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Abstract—The increasing demand for human activity analysis
on surveillance scenarios has been provoking the emerging of new
features and concepts that could help to identify the activities
of interest. In this paper, we present a context-based descriptor
to identify individual profiles. It accounts with a multi-scale
histogram representation of position-based and attention-based
features that follow a key-point trajectory sampling. The notion
of profile is expressed by a new semantic concept introduced as
an adjective for action recognition. We also identify a very rich
dataset, in terms of intensity and variability of human activity,
and extended it by manual annotation to validate the introduced
concept of profile and test the descriptor’s discriminative power.
High rates of recognition were achieved.

I. INTRODUCTION

Automatic behavior understanding from video is a very
complicated problem. It comprises several hierarchical layers
of processing, from bottom low-level features to top high-
level semantics interpretation. The reduction of this gap is
still a challenge in some type of applications, specially due
to temporal domain. Mid-level descriptors intend to robustly
represent spatiotemporal relationships between features and
objects to discriminatively detect actions, events, and form
atomic elements of a complex activity. This work addresses
these problems by proposing a descriptor that considers rela-
tional information between an individual and the scene, namely
objects of interest. Such contextual features are sample over a
key-point trajectory scheme for multiple scales.

Spatiotemporal trajectory representations are gaining in-
creasing attention on surveillance scenarios to analyze human
activity and detect abnormal events. Indeed, the research com-
munity has been focusing on solving technical problems asso-
ciated to multi-tracking techniques and on encoding trajectory-
based features to detect individual atomic actions. Some ap-
proaches combine scene and object features with trajectory-
based descriptors to detect event primitives [1], while others
aggregate interactions measures and cues to analyze small
groups of pedestrian [2]. However, none of them explore the
integration of scene objects with individual related features to
form action profiles. We formulate a relational descriptor that
accounts with a trajectory-based motion component, position-
based and attention-based features to build individual profiles,
which can further describe semantic action phrases.

Our descriptor is build upon a bag-of-features methodol-
ogy. Such descriptor considers a concatenation of histograms
of relational and single spatiotemporal features taken from
each trajectory’s keypoint. This approach was tested on real
scenarios with a proper annotation information, which gives a
clear idea of its performance and potentiality. In fact, since we
use annotated trajectories, we could evaluate its discriminative
power and infer robust individual feature importance. In ad-
dition, we extend an existing dataset with low-level detection
and tracking information, and with new high-level semantic
concepts that encompass higher abstraction terms for action
context. We also show that those concepts could be adapted to
semantic annotations that had been presented in the literature.

II. RELATED WORK

Trajectory dynamics provide intrinsic features that can
be used to build useful representations to analyze several
application-driven interests such as scene topology, event de-
tection, social interpretation, and activity classification.

A common practice is to use trajectory information to
model a scene by a topographical map composed of nodes,
which are the areas of interest, and edges, which represent
the connectivity between those areas and encode the activity
of a human. The work of [3] classify the areas of interest as
entry/exit zones, junctions, intersections, and stop areas, which
are defined by trajectories characteristics. In [1] trajectory slow
points define individual topologies which are combined to form
the general topology. After that, they segment trajectories by
topology affinity building a descriptor composed by primitive
events. In general, the statistical and geometric structures
inferred from the scene model could be used in a feedback
loop, for instance they could filter out false detections or could
enrich tracking approaches that incorporate scene context.

Trajectory information could help to detect typical and
unusual events. In [4] the authors applied self-organising
feature map neural networks, with trajectories encoded as
point-based flow vectors, to learn normal trajectories and detect
new trajectories event-related. However, it can not distinguish
between new normal paths and abnormal behaviors. In [5]
they solved this problem and stated an accuracy improvement
for trajectory classification and event detection when Fourier
coefficient space is used instead of trajectory space. However,



tests were just carried on synthetic and manual annotated data,
and as complex trajectories are not suitable to a global Fourier
approximation, probably this approach would not perform as
good on real scenarios.

