTAT (cyclist not at intersection vs at intersection)

4.2 Cyclist Approaching Intersection

The second scenario concerns the ego-vehicle driving behind

a cyclist, and approaching an intersection. As illustrated in

Fig. 1b, the cyclist may or may not turn left at the intersection,

but can indicate intent to turn by raising an arm in advance.

In our training data, the cyclist always does this when turn-

ing in a critical situation where the ego-vehicle is quickly

approaching. But in non-critical situations, cyclists may turn

even without raising an arm. The context observables of this

scenario are illustrated in Figs. 8, and 9 shows the empirical

distributions of the observables on the cyclist dataset that will

be presented later in Sect. 5.2.

Motion Dynamics The cyclist can switch between the motion

types cycling straight, mst , and turning left, mtu . Since a

turning cyclist changes velocity in both lateral x and longi-

tudinal y direction, we now include both spatial dimensions

in the cyclist’s dynamic state. While the pedestrian model

included only a latent velocity for the preferred walking

speed, our cyclist models includes latent velocities for both
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motion types. The matrices from Eq. (1) are as follows:

X t =
[
xt yt ẋ

mtu
t ẏ

mtu
t ẋ

mst
t ẏ

mst
t

]⊤

A(mtu) =

⎡
⎣

I I 0

0 I 0

0 0 I

⎤
⎦ A(mst ) =

⎡
⎣

I 0 I

0 I 0

0 0 I

⎤
⎦ B =

⎡
⎣

I

0

0

⎤
⎦ .

(29)

Here, I defines as a 2×2 identity matrix, and 0 represents

a 2 × 2 matrix of zeros. The observations Yt ∈ R
2 from

Eq. (2) are the observed lateral and longitudinal position with

observation matrix C = [I 0 0].

Context In this scenario, the dynamic environment context

ZDYN indicates whether a situation would be critical if the

cyclist would decide to turn left at that moment. Here we

consider time T min it would take for the vehicle to reach

the cyclist, if both the vehicle and the cyclist would keep

moving at the same speed. This is represented schematically

in Fig. 8a. This is not a perfect prediction of the criticality of

the situation, because the speed of the cyclist is not constant

when turning left. But, similar as the pedestrian case, it still

conveys useful information and will therefore improve the

prediction. Figure 9a shows that the empirical distribution

over T min has multiple modes. We therefore define a mixture

of m Gaussians over T min , conditioned the dynamic context

state ZDYN. From the data we find that m = 3 for ZDYN =

true (the situation is critical), and that m = 2 for ZDYN =

false. The Gaussian mixture is parametrized by means μ
(k)
zdyn ,

covariances σ
(k)
zdyn and the mixture weights φ

(k)
zdyn ,

P
(

EDYN
t |ZDYN

t = z
)

=

m∑

k=1

φ
(k)
zdynN

(
T min

t |μ
(k)
zdyn, σ

(k)
zdyn

)
.

(30)

The object context ZACT captures whether the cyclist

raises an arm to indicate intent to turn left, or not (see Fig. 8b).

Accordingly, ZACTED represents whether the cyclist did raise

an arm in the past. For evidence EACT, an Arm-Detector pro-

vides a classification score ADt in the [0, 1] range, where a

high score is indicative of a raised arm. The Beta distribution

is a suitable likelihood function for this domain, see Fig. 9b.

The distribution is parameterized by αz and βz ,

P
(

EACT
t |ZACT

t = z
)

= Beta(ADt |αz, βz). (31)

The static environment context ZSTAT represents if the

cyclist has reached the region around the intersection where

turning becomes possible. Figure 8c shows that cyclist tracks

have some variance in their turn angle and the location of

onset. Rather than an exact spot, this region is a bounded

range on the relative longitudinal distance of the cyclist to the

center of the intersection. The dashed lines in the figure mark

this region. We rely on map information and ego-vehicle

localization to estimate the longitudinal distance of the cyclist

to the next intersection, the Distance-To-Intersection, DTIt .

As shown in Fig. 9c, the distribution over DTIt given ZSTAT

is also modeled as a mixture of m Gaussians, using m = 1

for ZSTAT = true, and m = 2 for ZSTAT = false:

P
(

ESTAT
t |ZSTAT

t = z
)

=

m∑

k=1

φ
(k)
zstatN

(
DTIt |μ

(k)
zstat , σ

(k)
zstat

)
.

(32)

For path prediction we can estimate DTIt using the predicted

cyclist positions and static map information.

5 Datasets and Feature Extraction

The experiments in this paper used two stereo-camera

datasets of VRU encounters recorded from a moving vehi-

cle, one for the crossing pedestrian and one for the cyclist

at intersection scenario. Due to the focus on potentially

critical situations, both driver and pedestrian/cyclist were

instructed during recording sessions. A sufficient safety dis-

tance between vehicle and VRU was applied in all scenarios

recorded. In the following sections, ‘critical situation’ thus

refers to a theoretic outcome where both the approaching

vehicle and pedestrian would not stop.

5.1 Pedestrian Dataset

For pedestrian path prediction, we use a dataset (c.f. Kooij

et al. 2014a) consisting of 58 sequences recorded using a

stereo camera mounted behind the windshield of a vehicle

(baseline 22 cm, 16 fps, 1176×640 12-bit color images). All

sequences involve single pedestrians with the intention to

cross the street, but feature different interactions (Critical vs.

