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Context-based Segmentation of Image Sequences

Jacob Goldberger Hayit Greenspan

Abstract— We describe an algorithm for context-based segmen-
tation of visual data. New frames in an image sequence (video)
are segmented based on the prior segmentation of earlier frames
in the sequence. The segmentation is performed by adapting a
probabilistic model learned on previous frames, according to the
content of the new frame. We utilize the maximum a-posteriori
version of the EM algorithm to segment the new image. The
Gaussian mixture distribution that is used to model the current
frame, is transformed into a conjugate-prior distribution for the
parametric model describing the segmentation of the new frame.
This semi-supervised method improves the segmentation quality
and consistency and enables a propagation of segments along the
segmented images. The performance of the proposed approach
is illustrated on both simulated and real image data.

Index Terms— image-sequence analysis, video segmentation,
model adaptation, conjugate prior, MAP, context-based segmen-
tation

I. INTRODUCTION

Automatic segmentation of images is one of the central

challenges in computer vision and also plays an important role

in human vision perception. In general, image segmentation

is a key step towards image understanding, and serves in

the variety of applications including object recognition, image

coding and image indexing. Analysis of image-sequences, or

video data, is an extension of the single image frame analysis

to an analysis of a set of images that have both spatial and

temporal coherency and causality.

In most of the existing works in the field, the first step

towards segmenting an image is extracting a feature vector

(e.g. color, texture, position) from each pixel. The segmen-

tation task can then be treated as a clustering task, with the

clustering performed on the extracted feature vectors. A variety

of clustering approaches can be found in the literature. One

possible clustering approach is based on mixture models in

which one assumes the data was sampled from multiple mod-

els such that each model corresponds to one of the segments

in the image. The assignment of points to segments can then

be easily performed by computing the posterior probability of

a pixel affiliation to a cluster. Learning the mixture model can

be done by utilizing the well known EM algorithm [4] [12].

An alternative approach is to use spectral clustering methods

based on finding eigen-vectors of affinity matrices [21] [23].

These methods are non-iterative and could be also efficiently

computed [9], and thus avoid the necessity of a good initial

condition.

While significant progress has been made in feature ex-

traction and grouping algorithms, human vision perception is

(still) much better than state-of-the-art computer vision image

J. Goldberger is with the Bar-Ilan University, Ramat-Gan 52900, Israel.
E-mail: goldbej@eng.biu.ac.il

H. Greenspan is with the Tel-Aviv University, Tel Aviv 69978, Israel. E-
mail: hayit@eng.tau.ac.il

segmentation algorithms. One of many possible explanations

is that the human perception is also based on prior familiarity

with objects and shapes that appear in previously seen similar

images. In other words, human vision perception is based on

high level prior knowledge about the semantic meaning of the

objects that compose the image. In contrast, most computer

based segmentation methods are based on totally unsupervised,

per image or per frame procedures. The current work incorpo-

rates the above intuition and suggests a methodology for image

segmentation, based on cues taken from the segmentation of

related images. The most natural example of similar images

occurs in image-sequence (video) segmentation where there is

a continuity in the time axis within a single video shot. The

technical contribution of this study is a method that transforms

the MoG-based representation of a frame into a conjugate prior

distribution for the next frame.

The paper proceeds as follows. In section 2 we review

recent works in image and video segmentation that utilize

context in the segmentation process. In section 3 we review the

probabilistic image segmentation method based on mixture of

Gaussians. Section 4 describes the transformation of a mixture

of Gaussians (MoG) into a conjugate prior for the maximum

a-posteriori (MAP) version of the EM algorithm as applied to

learning a MoG. In section 5 we apply the MAP-EM algorithm

to video segmentation and present experimental results on

image sequences.