The sequence of trajectories’ characteristics are normally
used to extract motion patterns that segment the scene into
semantic regions. In [6] was introduced a clustering algo-
rithm that accounts with similarity measures and comparison
confidence between trajectories to obtain clusters of different
activities. This type of approaches largely depends on the
distance measures, which also vary depending on the activities
being detected. To overcome those errors, some approaches
formulate the problem in a probabilistic way. [7] proposed a
nonparametric bayesian framework. The number of clusters
for both the observations of an object on a trajectory and the
trajectories are simultaneously learned from a dual hierarchical
Dirichlet process (HDP). It also permits to reduce the space
complexity. However, since trajectories are modeled as words
to be quantized into a codebook, such representation lacks of
temporal information.

An extension of activity analysis embeds notions of social
psychology, normally applied to discover and characterize
groups of people. Relational connections among people, fo-
cus of attention of each person, geometric scene constraints,
and proxemics-based distances are ones of the cues used on
this type of analysis. Normally, such information is used by
microscopic approaches, whose can be divided into social
force model-based [8], virtual agents [9], and cellular automata
[10]. In particular, the work presented in [11] adopted a
probabilistic grouping strategy which accounts with a pairwise
spatiotemporal measure between people. A connectivity graph
is built for further segmentation of groups and derivation of
individual probabilistic models. Each model considers motion
type, related to atomic action, direction distribution and dis-
tance change, related to interactions. However, no object-scene
relation is considered, and they did not intend to use relational
context to describe individual profiles. In fact, common micro-
scopic approaches try to simulate pedestrian physical behavior
and infer characteristics about group formation, dispersion, and
evolution, but they do not capture individual semantics.

This paper shows three clear contributions: i) a new
definition of semantic concepts, whose abstraction meaning
intends to encompass existing semantic labels, normally used
for atomic actions and event primitives, and form more com-
plex visual phrases; ii) annotation of low-level and high-level
information on a very rich dataset for human activity and a
baseline to detect and classify individual profiles, both will
be released to be used by the research community; iii) a
relational context descriptor that accounts with spatiotemporal
information from trajectory-based features and attention-based
scene cues to robustly discriminate among several profiles.

III. SEMANTIC CONCEPTS AND ANNOTATION

Annotation of human nonverbal behavior should reveal
meaningful representations that could be semantically associ-
ated with ontological concepts for human activity. The diver-
sity of theories that intent to explain the linkage between the
psychophysiological states and the human behavior has been
triggering different representation approaches on the literature

that account with temporal process of actions, spatiotemporal
relationships between entities, poses, gestures, among others.

A general view about human activity analysis was pre-
sented in [12]. They defined a hierarchical approach where se-
mantic levels are related to an increasing complexity of human
activity categorization: i) gestures, elementary movements of
body parts such as raising an arm; ii) actions, atomic activity
composed by temporal sequence of gestures such as jumping;
iii) interactions, a sequence of single activities between persons
such as a person hugging another; iv) group activities, single
or complex activities performed by a conceptual group such
as a group having a dinner. Such levels follow an analogy to
grammar-based semantics that can be used to map annotation
labels to relational inferring models, for instance an action is
associated to a verb, a gesture to a phrase where the entity is
the body part, etc. Some works had already defined semantic
concepts: division between the part of actions as objects and
the poselets closely related to those actions [13], Allen’s
temporal predicates applied to features and entities to model
activities with complex structure [14], definition of topological
and directional relations between persons to build context-free
grammars [15] and collective context descriptors [16].

Our aim is to add semantics to profile individual behaviors,
a topic not so well explored on the literature. Following the
grammar-based analogy, we present a deeper abstraction layer
that can be associated to adjectives, since we are qualify-
ing person’s behavior characteristics. We look for a real-life
surveillance dataset with large duration, intense activity, and
high diversity of semantics in terms of individual and collective
activity, in order to extend it for new human activity analysis
challenges. We found the IIT (Israel Institute of Technology)
dataset and grant permissions from the authors [17].

The dataset is composed by several urban scenarios such as
shopping, subway, and street. We chose the shopping scenario
since the social context provides more well-defined profiles.
This scenario comprises three videos (resolution 512×384
@25 fps) with duration: 83155 frames (55‘26“), 59969 frames
(39‘58“), and 90525 frames (60‘21“). Until this moment, due
to hard manual labor, we only use the first one. We were
advised by the lab of social-psychology of the University of
Porto1 during the annotation process. In specific, they help us
to analyze and identify individual and collective profiles. Such
identification was done with the knowledge of social influence,
perception and interaction concepts based on social context
(namely culture and physical space). The complete validation
of this work in the field of social-psychology would require an
intense and continuous observation process of the same space.
However, this effort represents a complete new methodology
for social annotation of datasets in the field of computer vision.

