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Abstract

While navigating in an environment, a vision system has

to be able to recognize where it is and what the main ob-

jects in the scene are. In this paper we present a context-

based vision system for place and object recognition. The

goal is to identify familiar locations (e.g., office 610, con-

ference room 941, Main Street), to categorize new environ-

ments (office, corridor, street) and to use that information

to provide contextual priors for object recognition (e.g., ta-

bles are more likely in an office than a street). We present

a low-dimensional global image representation that pro-

vides relevant information for place recognition and cate-

gorization, and show how such contextual information in-

troduces strong priors that simplify object recognition. We

have trained the system to recognize over 60 locations (in-

doors and outdoors) and to suggest the presence and loca-

tions of more than 20 different object types. The algorithm

has been integrated into a mobile system that provides real-

time feedback to the user.

1. Introduction

We want to build a vision system that can tell where it

is and what it is looking at as it moves through the world.

This problem is very difficult and is largely unsolved. Our

approach is to exploit visual context, by which we mean

a low-dimensional representation of the whole image (the

“gist” of the scene) [6]. Such a representation can be easily

computed without having to identify specific regions or ob-

jects. Having identified the overall type of scene, one can

then proceed to identify specific objects within the scene.

The power of, and need for, context is illustrated in Fig-

ure 1. In Figure 1(a), we see a close-up view of an ob-

ject; this is the kind of view commonly studied in the object

recognition community. The recognition of the object as

a coffee machine relies on knowing detailed local proper-

ties (its typical shape, the materials it is made of, etc.). In

Figure 1(b), we see a more generic view, where the object

occupies a small portion of the image. The recognition now

relies on contextual information, such as the fact that we are

in a kitchen. Contextual information helps to disambiguate

the identity of the object despite the poverty of the local

object features (Figure 1(c)).

Object recognition in context is based on our knowledge

of scenes and how objects are organized. The recognition

of the scene as a kitchen reduces the number of objects that

need to be considered, which allows us to use simple fea-

tures for recognition. Furthermore, the recognition of this

scene as a particular kitchen (here, the kitchen of our lab)

further increases the confidence about the identity of the ob-

ject. Hence place recognition can be useful for object recog-

nition.

Traditionally, place and object recognition are consid-

ered separate problems. Place recognition is mostly stud-

ied in the mobile robotics community, where the problem

is called topological localization. (Topological localization

refers to identifying the discrete location of the robot (e.g.,

which room it is in), as opposed to metric localization,

which refers to establishing the precise coordinates of the

robot.) The main novelty of our approach for place recog-

nition compared to previous ones, such as [17, 3], is that

we also try to identify the category of the location, which

works even for places which have not been seen before.

Previous approaches to object recognition have focused,

for the most part, on using local features to classify each

image patch independently (see e.g., [4, 7, 9, 10, 16]. Our

approach uses global image features to predict the scene,

and then uses the scene as a prior for the local detectors.

Another difference between our approach to object

recognition and previous approaches is that we try to rec-

ognize a large set of object types (24) in a natural, uncon-

strained setting (images are collected by a wearable cam-

era), as opposed to recognizing a small number of classes

(such as faces and cars [7, 10, 16]), or using a constrained

setting (such as uniform backgrounds [9, 4]). Finally, when

performing object detection and localization, we only use

global image features. At the end of this paper, we discuss

how our approach to detection can be combined with more

traditional object localization methods, which make use of

local features.
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(a) Isolated object (b) Object in context (c) Low-res Object

Figure 1. (a) A close-up of an object; (b) An object in

context; (c) A low-res object out of context. Observers in

our lab, addicts to coffee, have difficulties in recognizing

the coffee machine in figure (c), however, they recognize it

in figures (a) and (b).

2. Global image features

The regularities of real world scenes suggest that we

can define features correlated with scene properties without

having to specify individual objects within a scene, just as

we can build face templates without needing to specify fa-

cial features. Some scene features, like collections of views

[2, 17] or color histograms [12], perform well for recogniz-

ing specific places, but they are less able to generalize to

new places (we show some evidence for this claim in Sec-

tion 3.4). We would like to use features that are related to

functional constraints, as opposed to accidental (and there-

fore highly variable) properties of the environment. This

suggests examining the textural properties of the image and

their spatial layout.