Non-critical), pedestrian situational awareness (Vehicle seen

vs. Vehicle not seen) and pedestrian behavior (Stopping at

the curbside vs. Crossing). The dataset contains four different

male pedestrians and eight different locations. Each sequence

lasts several seconds (min / max / mean: 2.5 s / 13.3 s / 7.2 s),

and pedestrians are generally unoccluded, though brief occlu-

sions by poles or trees occur in three sequences.

Positional ground truth (GT) is obtained by manual label-

ing of the pedestrian bounding boxes and computing the

median disparity over the upper pedestrian body area using

dense stereo (Hirschmüller 2008). These positions are then

corrected for vehicle ego-motion provided by GPS and IMU,

and projected to world coordinates. From this correction we

obtain the pedestrian’s GT lateral position, and use the tem-

poral difference as the GT lateral speed.
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Table 1 Breakdown of the number of tracks in the pedestrian dataset

(c.f. Kooij et al. 2014a) for the four normal sub-scenarios (above the

line), and in the anomalous one (below the line)

Pedestrian scenario (58 tracks)

Sub-scenario Occurences

Non-critical Vehicle not seen Crossing 9

Non-critical Vehicle seen Crossing 14

Critical Vehicle not seen Crossing 11

Critical Vehicle seen Stopping 14

Critical Vehicle seen Crossing 10

Table 2 Breakdown of the number of tracks in the cyclist dataset for the

normal (above the line) and anomalous (below the line) sub-scenarios

Cyclist scenario (42 tracks)

Sub-scenario Occurrences

Non-critical Arm not raised Straight/Turn 6/6

Non-critical Arm raised Turn 6

Critical Arm not raised Straight 10

Critical Arm raised Turn 7

Critical Arm not raised Turn 7

The GT for context observations is obtained by labeling

the head orientation of each pedestrian. The 16 labeled dis-

crete orientation classes were reduced to 8 GT orientation

bins by merging three neighbored orientation classes (c.f.

Flohr et al. 2015) together.

This dataset is divided into five sub-scenarios, listed in

Table 1. Four sub-scenarios represent ‘normal’ pedestrian

behaviors (e.g. the pedestrian stops if he is aware of a critical

situation and crosses otherwise). The fifth sub-scenario is

‘anomalous’ with respect to the normal sub-scenarios, since

the pedestrian crosses even though he is aware of the critical

situation.

5.2 Cyclist Dataset

A new dataset was collected for the cyclist scenario, in a

similar fashion to the pedestrian dataset. This new dataset

contains 42 sequences with another stereo camera setup in

the vehicle (baseline 21 cm, 16 fps, 2048×1024 12-bit color

images). The cyclist and vehicle are driving on the same

road, such that the cyclist is observed from the back, and

they approach an intersection with an opportunity for the

cyclist to turn left.

The cyclist GT positions are obtained similarly to the

pedestrian scenario from stereo vision. To obtain informa-

tion about the road layout further ahead, intelligent vehicles

can rely on map information and self-localization. Since

the cyclist scenario was collected in a confined road area,

we use Stereo ORB-SLAM2 (Mur-Artal and Tardós 2017)

on all collected stereo video to build a 3D map of the

environment for our experiments. This results in a fixed

world coordinate system shared by all tracks. The spatial

layout of the crossing (road width and intersection point)

is expressed in these world coordinates, and the detected

cyclist positions can be projected to this global coordinate

system too. In a pre-processing step GT cyclist tracks are

smoothed to compensate for the estimation noise for stereo

vision, which especially affects the longitudinal position.

The aligned road layout and cyclist tracks are shown in

Fig. 8c.

This dataset is also divided into several sub-scenarios,

with the number of recordings for each sub-scenario listed

in Table 2. We consider that initially the cyclist intent is

unknown, i.e. whether he will turn or go straight at the

intersection. By raising an arm, he can give a visual indi-

cation of the intent to turn left. However, the cyclist might

not always properly raise an arm in non-critical situations.

Therefore, in non-critical situations without raising an arm,

our data contains an equal number of tracks with turning and

going straight. In summary, the normal sub-scenarios reflect

situations where the cyclist must indicate intent in critical sit-

uations with the approaching ego-vehicle, but could neglect

to do this in non-critical cases. The additional anomalous

sub-scenario contains a turning cyclist in a critical situation,

without having raised an arm.

5.3 Feature Extraction

Both cyclist and pedestrian are detected by using neural net-

works with local receptive fields (Wöhler and Anlauf 1999),

given region-of-interests supplied by an obstacle detection

component using dense stereo data. The resulting bounding

boxes are used to calculate a median disparity over the upper

pedestrian body area. The vehicle ego-motion compensated

position in world coordinates is then used as positional obser-

vation Yt .

For an estimation of the pedestrian head orientation HOt ,

the method described in Flohr et al. (2015) is used. The

angular domain of [0◦, 360◦) is split into eight discrete ori-

entation classes of 0◦, 45◦, · · · , 315◦. We trained a detector

for each class, i.e. f0, · · · , f315, using again neural net-

works with local receptive fields. The detector response

fo(It ) is the strength for the evidence that the observed

image region It contains the head in orientation class o.