The annotation is subdivided into two levels: i) low-
level features, related to human detection and tracking, where
a bounding box enclosing a person was marked on each
frame, such information is represented by trajectories. Re-
identification was not considered and when a person is partially
or fully occluded, the bounding box was not marked. Also,
a full-oriented gaze-direction [0◦, 360◦] was annotated over
person’s head; ii) high-level semantics, related to individual

1Faculdade de Psicologia e de Ciências da Educação da Universidade do
Porto - http://sigarra.up.pt/fpceup

http://sigarra.up.pt/fpceup


(a) (b)

Fig. 1: (a) Detected chessboard points for camera calibration;
(b) Horizontal vanishing line (blue), ground plane’s projection
area (green), ground points (red) to calculate scale factors and
reprojection errors, and objects of interest (purple).

and collective profiles, where a trajectory could be composed
by more than one profile. Also, objects of interest in the
scene were marked, namely candy box, toy cars, and electric
stairs (see Figure 1(b)). In terms of collective profiles, there
are: i) equally interested, when a group presents a coherent
behavior related to the same object (e.g. looking to a storefront
shop); ii) unbalance interested, when a group reveals different
types of of behavior in the scene at the same time; iii) follow
me, when within a group a leader appears and restricts further
group’s behavior (e.g. call the others to go by the stairs). The
individual profiles identified are: i) distracted, when no specific
interest is revealed, translated into unstructured movement and
high variability on gaze (e.g. talking to a cellphone); ii) ex-
ploring, when no specific interest is revealed, but movement
and gaze are coherent with the scene structure and context (e.g.
looking for a pair of jeans); iii) interested, when an interest by
an object on the scene is explicitly revealed (e.g. get a shopping
car). In this paper, we just analyze the individual profiles.
Some of the most relevant statistics about the annotation are:

• annotated frames: 35866 (43% of the complete sequence);
• annotated persons: 98 (22 children, 40 men, 36 women);
• average frame count/elapsed time per individual profile:

276 (min: 21, max: 4260, σ: 445) / 11 sec;
• average frame count/elapsed time per group profile: 473

/ 19 sec;
• average individual profiles per (person’s) trajectory: 1.3.
• 130 individual profiles (26 distracted, 80 exploring, and

24 interested).

Since we are dealing with position and attention-based
features, the trajectories should be projected onto the ground
plane to correctly estimate distances and angles of interest.
Such transformation involves camera calibration and geometry
reconstruction steps that will be described in next Section.

IV. CAMERA CALIBRATION AND GROUND-PLANE

PROJECTION

This stage assumes a relevant role to correctly achieve
directional and geometry information to feed the proposed
descriptor. We first acquire the camera parameters through
calibration, and then estimate the vanishing lines over the
rectified image. Both steps were combined sequentially to
obtain ground-plane projection.

We did not have any physical scene measurement and
camera knowledge at prior. However, we took advantage of a
chessboard that appears on some frames, as showed in Figure
1(a), to get the image and objects points to proceed with the
camera calibration. We just used the outer corners points since
the inner color rectangles are not equal and are not aligned.
We marked out the initial and final frames from which the
chessboard is visible and we run an automatic technique to
detect them. It is based on a simple template matching with
rotation and scale invariance. In order to get relevant samples
and better calibration results, we just took the frames where the
points suffer a significant translation or rotation. Considering
the physical proportions when compared with the person that
holds the chessboard, we set its physical dimensions to (0.7m,
0.58m). From this calibration pattern, we extracted the camera
intrinsic and extrinsic parameters, as well as the undistorted
and rectification matrices to apply on video frames.