II. RELATED WORKS

Recently a number of authors suggested algorithms for

segmenting a novel image based on the available segmentation

of other similar images. In [2] hand-labeled image fragments

are used from a given class (horses) to guide the segmentation

task. A similar approach was proposed by [1] in which the

normalized-cut algorithm was applied to a graph which is

obtained by matching parts of a novel image to parts of

pre-segmented images. A related approach is to improve the

segmentation quality of similar images by sharing segmenta-

tion information among the images. In [11] the earth mover

distance was used for merging and splitting a mixture model

of one image in the context of a mixture model of a similar

image. In [8] an iterative method was proposed, that assigns

a semantic meaning to segmented images based on keywords

supplied with the images. Most of the current approaches to

supervised image segmentation are based on an un-supervised

clustering procedure that is performed separately for each

image. The information extracted from similar images is used

in a post-processing step that refines the clustering and relates

the clusters with high-level objects.

An extension of single frame analysis to multiple frames,

as in the spatio-temporal segmentation and tracking of image-

sequences, is a well-known challenging research problem. The
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many algorithms proposed in the literature may be divided into

two schools-of-thought: (1) approaches that track regions from

frame to frame, and (2) approaches that consider the whole 3D

volume of pixels and attempt a segmentation of pixel volumes

in that block. An updated survey of spatio-temporal grouping

techniques can be found in [19]. The current work focuses

on frame-by-frame analysis. There are many works that use

frame-by-frame segmentation and tracking (e.g.,[7], [5], [14],

[22]). Many approaches use optical flow methods [13] to

estimate motion vectors at the pixel level, and then cluster

pixels into regions of coherent motion to obtain segmentation

results. In [22], moving images are decomposed into sets of

overlapping layers using block-based affine motion analysis

and the K-means clustering algorithm. Each layer corresponds

to the motion, shape and intensity of a moving region. Due

to the complexity of object motion in general videos, pure

motion-based algorithms cannot be used to automatically

segment and track regions through image sequences. The

drawbacks include the fact that optical flow does not cope

well with large motion and that regions of coherent motion

may contain multiple objects and require further segmentation

for object extraction.

In works that incorporate spatial segmentation along with

motion segmentation, it is commonly the case that the spatio-

temporal segmentation task is decomposed into two separate

tasks of spatial segmentation (based on in-plane features such

as color and texture) within each frame in the sequence or

within a selected frame of the sequence, followed by a motion

segmentation phase. In [5], color and edge features are used to

segment a frame into regions. Optical flow is utilized to project

and track color regions through the video sequence. Optical

flow is computed for each pair of frames. Given color regions

and the generated optical flow, a linear regression algorithm is

used to estimate the affine motion for each region. In [6] a six-

parameter, two-dimensional affine transformation is assumed

for each region in the frame and is estimated by finding the

best match in the next frame. Multiple objects with the same

motion are separated by spatial segmentation.

Recent works include statistical models for representing

video content. Each frame is represented in feature space

(color, texture etc.) via models such as the MoG model.

Tracking across frames is then achieved by extended models,

such as HMMs [3] or by model adaptation from frame to frame

[16]. A related method, based on online learning of MoG

models, is real-time segmentation and tracking of moving

regions using background subtraction [15] [18].

In the current work, a video segmentation scheme is pro-

posed that is based on pairing between adjacent frames in

the video sequence, such that one frame serves as the context

for the following frame. The segmentation of the first frame

(frame1) is used as a (conjugate) prior distribution for the

probabilistic representation of the next frame (frame2) in the

sequence. The key point is that video is continuous in time.

This ensures that the current frame is a perfect prior for the

next frame. Unless there is a cut, the changes are small and

can be modeled by adapting the blobs of the current frame.

Unlike 3D batch-based schemes [19], the adaptation method

is a frame by frame method so it can be used online.

Fig. 1. Input image (left). Image modeling via a mixture of Gaussians
(center). Image segmentation using the learned model (right).