We used a separate training set with 9300 manually con-

tour labeled head samples from 6389 gray-value images

with a min./max./mean pedestrian height of 69/344/122 pix-

els (c.f. Flohr et al. 2015). For additional training data,

head samples were mirrored and shifted, and 22109 non-

head samples were generated in areas around heads and

from false positive pedestrian detections. For detection,

we generate candidate head regions in the upper pedes-
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trian detection bounding box from disparity based image

segmentation. The most likely head image region I ⋆ is

selected from all candidates based on disparity information

and detector responses. Before classification, head image

patches are rescaled to 16 × 16 px . The head observation

HOt = [ f0(I ⋆
t ), · · · , f315(I ⋆

t )] contains the orientation con-

fidences of the selected region.

The expected minimum distance Dmin between pedes-

trian and vehicle is calculated as in Pellegrini et al. (2009)

for each time step based on current position and velocity.

Vehicle speed is provided by on-board sensors, for pedes-

trians the first order derivative is used and averaged over

the last 10 frames. For DTC, the curbside is detected with a

basic Hough transform (Duda and Hart 1972). Though other

approaches are available, e.g. stereo (Oniga et al. 2008) or

scene segmentation (Cordts et al. 2016), this simple approach

was already sufficient for our experiments. The image region

of interest is determined by the specified accuracy of the vehi-

cle localization using typical on-board sensors (GPS+INS)

and map data (Schreiber et al. 2013). Y curb
t is then the mean

lateral position of the detected line back-projected to world

coordinates.

To determine whether the cyclist raises an arm (ADt = 1),

or not (ADt = 0), we apply the chamfer matching approach

from Gavrila and Giebel (2002). First, a binary foreground

segmentation of the cyclist is generated from the disparity

values in the tracked cyclist bounding box r . The fore-

ground consists of all pixels with a disparity in the range of

[d̃r −ǫ, d̃r +ǫ]. Here d̃r is the median disparity value in region

r . We set ǫD = 1.5 to account for disparity errors. The binary

segmentation is then matched against multiple rectangular

contour templates near the expected shoulder location in the

bounding box. These arm templates vary in length, width and

angle. The arm detector ADt is the output of a Naive Bayesian

Classifier which integrates several likelihood terms over all

templates: a Gamma distribution for the chamfer matching

score, and a Gaussian mixture for both the intensity and dis-

parity values in the segmented foreground. This classifier

uses a uniform prior.

5.4 Parameter Estimation

Estimating the parameters of the conditional distributions

is straightforward, if the values of the latent variables are

known. We have therefore annotated the dataset with ground

truth (GT) labels for all latent variables in the sequences. Dur-

ing training, the distributions are then fitted on the training

data using maximum likelihood estimation. The Expectation-

Maximization (Dempster et al. 1977) algorithm is used to fit

the Gaussian mixtures. We now explain for both scenarios

how the GT labels were obtained.

5.4.1 Pedestrian Scenario

Sequences where potentially critical situations occur, i.e.

when either pedestrian or vehicle should stop to avoid a col-

lision, have been labeled as critical. Sequences are further

labeled with event tags and time-to-event (TTE, in frames)

values. For stopping pedestrians, TTE = 0 is when the last

foot is placed on the ground at the curbside, and for cross-

ing pedestrians at the closest point to the curbside (before

entering the roadway). Frames before/after an event have

negative/positive TTE values. For stopping sequences, the

GT switching state is defined as Mt = ms at moments with

TTE ≥ 0, and as Mt = mw at all other moments, crossing

sequences always have Mt = mw.

Considering head observation HO, we assume pedestrians

recognize an approaching vehicle (GT label ZACT
t = true)

when the GT head direction is in a range of ±45◦ around

angle 0◦ (head is pointing towards the camera), and do not

see the vehicle (ZACT
t = false) for angles outside this range

(future human studies could allow a more precise thresh-

old, or provide an angle distribution, the study in Hamaoka

et al. (2013) only reported the frequency of head turning).

For each ground truth label sv, we estimate the orientation

class distributions psv by averaging the class weights in the

corresponding head measurements.

For the observation Dmin , we define per trajectory one

value for all ZDYN
t labels (∀t ZDYN

t = true for trajectories

with critical situations, ∀t ZDYN
t = false otherwise), and fit

the distributions Γ (Dmin|asc, bsc).

The distributions N (DTCt |μac, σac) are estimated from

GT curb positions and the spacial ZSTAT
t labels, where

ZSTAT
t = true only at time instances where −1 ≤ TTE ≤ 1

when crossing, and TTE ≥ −1 when stopping.

The histogram of the GT distributions and the estimated

fits can be seen in Fig. 7.

5.4.2 Cyclist Scenario

The turning cyclists have TTE = 0 defined at the frame where

it is first visible that they are turning. For the cyclists going

straight, TTE = 0 is defined as the first frame where they pass

the point at which 25% of all turning cyclists have passed

their TTE = 0. For all turning cases, the GT switching state

is defined as Mt = mtu at moments with TTE ≥ 0. All other

moments, and all straight cases have their GT state defined

as Mt = mst These average turning velocity of a track is

estimated on its frames where Mt = mtu . The prior for the

speed of the turning cyclist is estimated on these average

turning velocities.