To compute the vanishing points, (vx, vy , vz), we adopted
the M-estimator SAmpling and Consensus (MSAC) algorithm
[18]. Its input is a set of line segments that was automati-
cally detected using a combination of the probabilistic Hough
transform (PPHT) [19] with the Line Segment detection using
Weighted Mean-Shift (LSWMS) [20]. For the former one, we
used several incremental threshold levels, and set up a mini-
mum line length and a maximum allowed gap between points
on the same segment. These parameters reduce the erroneous
lines normally detected on noisy regions. For the latter, we
turned off the weighted Mean-Shift step, since it maintains
accuracy and increase computational speed, and ranked out the
line segments by orientation error and kept the K higher. We
defined a maximum number of segments, S, to detect. Since,
normally, the results of LSWMS are better than the PPHT,
we account with more segments generated from LSWMS,
where K = ωS (empirically ω = 0.8). For the reminder,
we just considered the results from PPHT that correspond to
spatial regions where no valuable information from LSWMS
was obtained. This combination permits to obtain reliable and
complement line segments spatially distributed on regions with
edges information.

Following the work of [21], we identified the vertical
vanishing point, vz , and computed the horizontal vanishing
line and the vanishing lines for the other planes in the
scene. These geometric cues permit to get the direction of
lines and the orientation of planes, and an image-to-world
mapping for each image point could be calculated, the so-
called homography matrix H . Indeed, considering the ground
plane, z = 0, a plane-to-plane mapping can be defined,
XT = H−1x, where x is the image point, X is the ground
point and H = [avx bvy l], where a and b are scale factors,
and l is the horizontal vanishing line normalized.

The cross-ratio invariance concept [21] was used to com-
pute the scale factors as well as the scale heigh factor. For
both, physical measures should be known. In our case, we
estimate them by physical relationships. For the height factor,
we considered a linear trajectory that pass through the most
farthest ground plane segment to the closest one, to account
with perspective distortion, and considered a mean human
height (≈ 1.75m). For the ground plane scale factors, we used
the rectangle points identified on Figure 1(b) and approximated
their measures to (0.55m, 0.4m). For each point, their two



components are calculated on the ground plane coordinate
system defined by vxovy . Since these points are aligned,
we explored their geometric pattern to compute reprojection
errors. To obtain gaze angle in the ground plane, both gaze
direction vector’s points were projected and angle was measure
considering the defined ground plane coordinate system.

To obtain the ground plane’s projection area, the user
should indicate three points: the origin, a colinear point, where
both define a segment, and a point located at the parallel
and opposite segment. Using these points and the geometric
information previously discussed, the projection area on the
ground plane is automatically determined (see Figure 1(b)).

V. SEMANTIC-CONTEXT DESCRIPTOR

In this work, the descriptor is build over the annotated
data. As mentioned on Section III, the annotation process
imitates expected behavior of automatic trackers during oc-
clusion situations. The objects of interest were also defined.
Trajectories’ characteristics extracted from our previous work
[22] could give us those regions of interest, but we did not
yet merge both works. Under these conditions, we can test the
discriminative power of the descriptor, as well as analyze its
features importance under the classification framework.

Our descriptor is inspired by [23]. Context-based features
are incorporated into a key-point trajectory representation
and transformed into a fixed-length descriptor to be used in
a Bag-of-Features (BoF) approach. Each feature is encoded
into a multi-scale histogram controlled by R, the number
of granularity levels where the number of bins are given
by 2R, and the final descriptor is the concatenation of each
feature’s histogram. In this work, we tested a smoothing filter
to get information from different timescales, but we leave
it out since no significant difference was perceived among
the various levels and further classification results corroborate
such condition. We explain such behavior by the low spatial
complexity and noise associated with the annotated data.

Measurements of relational position-based and attention-
based cues are represented by key-points trajectory and cap-
tured by the descriptor, namely:

• relative direction of movement, αsi, is the orientation
difference between subsequent trajectory segments. Final
segment is considered equal to the previous one.

• distance of interest, dio, expresses the distance between
individual position and the object of interest.

• direction of interest, βgi, which is the gaze direction.
• velocity, vi, expresses the trajectory segment velocity.

Under our experiments, R = 3 showed a good trade-off
between accuracy and dimensionality length, which leads to a
112-dimensional descriptor. Further classification framework
details, as well as analysis of each feature’s importance on
final descriptor are presented on the following Section.