A natural choice for probabilistic image (or image-frame)

representation is a mixture of Gaussians model (MoG). The

MoG parameters of frame1 are used as hyper-parameters

for the MoG learned from frame2. In other words, the seg-

mentation algorithm is based on adaptation of an approved

model, that can contain high level knowledge about objects

and shapes in a given frame, to the next frame. In addition to

improving the segmentation, this method also yields a local-

based correspondence between the objects that appear in both

frames.

III. IMAGE MODELING WITH MOG

We consider an image-frame as a set of coherent regions.

Each convex homogeneous region in the image plane is

represented by a Gaussian distribution, and the set of all the

regions in the image is represented by a Gaussian mixture

model. The image, therefore is viewed as an instance of a

mixture of Gaussians model. We focus here on the color

feature. In order to include spatial information, the (x, y)
position of the pixel is appended to the feature vector. It

should be noted that the representation model is a general

one, and can incorporate any desired feature space (such as

texture, shape, etc) or combination thereof. Color features are

extracted by representing each pixel with a three-dimensional

color descriptor in a selected color space. In this work we

choose to work in the L ∗ a ∗ b color space which was shown

to be approximately perceptually uniform; thus distances in

this space are meaningful. Including the position enables a

local based representation. Thus each pixel is represented

by a five-dimensional feature vector. Pixels are grouped into

homogeneous regions, by grouping the feature vectors in

the selected five-dimensional feature space. The Expectation-

Maximization (EM) algorithm can be used to determine the

maximum likelihood parameters of a mixture of k Gaussians.

The MoG model induces a segmentation in a natural manner

by assigning each pixel to the Gaussian component whose

posterior probability is maximal. Figure 1 shows an example

of learning a MoG model for a given input image. In this

visualization the Gaussian mixture is shown as a set of

ellipsoids. Each ellipsoid represents the support, mean color

and spatial layout, of a particular Gaussian in the image

plane. Using the learned model (center) each pixel of the

original image is affiliated with the most probable Gaussian,

providing for a probabilistic image segmentation (right). A

detailed description of MoG modeling for image segmentation

can be found in [12].
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IV. GENERATING A CONJUGATE PRIOR FROM A GIVEN

MOG

In this section we derive an EM algorithm for finding the

maximum a posteriori (MAP) parameters in the case of a

mixture of Gaussian density. The (conjugate) prior parameter

set is extracted from a given similar MoG model and from a

single additional scalar parameter that quantizes the amount of

similarity that exists between the given MoG and the model

we intend to learn from the observed data. To motivate the

EM updating expressions, we start with the simpler case of

MAP of a single Gaussian density where there is a closed-form

solution. Let N(µ,Σ) be a d-dimensional Gaussian density.

Using a Bayesian approach, we apply the following conjugate

prior. The precision (inverse of the covariance matrix) is

Wishart with m degrees of freedom:

Σ−1 ∼Wishart(Σ−1
0 ,m) (1)

i.e.

f(Σ|Σ0,m) ∝ |Σ|−
m−d−1

2 exp(−
1

2
Tr(Σ0Σ

−1))

and the mean (conditioned on the precision) is normal with a

scaling factor β:

µ ∼ N(µ0,
1

β
Σ) (2)

where µ0,Σ0,m and β are the hyper-parameters of the

prior density. Given n independent samples x1, ..., xn from

N(µ,Σ), the MAP estimation of the normal density parame-

ters is:

µ̂ =

∑n

t=1 xt + βµ0

n + β
(3)

Σ̂ =

∑n

t=1(xt−µ̂)2 + β(µ̂−µ0)
2 + Σ0

n + m− d

(where the square operator a2 stands for aa⊤). In this deriva-

tion the hyper-parameters of the prior distribution are given

as part of the set-up of the problem. Alternatively, assume

that instead of hyper-parameters, we are given another normal

distribution N(µ′,Σ′) which we know that is “similar” to the

normal distribution we want to learn from the samples. We can

extract hyper-parameters from the given normal distribution in

the following way:

µ0 = µ′ , Σ0 = βΣ′ , m = β + d (4)

such that β is a parameter that controls the influence of the

prior on the learned model. It can be set according to our prior

knowledge about the amount of similarity that exists between

the two models. Substituting definition (4) in equation-set (3),

we obtain the following MAP estimation:

µ̂ =

∑n

t=1 xt + βµ′

n + β
(5)

Σ̂ =

∑n

t=1(xt−µ̂)2 + β((µ̂−µ′)2 + Σ′)

n + β

These expressions can be viewed as the ML estimation

of a Gaussian distribution computed from the observations

x1, ..., xn and from another set composed of β virtual obser-

vations sampled from N(µ′,Σ′). The empirical average and

variance of the virtual sample set coincide with µ′ and Σ′

respectively.

We shall now generalize this Bayesian approach to the case

of a Gaussian mixture model. A d-dimensional distribution

composed of a mixture of k Gaussians has the following form:

f(x|θ) =

k∑

i=1

αifi(x|µi,Σi) (6)

such that fi is the normal distribution N(µi,Σi) and θ =
{αi, µi,Σi, i = 1, .., k}.

Utilizing the Bayesian methodology, we can consider the

MoG parameters as random variables whose prior distribution

represent our prior knowledge on their values. We use conju-

gate priors on the parameter set θ (more precisely we use a

prior model that is conjugated to the complete version of the

MoG where the latent random variable is also observed). The

following priors are used. The mixing coefficients are jointly

Dirichlet:

(α1, ..., αk) ∼ Dirichlet(α01, ..., α0k) (7)

The precisions (inverse of the covariance matrix) are Wishart

with mi degrees of freedom and the means (conditioned on the

precisions) are normal with scaling factors βi. More explicitly,

the prior distribution f(θ) is:

f(θ) = f(α|α0)

k∏

i=1

f(Σi|Σ0i,mi)f(µi|µ0i,Σi, βi) (8)

such that:

f(α|α0) ∝
k∏

i=1

α
(α0i−1)
i (9)

f(Σi|Σ0i,mi) ∝ |Σi|
−

mi−d−1

2 exp(−
1

2
Tr(Σ0iΣ

−1
i ))

f(µi|µ0i,Σi, βi) ∝

|
1

βi

Σi|
−

1

2 exp(−
βi

2
(µi − µ0i)

⊤Σ−1
i (µi − µ0i))

where α0i, µ0i,Σ0i,mi and βi are the hyper-parameters of

the Bayesian model, i.e. they are the (known) parameters of

the prior parameters density. Given n independent samples

x1, ..., xn from the MoG f(x|θ), we can utilize the EM

algorithm to obtain the maximum a posteriori parameter

estimation.

θmap = arg max
θ

f(α)

k∏

i=1

f(µi,Σi)×

n∏

t=1

f(xt|θ) (10)

The expectation step of the MAP-EM algorithm is (same as

the maximum likelihood version of the EM):

wit = p(i|xt) =
αifi(xt|µi,Σi)∑k

j=1 αjfj(xt|µj ,Σj)
(11)

We shall use the abbreviation:

ni =

n∑

t=1

wit i = 1, ..., k (12)
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such that ni is the expected number of data points sampled

from the i-th Gaussian component fi. The Maximization step

is:

α̂i =
α0i − 1 + ni∑
j(α0j − 1) + n

(13)

µ̂i =

∑n

t=1 witxt + βiµ0i

ni + βi

Σ̂i =

∑n

t=1 wit(xt−µ̂i)
2 + βi(µ̂i−µ0i)

2 + Σ0i

ni + mi − d

(where the square operator a2 stands for aa⊤).
Assume we are given another MoG distribution which is

known to be similar to the model we want to learn. Denote the

parameter set of the given MoG model by θ′ = {α′

i, µ
′

i,Σ
′

i, i=
1, ..., k}. We can extract hyper-parameters from the given MoG

distribution in the following form:

βi = βα′

i , mi = βi + d (14)