The GT for ZACT
t is taken from annotated GT arm angles.

When the arm is raised further than 30◦, ZACT
t = true. Below

30◦, the arm is considered down, or ZACT
t = false.
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We define one value for all ZDYN
t labels of a specific track.

It is set as true if the ego-vehicle would overtake the cyclist

in two seconds at TTE = 0, assuming the cyclist has no more

longitudinal speed. This can be interpreted as the worst-case

scenario, where a cyclist would make an instant 90-degree

turn.

Finally, the spatial extent of the turning region is deter-

mined from smallest and largest longitudinal position of all

turning cyclists at TTE = 0. The GT label for ZSTAT is set

to true whenever the cyclist is in this region.

5.4.3 Both Scenarios

In both scenarios, we compute maximum likelihood esti-

mates of the parameters for the priors and noise distributions

using the GT position and speed profiles. For each pedestrian

track, we take the average speed during the walking motion

type as GT preferred walking speed ẋmw . Similarly, for each

cyclist track we take averages of their GT speeds during each

motion type as GT of the preferred speeds ẋ
mtu
t , ẏ

mtu
t , ẋ

mst
t

and ẏ
mst
t .

With all continuous states X t fully defined for all tracks,

we can compute the ǫt using Eq. (1), i.e. Bǫt = X t −

A(Mt ) X t−1. From these ǫt the process noise covariance Q

is estimated. Likewise, observation noise covariance R is

estimated from the differences between GT and measured

positions, since ηt = Yt − C X t from Equation(2). Finally,

the mean and covariance parameters of the state priors can

be estimated from the X0 of all training tracks.

The prior and transition probability tables for the discrete

context states ZACT, ZSTAT are obtained by counting and nor-

malizing the occurrences in the GT labels. The same applies

to the dynamic switching state M , conditioned on ZACTED,

ZDYN and ZSTAT. The transition probability for ZACTED is a

logical OR, as described in Sect. 3.3. Since we only got one

ZDYN label per track, we fix the ZDYN transition probability

to 1/100 for changing state.

6 Experiments

In the experiments, we compare the proposed DBNs using

all context cues to variants using less cues, and to baseline

approaches. We also compare the use of visual detections to

using GT annotations as measurements, and we investigate

computational performance.

In all experiments, leave-one-out cross-validation is used

to separate training and test sequences. Sequences from

anomalous sub-scenarios are always excluded from the train-

ing data. For each time t with state X t , we create a predictive

distribution P̃tp |t (X t+tp ) for prediction horizon tp. Two per-

formance metrics are used to evaluate a sequence, namely

the Euclidean distance between predicted expected position

Yt+tp and GT position G t+tp , and the log likelihood of G

under the predictive distribution:

error(tp|t) = |E
[
P̃tp |t (Yt+tp )

]
− G t+tp | (33)

predll(tp|t) = log
[
P̃tp |t (G t+tp )

]
. (34)

6.1 Pedestrian Scenario

We first investigate the influence of context on the pedestrian

scenario. The proposed DBN with full context is compared to

model variants that only uses the head orientation, to one that

only uses the minimal distance to the pedestrian, and to one

that combines these two contexts. We refer to these variants

after the used measurements: EACT, EDYN and EDYN+EACT

respectively. We also include a common 2nd-order LDS as

additional baseline. The dynamic process of this LDS for the

lateral pedestrian position can be described as

[
xt

ẋt

]
=

[
1 1

0 1

]
·

[
xt−1

ẋt−1

]
+ ǫt ǫt ∼ N

([
0

0

]
, Q

)
. (35)

where the process noise covariance is also estimated from

the GT position and speed.

6.1.1 Comparison of Model Variations

The results in Table 3 show the predictive log likelihood

predll for tp = 16 time steps (∼ 1 s) in the future, averaged

over the second up to TTE = 0 when the pedestrian reaches the

curb. In the first three normal sub-scenarios, all five SLDS-

based models perform similarly, clearly outperforming the

LDS (which has similar low likelihoods across the board,

i.e. it is unspecific for any sub-scenario). However, in the

fourth sub-scenario (pedestrian sees the vehicle in a critical

situation and stops), the simpler DBNs have low predictive

likelihoods, except for our proposed model. Without the full

context, the other models are not capable to predict if, where

and when the pedestrian will stop.

For the anomalous sub-scenario, only the proposed model

results in lower likelihood than for normal behavior, which

is a useful property for anomaly detection as mentioned in

Sect. 3.1. A future driver warning strategy could benefit from

the more accurate path prediction of our full model in high

likelihood situations, whereas falling back to simpler mod-

els/strategies when anomalies are detected.