VI. CLASSIFICATION

The descriptor is fixed-length to be embedded into a BoF
classification approach. In order to build the codebook, part of
the annotated data was used to apply a k-means method over
it. The obtained clusters form the vocabulary to be used on
further training and classification processes.

We trained a binary classifier for each individual profile.
Each trajectory’s profile was subdivided temporally by a gap τ ,
which was treated as a bag. Each bag is considered a sample in
the learning process. From the annotated data, we chose 50%
of the profile’s samples to be used for training. The number
of positive and negative samples were the same and selected
as the min of both, where the number of negatives is given
by

∑
i<n,i 6=j ni, n is the number of profile’s samples and j

the positive profile label. The final descriptor vector for each
profile is a histogram obtained by nearest cluster counting,
which was used as input for the linear SVM classifier. We
adopted a k-fold cross-validation process to obtain the final
classifier for each profile.

Since we are dealing with annotated data, we did not
weight features to avoid noisy background features as ex-
plained in [23]. However, we did a backward feature selection
to inspect their importance on final descriptor. We used two
methods, namely gain information and relief-F. Since the
descriptor obtained from the BoF approach is a histogram, we
did a backward procedure starting from the discrete parts of the
descriptor (clusters), until the individual feature bins. 1) cluster
ranking, Cri , where to each cluster was applied a feature
selection technique and an importance ranking was obtained;
2) feature bin ranking, Frj , on each cluster the previous step
was applied again, resulting on a ranking of bins. Each bin
corresponds to an individual feature, described on Section V.
The final individual feature importance was obtained by

Fk =
C∑

i=0

B∑

j=0,
lj=k

Cri · Frj , (1)

where C is the number of clusters, B is the number of bins
on each cluster, and the condition lj = k permits to account
only with feature bins that correspond to feature’s label k.

VII. RESULTS

Under this section we present the results relative to the
most important parts of the work, namely camera reprojection
and image-to-ground plane projection errors, features impor-
tance analysis and classification results. We evaluate these
topics over two video sequences belonging to the extended
IIT dataset (Section III) and the CAVIAR dataset2, in specific
the INRIA 1st set. For the latter, we adapted the browsing sce-
narios to our semantics. We considered that the waiting action
performs a distracted profile. At the end, we account with 31
profiles, from which there are 4 distracted, 22 exploring, and 5
interested. Two objects of interest were marked, the brochure
stand and the LCD screen stand.

During camera calibration, our automatic procedure per-
mits to acquire image points with significant variations in pose
(rotation) and depth (translation). This improves the fitting
of the camera model, since bigger set of parameters, namely
angles and positions, are given instead of redundant data that
probably add noise. The final reprojection error is expressed as
the average of the root mean square of the difference between
the image points used to compute the object points and the
recalculated image points from the obtained camera model.
For the IIT video sequence the reported error is very low,

2http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/

http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/


0.117. We used the ground plane points, identified in Figure
1(b), to estimate the image-to-plane projection error. Taking
in consideration the rectangle pattern between subsequent pair
of segments, both in parallel and perpendicular directions, we
computed the absolute errors of collinear segments in real
world measure. The results vary between [0.335%, 4.908%].
For CAVIAR, we applied a simplified homography matrix,
since the four image points that define the ground plane’s pro-
jection area were given, as well as their physical coordinates.

To analyze our descriptor performance, we compare the
classification results with a baseline descriptor, which is com-
posed by the same type of features enumerated on Section
V, but instead of considering a multiscale histogram based on
key-point trajectories, it simply considers the mean, µ, and
standard deviation, σ, of each feature. For the k-fold cross-
validation, we used k = 2 and repeat it for 10000 iterations.
The evaluation was done based on three standard parameters:
accuracy (A), recall (R), and precision (P). Averaged results
are reported on Table I. It is important to mention that for the
CAVIAR sequence, we did not considered the gaze feature
since it was not provided by the dataset.

TABLE I: Classification results on both video sequences.