α0i = βα′

i + 1 , µ0i = µ′

i , Σ0i = βiΣ
′

i

Substituting definition (14) in equation-set (13), we obtain the

following EM re-estimation equations:

α̂i =
ni + βi

n + β
(15)

µ̂i =

∑n

t=1 witxt + βiµ
′

i

ni + βi

Σ̂i =

∑n

t=1 wit(xt−µ̂i)
2 + βi((µ̂i−µ′

i)
2 + Σ′

i)

ni + βi

Using the following notation:

x̄i =

∑
t witxt

ni

, x̄2
i =

∑
t witxtx

⊤

t

ni

, ci =
ni

ni + βi

the EM updating formulas can be written in the following

simplified way:

µ̂i = cix̄i + (1−ci)µ
′

i (16)

Σ̂i = cix̄
2
i + (1−ci)(µ

′

iµ
′

i

⊤

+ Σ′

i)− µ̂iµ̂
⊤

i

Note that we use only one extra parameter to build a prior

distribution from the given MoG. This parameter, denoted by

β, can obtain any value between zero and infinity. The value

of the parameter β is based on our belief on the similarity

between the models. The parameter β can be viewed as an

adaptation coefficient which controls the balance between the

known reference model and the new model we want to learn

from the data. The first extreme case β = ∞ corresponds to

enforcing the given model on the observations without any

adaptation, i.e. θ ← θ′. The second extreme case, β = 0,

corresponds to maximum-likelihood based learning of the new

model without any reference to the prior information. The

main advantage of the method presented in this paper is the

ability to choose any learning scheme that exists between these

two extreme cases. During the adaptation procedure we can

eliminate a Gaussian component if the expected number of

pixels in the new image that support this component (equation

(12)) is less than a specified threshold.

The MAP-EM algorithm presented in this section monoton-

ically increases the function f(x|θ)f(θ|θ′, β) which is:

n∏

t=1

f(xt|θ)× Dirichlet(α1, ..., αk;β1+1, ..., βk+1)×

k∏

i=1

(Wishart(Σ−1
i ; (βiΣ

′

i)
−1, βi + d)×N(µi;µ

′

i,
1

βi

Σi))

such that βi = βα′

i.

Similarly to the case of a normal distribution, we can inter-

pret the MAP-EM as an algorithm that finds the maximum-

likelihood parameter-set of an unknown MoG, based on the

observations x1, ..., xn and another set of β virtual observa-

tions, such that βα′

i of these virtual samples are sampled from

the i-th component of the given MoG. The method presented

in this section is related to a MoG adaptation method used

for speaker verification tasks [10] [20]. Reynolds et al. [20]

proposed an EM-based method to adapt a universal model

to a speaker model given a short utterance. In addition to

the different application domains, the derivation of the prior

model from a given MoG is also different. In [20], the same

number of virtual samples (β = βi = 16 samples) was taken

from each Gaussian component without taking into account the

weights α′

i associated with the Gaussian components. In vision

applications, MAP parameter estimation for MoG learning is

currently used mainly as a penalized estimation. The conjugate

prior expression is viewed as a penalty term that is added to

the log-likelihood term as a regularizer (e.g. to penalize a non-

identity or a non-isotropic covariance [17]).