6.1.2 Detailed Analysis on a Single Track

Fig. 10 illustrates a sequence from the stopping sub-scenario

(fourth row in Table 3), with a snapshot just before (TTE =

− 20) and after (TTE = − 9) the pedestrian becomes aware

of the critical situation. At TTE = − 20, the predicted dis-

tributions of all models are close together and indicate that
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Table 3 Prediction log likelihood of the GT pedestrian position for tp = 16 frames (∼ 1 s) ahead, for different sub-scenarios (rows) and models

(columns), for TTE ∈ [− 15, 0]

Sub-scenario Full model EDYN+EACT EACT EDYN SLDS LDS

Normal Non-critical Vehicle not seen Crossing −0.61 −0.53 −0.52 −0.59 −0.59 −1.90

Non-critical Vehicle seen Crossing −0.53 −0.45 −0.46 −0.47 −0.49 −1.93

Critical Vehicle not seen Crossing −0.48 −0.34 −0.17 −0.59 −0.33 −1.88

Critical Vehicle seen Stopping −0.33 −0.70 −1.13 −0.80 −1.26 −1.88

Over all normal sub-scenarios −0.51 −0.52 −0.58 −0.61 −0.66 −1.90

Anomalous Critical Vehicle seen Crossing −0.90 −0.27 −0.15 −0.25 −0.13 −1.88

The first four sub-scenarios contain “normal” pedestrian behavior. The fifth case is anomalous (lower likelihood is better). Model variations (best

SLDS variant marked in bold): full context, no curb (EDYN+EACT), only head (EACT), only criticality (EDYN), no context (SLDS), KF (LDS)

the pedestrian continues walking (the LDS does so with high

uncertainty). At TTE = −9, the mean position predictions of

the LDS are furthest away from the GT (still within one std.

dev. because of high uncertainty). The SLDS-only predic-

tion shows a comparatively low uncertainty, but the predicted

means have a high distance to the GT (not within one std.

dev.). Predictions of the EDYN+EACT model are closer to

the true positions, since it captures the situational awareness

of the pedestrian and therefore assigns a higher probability,

compared to SLDS, to switch to the standing model ms . The

(a) Situation at t = 12 (TTE = −20) (b) Situation at t = 23 (TTE = −9)
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Fig. 10 Best viewed in color. Example of a pedestrian stopping at the

curb after becoming aware of a critical situation, see also the marginal

distributions in e. Predictions are made tp = 16 (∼ 1 s) time steps ahead

from different times t . a Pedestrian with head detection bounding box

(white), tracking bounding box (green), collapsed predicted distribution

of the full model (blue ellipses show one and two std. dev.) and curb

detection (blue line). b The pedestrian became aware of the critical situ-

ation. c Predictions [mean and std. dev. (shaded)] made at t = 12 (green

diamond) for the lateral position at time t + tp (red diamond indicates

the GT at t + tp). Vertical black line denotes the event. Black dots indi-

cate position measurements, the black line the GT positions. Colored

lines are predicted positions by different models. d Predictions of the

lateral position at t + tp made from t = 23. e Marginal distributions

of the full model latent variables over time [probabilities range from 0

(black) to 1 (white)]. The dotted green lines are set on the time of the

two snapshots, t = 12 and t = 23. Variable labels are True and False,

and walking and standing
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Fig. 11 Best viewed in color. Pedestrian scenario: stopping probability

(left) and lateral prediction error (right) when predicting 16 time steps

(∼ 1 s) ahead in the two critical sub-scenarios. a, b Pedestrian is not

aware of the critical situation and crosses. c, d Pedestrian is aware of

the critical situation and stops. Shown are mean and standard devia-

tion (shaded) of each measure over all corresponding sequences, for

our proposed full model, an intermediate model without spatial layout

information (EDYN+EACT), the baseline SLDS model without context

cues, and a LDS

Full model PHTM
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Fig. 12 Best viewed in color. Pedestrian scenario: the plots show the

lateral prediction error of our proposed model and the PHTM model in

various sub-scenarios. The lines show the avg. error over all sequences

in a sub-scenario, after aligning the results by their TTE values, and

the shaded region shows the std. dev. of the error. a Non-critical, vehi-

cle seen, crossing. b Critical, vehicle not seen, crossing. c Non-critical,

vehicle not seen, crossing. d Critical, vehicle seen, stopping
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full model makes the best predictions as it also anticipates

where the pedestrian will stop, namely at the curbside.

For instance, at t = 23, ZACTED
t starts to change as it

becomes more probable that the pedestrian has seen the vehi-

cle, and indeed around t = 29 the pedestrian stops at the curb.

6.1.3 Comparison Over Time

In the context of action classification, Fig. 11 shows for vari-

ous model variations, the standing probability P̃t (Mt = ms),

and the error(tp|t) for predictions made tp = 16 frames

ahead, plotted against the TTE. In the first sub-scenario (top

row), the pedestrian crosses in a critical situation without

seeing the approaching vehicle. All models have a very low

stopping probability (Fig. 11a), but since a few sequences

have ambiguous head observations, our proposed model does

not exclude the possibility that the vehicle has been seen.

This translates to a higher stopping probability near the curb,

and to a higher error of the average prediction (Fig. 11b)

for a short while. Still, the model recuperates as the pedes-

trian approaches the curb and shows no sign of slowing

down, which informs the model that the pedestrian did not

see the vehicle (i.e. joint inference also means that observed

motion dynamics can disambiguate low-level head orienta-

tion estimation). In the second sub-scenario (bottom row),

the pedestrian is aware of the critical situation and stops

at the curb. Now, all models show an increasing stopping

probability (Fig. 11c) towards the event point. In a few sce-

narios, the SLDS switches too early to the standing state,

reacting to perceived de-acceleration (noise) of the pedes-

trian walking, hence the high std. dev. of the SLDS over all

sequences early on. However, on average the SLDS assigns

a higher probability to standing (> 0.5) than walking after

the pedestrian has already reached the curb (TTE > 0). It

can only react to changing dynamics, but not anticipate it.