IIT
Interested Exploring Distracted

A R P A R P A R P

Our 88.0 93.8 85.6 85.7 94.0 81.4 89.0 80.9 96.9

Base 86.9 82.7 91.4 68.9 88.4 64.2 76.5 79.0 76.7

CAVIAR
Interested Exploring Distracted

A R P A R P A R P

Our 91.9 84.6 99.5 78.2 83.7 79.7 78.6 87.0 80.5

Base 92.6 94.9 93.5 81.4 94.4 75.6 75.6 65.5 88.4

Considering the ITT sequence, our descriptor presents the
highest results and the differences are significative. The base-
line just presents a slightly better performance on the precision
value of the interested profile, probably because it obtains
lower false positive (FP) rate. However, inspecting Figure 2, we
state that our descriptor produces low false negative (FN) and
FP rates. Despite such low values, we analyze the distribution
of FP entries per profile (Figure 3) and verify that the exploring
and interested profile are interchangeable confuse. Specially,
the exploring profile is the larger entry for the remaining
profiles, probably because it is the one that has more samples.

INTERESTED EXPLORING DISTRACTED

FP TP FN TN

9.0%

46.9%

3.1%

41.0%

11.3%

47.0%

3.0%

38.7%

1.3%

40.4%

9.6%

48.7%

0.0%

43.0%

7.0%

50.0%

13.3%

41.7%

8.3%

36.7%

15.0%

43.8%

6.2%

35.0%

Fig. 2: Visualization of confusion matrix entries per profile (1st

row: IIT; 2nd row: CAVIAR).

For the CAVIAR sequence, our descriptor presents less
dominant results. Such behavior could be explained because
we do not account with the gaze feature on this sequence,

which has a relevant role (see Figure 4). This is also a prove
that the multi-scale representation introduces a high discrim-
inative factor. We also believe that another problem on this
dataset was to translate the waiting action into a distracted pro-
file. Intuitively, the distracted profile, along with the exploring,
should present high variability in movements and gaze, which
is clearly not the case for the waiting action. This is stated by a
large FP rate for both profiles (interested profile has a FP rate
close to 0, therefore none distribution is shown for this profile).
In general our descriptor presents smaller standard deviation
values of the three evaluation metrics than the baseline, for
instance for IIT [0.039, 0.104] against [0.054, 0.168] and for
CAVIAR [0.040, 0.262] vs [0.076, 0.316], which states that our
model is more robust and stable than the baseline.

The feature selection process was conducted over the IIT
sequence. As illustrated in Figure 4, both methods present the
same importance hierarchy of features, which is also main-
tained along the profiles. It clearly shows that the relational
context-based features are the most important, with relevance
for the gaze. This corroborates our previous conclusion about
the results obtained for the CAVIAR sequence that worst
results are obtained when gaze feature is not considered. We
preferred the relief-F method since it represents better the
importance differences among features.

INTERESTED EXPLORING DISTRACTED

Interested Exploring Distracted

64.3%

35.7% 35.4%

64.6%

87.5%

12.5%

87.5%

12.5%

91.7%

8.3%

Fig. 3: Distribution of FP entries per profile (1st row: IIT; 2nd

row: CAVIAR).

VIII. CONCLUSIONS

We presented a relational descriptor that considers
contextual-based features to identify individual profiles. Such
profiles were created upon a new semantic concept that follows
an adjective association in a grammar-based analogy. We
believe that they could help to form richer visual phrases for
activity recognition. A real-life database, with intense and di-
verse human activity, was extended through manual annotation
as a first effort to show the potential of the introduced semantic
concept, as well as the proposed descriptor.

Our evaluation methodology confirms high rates of recog-
nition. Comparison with a competitive baseline descriptor vali-
dates the relevance of the multi-scale histogram representation
based on key-point trajectory sampling. We also presented
a feature selection scheme that permits to inspect feature
importance in a BoF-based descriptor. Its intuition is novel
and validates the pertinence of the relational context-based
features. The use of the CAVIAR scenario shows the scalability
of the profiles into the existing concepts of human activity.
However, more sequences should be tested to deeper inspect



Fig. 4: Features importance analysis: trajectory orientation, trajectory velocity, gaze and distance to object of interest.

profile’s impact and discriminative descriptor power. Future
work will follow two directions: extension of the descriptor to
collective behavior, and embedding of the descriptor into an
unsupervised learning approach.
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