V. EXPERIMENTAL RESULTS

The MAP estimation, developed in the previous section, can

be utilized in context-based video segmentation. The case of

video sequences is inherently adequate for the proposed adap-

tation method since video sequences are highly continuous

along the time axis. Hence, in all frames along the sequence,

that are not detected as a cut, each video frame can be used

to construct a prior model for the next frame. Technically, the

adaptation is performed by estimating a maximum a posteriori

MoG model such that the MoG model of the reference image is

used as a prior knowledge. The MAP-EM algorithm (Equation

15) is used for the parameter-set learning. The adaptation

parameter β can be related in the case of video data to the

amount of continuity present in a video (i.e. for higher frame

rate we could expect to use a larger β). To evaluate the video

segmentation and tracking performance we have compared 3

MoG learning methods. In the first case a MoG model was

independently generated for each frame. The second option is

using the previous frame to initialize the MoG learning for the

current frame. The third option is the MAP-EM framework

developed in this study, where the previous frame is used

as a prior model. The ratio between β and the number of

pixels in the current frame was manually optimized and set

to 0.2 (however there is low sensitivity to the exact value

of β) . The prior model was also used as an initial value

for the MAP-EM algorithm. We have found empirically that

when the prior model is used for initialization, it is better
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 2. Video sequence, example 1: (a) selected frames (1,5,9,13) from original sequence; (b) ML model separately learned per frame; (c) ML model learned
per frame, previous frame is used for initialization (β = 0) ; (d) MAP-EM model based on adaptation from previous frame (β = 0.2); (e) segmentation maps
based on ML model learned separately for each frame; (f) segmentation maps using the previous frame for initialization (ML); (g) segmentation maps using
the MAP-EM estimation.

to multiply all variance matrices by a constant greater than

one (we used 4) to avoid converging to a local maximum

point. We have also found empirically that there is no need

to set prior values for the Gaussian weights ai (i.e we can

use a non-informative prior). Using a prior model enforces

constraints on the colors and the relative location of objects

within the images. Adding a constraint on the objects size

(via the mixture coefficients) is too restrictive and does not

correspond to the variability along the image sequence. The

MAP-EM algorithm (written in C and run on a Pentium 4)

takes less than a second per frame. Note that the two context-

based learning methods are similar in terms of computational

efficiency. A selected set of frames from a given input video

sequence is shown in Figure 2a. Results of frame-by-frame

(independent) MoG model generation are presented in Figure

2b. Modeling results of using the previous frame to initialize

the MoG learning for the current frame are shown in Figure 2c.

Results of the MAP-EM estimation are shown in Figure 2d.

The corresponding segmentation maps are presented Figure

2e, 2f and 2g, respectively. Several things may be noted from

the presented results: In the modeling results, it is evident that

there is not much consistency in the blob structure of Figure

2b. Increased consistency across the blob representations can

be seen as we add context to the modeling framework. This

is seen in Figure 2c and even more evident in Figure 2d. The

MAP-EM learning method imposes strong consistency in the
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(a)

(b)

(c)

(d)

(e)

Fig. 3. Video sequence, example 2: (a) selected frames (1,11,21,31) from
original sequence; (b) ML model learned per frame, previous frame is used
for initialization (β = 0); (c) MAP-EM model based on adaptation from
previous frame (β = 0.2); (d) segmentation maps using the previous frame
for initialization (ML); (e) segmentation maps using the MAP-EM estimation.

blob structure, especially in the non-moving segments. The

MAP-EM method can also improve the segmentation quality.

An example can be seen in the third frame of the presented

sequence. The dark shirt (blue colored) and dark trousers

(black colored) in the third frame of Figure 2f are merged

together while in Figure 2g we note that with the MAP-

EM based segmentation the two regions remain separated, as

desired.

In order to track high-level objects across image sequences

or video, a linkage is necessary between the individual frame

models (or corresponding segmentation maps). The presented

results exemplify that in the case of MAP-EM learning, strong

correspondence of blobs across frames is evident as well as

strong correspondence of segmented regions across frames

in the sequence. This implies the ability to track regions or

objects in the video stream. Figure 3 presents similar segmen-

tation experiments performed on another image sequence. It

can be seen that the segmentation quality is much better when

the MAP-EM is used for segmentation of the current frame.

Note that, similar to the previous example, if each frame is

separately segmented, then the segmentation can be improved

but there will be no linkage between models corresponding to

consecutive frames.