Our proposed model, on the other hand, gives the best action

classification (highest stopping probability at TTE = 0). It

anticipates the change in motion dynamics a few frames ear-

lier as the SLDS, benefiting from the combined knowledge

about pedestrian awareness, interaction, and spatial layout.

Further, the knowledge about the spatial layout helps to

keep the standing probability low while the pedestrian is

still far away from the curb. The model with limited context

information ends up in between proposed model and SLDS.

Accordingly, our proposed model has the lowest prediction

error (Fig. 11d). Averaged over the sequences, it outperforms

the baseline SLDS model by up to 0.39 m (at TTE = 1) and

the EDYN+EACT model by up to 0.16 m (at TTE = −10).

6.1.4 Idealized Vision Measurements

To investigate how the vision components affect perfor-

mance, we train and test using GT as idealized measurements

Table 4 Pedestrian scenario. Computational costs for the different

models per frame (avg. per frame, in ms)

Approach Observables State est. & pred. Total

Full model 160 40 200

SLDS 60 10 70

LDS 60 0.4 60

PHTM 70 600 670

for pedestrian location, curb location, and head orientation.

We find that the lateral pedestrian and curb measurements are

sufficiently accurate: the use of GT as measurements does not

notably improve the results. Ideal head measurements alter

the five sub-scenario scores of the full model w.r.t. Table 3

to − 0.57, − 1.08, − 0.32, − 0.12 (“normal” cases), and to

− 3.67 (anomalous case). Predictions became more accurate

for critical sub-scenarios. However the second sub-scenario

(Non-critical, Vehicle seen, Crossing) became less accurate,

as some moments were deemed critical, and seeing the vehi-

cle implied stopping, Still, the likelihood of the anomalous

fifth sub-scenario is much lower than all other sub-scenarios.

6.1.5 Comparison with PHTM and Computational Cost

Fig. 12 shows a comparison of the mean prediction error of

our proposed model with the state-of-the-art PHTM model

(Keller and Gavrila 2014) which uses optical flow fea-

tures and an exemplar database, on the four “normal”

sub-scenarios. On two of these sub-scenarios (Fig. 12a, b) the

proposed model outperforms PHTM slightly, both in terms of

mean and variance, in particular on the arguably most impor-

tant sub-scenario for a pedestrian safety application: Critical,

Vehicle not seen, Crossing. On the other two sub-scenarios

(Fig. 12c, d) PHTM performs slightly better.

The computational costs of the various approaches were

assessed on standard PC hardware (Intel Core i7 X990 CPU

at 3.47 GHz), see Table 4. We differentiate between the

computational cost for obtaining the observables and that

for performing state estimation and prediction. In terms

of observables, all approaches used positional information

derived from a dense stereo-based pedestrian detector (about

60 ms). The additional observables used in our proposed full

model (e.g. head orientation and curb detection) cost an extra

100 ms to compute. PHTM on the other hand requires com-

puting dense optical flow within the pedestrian bounding box

(about 10 ms). But, as seen in Table 4, the proposed model

is one order of magnitude more efficient than PHTM when

considering only the state estimation and prediction com-

ponent [this even though PHTM implements its trajectory

matching by an efficient hierarchical technique (Keller and

Gavrila 2014)], and it is three times more efficient in total.
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6.2 Cyclist Scenario

To demonstrate that our approach is not specific for the cross-

ing pedestrian scenario, we compare the full model to SLDS

and LDS baselines on the cyclist scenario. Like the pedes-

trian scenario, we use an LDS baseline with the dynamic

model from Eq. (35), except that the state is extended to

[xt , ẋt , yt , ẏt ].

6.2.1 Comparison with Baselines

Unlike stopping pedestrians, turning cyclists remain in the

vehicle’s view and driving corridor for a longer time. Also,

the path during a turn slowly diverges from the straight path.

Therefore, we extend the duration over which we summarize

predictions with 15 time steps (frames). Another difference

between the cyclist and pedestrian scenario is that cyclist’s

predictive distributions are 2D multivariate Gaussians for lat-

eral and longitudinal position, instead of 1D Gaussians on the

lateral position only. Hence, the reported likelihood values

cannot be compared directly between scenarios, as the under-

lying domains have different dimensions.

The log likelihoods of the one-second-ahead prediction

(16 time steps) are shown in Table 5, averaged over TTE ∈

[− 15, 15], i.e. starting with prediction for the moment when

the cyclist either starts to turn, or keeps moving straight.

Since the cyclist tracks are long, and mostly consist of

moving straight, the LDS predictions reflect the common

behavior of straight motion with little variance. As a result, its

predictions are accurate when the cyclist indeed does not turn.

As expected, this comes at the cost of inaccurate predictions

in normal and anomalous sub-scenarios where the cyclist

does turn.

Compared to the LDS, the switching models demonstrate

the benefit of having separate dynamics for straight and turn-

ing motion, as the predictions for turning sub-scenarios are

considerably more accurate. Furthermore, our model outper-

forms the SLDS in almost all but one normal sub-scenarios.

On the non-critical sub-scenario where there is ambiguity on

whether the cyclist will turn or go straight, the SLDS per-

forms best. Still, the proposed method performs best overall

on all normal sub-scenarios, demonstrating that context does

improve prediction accuracy generally compared to the LDS

and SLDS baselines.

We also note that all models obtain lower predictive like-

lihood for turning than for moving straight. We find that this

is a result from the large variance in how cyclists execute the

turn. The data shows the cyclists vary in when they initiate

the turn, and in used turning speed and angle. This variance

is also reflected in the predictive distributions, which show

larger uncertainty for turning than for moving straight.

During the evaluation period of Table 5 around TTE = 0,

the cyclist is always near to the intersection. We note that our

model outperforms the baselines in all sub-scenarios when

including all earlier predictions (TTE < − 15). When the

cyclists are still far from the intersection, our full model ben-

efits from the static environment context which predicts that

turning is not feasible yet.

The final row of the table illustrates the predictive likeli-

hood for the anomalous sub-scenario where the cyclist turns

in a critical situation without raising an arm. Here, our model

performs more similar to the LDS, as both expect the cyclist

to continue moving straight. The next session will show a

more detailed analysis of all sub-scenarios.

6.2.2 Comparison Over Time

Figure 13 compares the prediction error over time around

TTE = 0 for all normal sub-scenarios. For the critical

sub-scenario where the cyclist maintains its straight path,

Fig. 13a, all models demonstrate low prediction errors. The

LDS shows lowest Euclidean error, but it has larger pre-

diction uncertainty as Table 5 showed. In the critical and

non-critical sub-scenarios where the cyclist raises an arm, our

model anticipates the turn, and predicts some lateral motion

to the left as soon as the cyclist is near the intersection. As

a result, the model has slightly larger prediction error than

the baselines before the turn is initiated, but yields lower

errors as soon as turnings starts, see Fig. 13b, c. It keeps an

advantage over SLDS for almost a full second after the turn

started, until approximately TTE = 13. On the critical sub-

scenario, the largest difference in average error of 0.41 m

occurs at TTE = 5. On the non-critical sub-scenario with-

out the cyclist raising an arm, Fig. 13d, the context cannot

uniquely distinguish if the cyclist will turn or continue mov-

ing straight. Indeed, here the SLDS and our model also show

similar performance.

Figure 14 shows the prediction log likelihood for two sub-

scenarios where the cyclist turns in critical situations, namely

the normal sub-scenario where the turn happens after raising

an arm (Fig. 14a), and the anomalous sub-scenario where

the turn happens without raising an arm (Fig. 14b). In both

cases, the LDS likelihood drops fast, as it predicts continua-

tion of the past motion instead of turning. Our full model also

expects moving straight in case the arm was not raised, there-

fore its predictive likelihood declines too for the anomaly.

Interestingly, the model does adapt after TTE = 0 when the

turning behavior becomes apparent. Later, at TTE = 10, the

predictive log likelihood of all models drops due to the vari-

ation in turning behavior.

Finally, we note that the LDS shows larger errors for the

non-critical sub-scenarios. We observe that in these cases,

where the vehicle is generally further away, the longitudinal

estimates from stereo-vision are more unstable. The LDS is

more sensitive to such noise as it adapts to all observed speed

changes.
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Table 5 Cyclist scenario
Sub-scenario Full model SLDS LDS

Normal Critical Arm not raised Straight 0.05 −0.23 0.00

Non-critical Arm raised Turn −2.36 −3.19 − 22.75

Critical Arm raised Turn −2.38 −2.77 − 16.66

Non-critical Arm not raised Straight/Turn −2.28 −2.22 − 14.88

Over all normal sub-scenarios −1.93 −2.22 − 14.60

Anomalous Critical Arm not raised Turn −14.33 −4.62 − 31.91

Log likelihood at 16 time steps (∼ 1 s) into the future for TTE ∈ [− 15, 15]. Below sub-scenarios indicate

the expected behavior of a cyclist. Best model performance are given in bold
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Fig. 13 Cyclist scenario. Prediction error on the normal sub-scenarios when predicting 16 time steps (∼ 1 s) ahead. a Critical, arm not raised,

straight. b Critical, arm raised, turn. c Non-critical, arm raised, turn. d Non-critical, arm not raised, straight/turn
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Fig. 14 Best viewed in color. Cyclist scenario: Prediction likelihood when predicting 16 time steps (∼ 1 s) ahead on critical sub-scenarios where

the cyclist turns. a Normal sub-scenario where the arm was raised. b Anomalous sub-scenario where the cyclist did not raise an arm to express

intent
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(a) Situation at t = 67 (TTE = −68) (b) Situation at t = 132 (TTE = −3)
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(c) Predicted position at t = 67 (TTE = −68)
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(d) Predicted position at t = 132 (TTE = −3)
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Fig. 15 Best viewed in color. Example of a cyclist turning in after hold-

ing his arm up, in a non-critical situation. Predictions are made sixteen

time steps (∼ 1 s) into the future. a Cyclist with tracking bounding

box (red), arm detection (red line), collapsed predicted distribution of

the full model (green ellipsoid shows one standard deviation), and “at

intersection” region (white dotted line). b the cyclist enters the inter-

section region, which results in a wider predictive distribution shifted

to the left. c Predictions (mean, and shaded std. dev.) made at t = 67

(green diamond) for the lateral position up to 16 time steps into the

future. The red diamond indicates the corresponding future GT posi-

tion. d Predictions made at t = 132, the moment where the cyclist starts

turning. e Marginal posterior distributions of the latent variables in our

full model over time. Probabilities range from 0 (black) to 1 (white).