We next wish to quantitatively compare between the two

context-based model adaptation schemes, namely using a given

(previous frame) MoG as an initialization for the maximum-

likelihood iterative (EM) estimation of a new model versus

using the MAP-EM method, in which the given MoG is used

for initialization and prior for a MAP learning of a similar

MoG. It is difficult to quantify the relative contribution of the

two schemes, directly from the video data itself. Hence we

performed the following simulation example: In each trial a 2D

mixture of 5 Gaussians f(x) is randomly chosen. The mean of

each Gaussian is sampled from N(0, I) and the variance is set

to be the identity matrix. A parameter β is used to transform f

into a conjugate prior for a new MoG g(x), i.e. the parameters

of g are drawn from the conjugate prior model created from

f . We don’t observe g explicitly. We are only given n = 200
samples from g and the task is to estimate the parameters

of g where f is used either as prior (and for initialization)

or just for initialization. To measure the similarity between

the learned MoG ĝ and the true model g we use the relative

entropy between the two MoGs. In both learning methods,

we can assume that the correspondence between the Gaussian

components of the true and the estimated model is correct.

Hence we use (a symmetrical version of) the conditional

relative entropy (conditioned on the latent random variable)

which is the following expression:

dist(g, ĝ) = dist(

k∑

i=1

αigi,

k∑

i=1

α̂iĝi) =

k∑

i=1

αiDKL(gi||ĝi)

where DKL(gi||ĝi) is the Kullback-Leibler divergence be-

tween the two Gaussian densities. The average results over

1000 trials for several values of β are shown Figure 4. The

simulations clearly demonstrate that using the context-based

model adaptation via the MAP-EM method achieves increased

performance than using initialization-only adaptation within

the ML framework.

0 10 20 30 40 50 60 70 80 90 100
0
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number of virtual samples (β) 

di
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Fig. 4. The distance between the true MoG and estimation of the MoG
learned from samples and a given similar MoG model, as a function of β.
The graph presents a comparison between using the similar model just as an
initialization for the EM algorithm or also as a prior for a MAP-EM.

VI. DISCUSSION

In this study we described an algorithm for segmenting

a novel image based on available segmentation of a similar

image. The algorithm was applied to video segmentation.

Segmentation using apriori knowledge, or context, provided

better segmentation results than unsupervised segmentation

schemes. In addition, higher-level object segmentation is en-

abled, as well as tracking in time. In a video segmentation task,

considering the previous video frame as a prior knowledge

for the current frame is much more statistically well-founded
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and can be more reliable for tracking an object along a video

sequence. The differences detected between the MAP-EM

method and initialization-based adaptation within an iterative

parameter estimation process, may have been caused by the

fact that the injected side-information in the initialization may

lose its effect after several iterations of the learning process. In

contrast the MAP-EM re-injects the prior knowledge in every

iteration of the learning process.

The method proposed here can be used in several additional

contexts, including segmenting a given image based on a set of

similar pre-segmented images, or segmenting a given image

based on an expert-based segmentation (and labeling) of a

sample representative image. Interesting applications may be

in the medical domain. For example, segmenting an MRI

brain image based on pre-segmented brain atlas. The main

challenge in general image segmentation (rather than image-

sequence) is the invariance issue, be it in the general contrast

of the respective images or in the positioning of the objects of

interest within the image, i.e. the alignment issue. For example,

if the high-level object (e.g. animal) is in the top corner of

the image instead of the center, the segmentation will not

necessarily benefit from the conjugate prior. An additional

issue to consider is the case of scale variability within the

image set. In general, the supervised approach that benefits

from context within a pre-segmented and pre-labeled image

set, is sensitive to invariance issues within the set. Such issues

are much less prominent in image-sequences. Frames within

a short video sequence are expected to be similar due to

the continuity of the video signal in the time axis. Hence,

a segmentation of one video frame can be easily propagated

along the entire sequence.

In this work we used only color features. Texture char-

acteristics of regions, as well as shape and other features,

can be extracted as additional features. Such features can be

associated with the components of the prior model and provide

additional knowledge in the segmentation process.
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