Variable labels are True and False, and straight and turning

6.2.3 Detailed Analysis on a Single Track

Figure 15 shows two snapshots of the prediction over time for

a cyclist who is turning at the intersection after holding his

arm up while the situation is not critical. Before the cyclist

arrives at the intersection, at t = 67, the prediction of the full

model is very specific. Even though it was already detected

that the cyclist raised his arm, he is expected to keep moving

straight as he is not yet close enough to the intersection to

turn. This prediction is done with less uncertainty than the

baseline LDS because the process noise on the LDS must

also account for the parts where the cyclist is turning left. At

t = 132, when the cyclist is at the intersection, there is an

increased probability that he could turn left. As a result, the

expected future position also shifts left, and the uncertainty

region of the prediction increases. The one standard deviation

area of the prediction reflects the possibility that the cyclist

may still move straight before turning.

7 Discussion

Our DBN provides predictive distributions of the future posi-

tion of the tracked objects, reflecting uncertainty on possible

trajectories. But as our results show, different scenarios give

rise to different sources of uncertainty. For instance, if the

system anticipates a change in dynamics, the future stopping

position near the curb can be determined quite accurately for

the pedestrian scenario. However, in the cyclist scenario there

is more variance in turning behavior than in moving straight

ahead, making accurate path predictions for the anticipated

switch in dynamics more challenging. The available context

may also be insufficient to unambiguously predict the behav-

ior, as was seen in a cyclist sub-scenario. Here, our model’s

performance approximated that of the SLDS baseline.

Another property of our model is that it is not a black box,

but explicitly defines the relation between context observ-

ables, states, motion modes, and their dynamics. This ensures

that a designer can inspect the system, investigate how it

assesses the context, and determine causes for failure or

success. The explicit formulation also facilitates adding addi-
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tional cues, or improve individual parts (e.g. using different

dynamical models) while keeping existing parts unchanged.

The generic formulation also ensures that many forms of

information can be included, from up-to-date map data, to

past image classification results. Accordingly, our method

and the PHTM approach do not stand directly in competi-

tion, as they use different sources of information that could

conceivably be combined.

Anomalous sub-scenarios contain situations not repre-

sented by the training data. In anomalous sub-scenarios, our

method predicts position with lower likelihood than for the

normal sub-scenarios. Therefore, low-likelihood predictions

can be used to detect anomalous behavior, for instance to

switch to an emergency control strategy of the vehicle. Of

course, anomalous situations are expected to be rare, since

the training data is expected to be representative of ‘normal’

behavior. Larger realistic datasets should therefore provide

better estimates of ‘normal’ behavior, though the principle

demonstrated on our example scenarios should remain the

same.

Future work involves the incorporation of additional scene

context (e.g. traffic light, pedestrian crossing) and the exten-

sion of the basic motion types of the SLDS (e.g. turning in

different directions). Indeed, initial work has already begun

on extending our earlier conference (Kooij et al. 2014a)

submission, which only considered the pedestrian crossing

scenario. For instance, (Roth et al. 2016) incorporated driver

attention in the same framework, and (Hashimoto et al. 2016)

tackled additional pedestrian scenarios with similar DBNs.

8 Conclusions

This paper investigated the use of DBNs for path predic-

tion of maneuvering objects. As a toy example illustrated,

SLDSs can make good overall predictions, but prediction

accuracy suffers when an actual change in dynamics occurs.

We therefore proposed to condition the switching probabil-

ity on dynamic context variables. Measurements of various

visual cues inform the model if and when changes in dynam-

ics are likely to occur. An efficient approximate inference

method was presented for online path prediction. Parameters

are estimated on annotated training data.

We validated our approach on two use cases of VRU path

prediction in the IV domain, a pedestrian and a cyclist sce-

nario. Combining several context cues proved to improve

overall prediction accuracy, namely the VRU’s interaction

with the ego-vehicle as dynamic environment context, the

VRU’s location in the static environment, and the VRU

behavior indicating awareness or intent. The experiments

demonstrate that the expected benefits of the context also

occur with real-world vehicle measurements, and when using

features extracted from vision. Compared to the SLDS,

when predicting up to ∼ 1 s ahead, our method improved

up to 0.39 m for the pedestrian scenario, and up to 0.41 m

for the cyclist scenario. It also slightly outperforms the

PHTM approach at less than a third of computational cost.

We are encouraged that the presented context-based mod-

els can play an important role in saving lives for the future

intelligent vehicles.
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