To compute texture features, we use a wavelet image de-

composition. Each image location is represented by the out-

put of filters tuned to different orientations and scales. We

use a steerable pyramid [11] with 6 orientations and 4 scales

applied to the intensity (monochrome) image. (Similar re-

sults are obtained using Gabor filters.) The local (L) repre-

sentation of an image at an instant � is then given by the jet

��� ��� � �������������� , where � � �� is the number of

subbands.

We would like to capture global image properties, while

keeping some spatial information. Therefore, we take the

mean value of the magnitude of the local features averaged

over large spatial regions:

����� �
�

��

���� ��
������� � ��

where ���� is the averaging window. The resulting rep-

resentation is downsampled to have a spatial resolution of

� � � pixels (here we use � � �). Thus, �� has

size � �� � � � ���. We further reduce the dimen-

sionality by projecting �� onto the first � principal com-

ponents (PCs) computed using a database of thousands of

images collected with our wearable system. The resulting

Figure 2. Two images from our data set, and noise pat-

terns which have the same global features. This shows that

the features pick up on coarse-grained texture, dominant

orientations and spatial organization.

�-dimensional feature vector will be denoted by ��� . This

representation proves to be rich enough to describe impor-

tant scene context, yet is of low enough dimensionality to

allow for tractable learning and inference.

Figure 2 illustrates the information that is retained using

this representation with � � �� PCs. Each example shows

one image and an equivalent textured image that shares the

same 80 global features. The textured images are generated

by coercing noise to have the same features as the original

image, while matching the statistics of natural images [8].

3. Place recognition

In this section we describe the context-based place

recognition system. We start by describing the set-up used

to capture the image sequences used in this paper. Then we

study the problem of recognition of familiar places. Finally

we discuss how to do scene categorization when the system

is navigating in a new environment.

3.1 Wearable test bed

As a test-bed for the approach proposed here, we use a

helmet-mounted mobile system. The system is composed

of a web-cam that is set to capture 4 images/second at a res-

olution of 120x160 pixels (color). The web-cam is mounted

on a helmet in order to follow the head movements while the

user explores their environment. The user receives feedback

about system performance through a head-mounted display.

This system allows us to acquire images under realistic

conditions while the user navigates the environment. The

resulting sequences contain many low quality images, due

to motion blur, saturation or low-contrast (when lighting

conditions suddenly change), non-informative views (e.g.,
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a close-up view of a door or wall), unusual camera angles,

etc. However, our results show that our system is reason-

ably robust to all of these difficulties.

Two different users captured the images used for the ex-

periments described in the paper while visiting 63 different

locations at different times of day. The locations were vis-

ited in a fairly random order.

3.2 Model for place recognition

The goal of the place recognition system is to estimate

the most likely (discrete) location of the user given all the

visual features up to time �. Let the place be denoted by

�� � ��	 
 
 
 	 ���, where �� � 	� is the number of places,

and let the global features up to time � be denoted by ��
���.

We can use a hidden Markov model (HMM) to solve the

localization problem by recursively computing � �� ���
�
����

as follows:

� ��� � ����
���� � 
���� ��� � ��� ��� � ����

�����
�

� 
���� ��� � ��
�

��

����	 ��� ����� � �����
�����

�

where ����	 �� � � ��� � ������ � ��� is the transition

matrix (topological map) and 
���� ���� is the observation

likelihood, described below. 1

We learn the transition matrix from labelled sequence

data by counting the number of transitions from location � to

location �. We add a Dirichlet smoothing prior to the count

matrix so that we do not assign zero likelihood to transitions

which did not appear in the training data.

We model the appearance of each location as a set of

� views (a mixture of � spherical Gaussians). We set the

variance, ��, and the number of mixture components, �,

using cross-validation; we found �� � �
�
 and � � ���
to be the best. We could compute the means and mix-

ture weights using EM. However, in this paper, we adopt

the simpler strategy of picking the means to be prototypes

(views), chosen uniformly from all views assigned to the

location; weights are then set uniformly; the result is es-

sentially a sparse Parzen window density estimator. In the

future, we plan to investigate ways of picking the most

informative (discriminative) prototypes, possibly based on

entropy minimizing techniques such as those discussed in

[14].

3.3 Performance of place recognition

In this section, we discuss the performance of the place

recognition system when tested on a sequence that starts in-

1Note that this use of HMMs is quite different from previous ap-

proaches in wearable computing such as [12]. In our system, states rep-

resent 63 different locations, whereas Starner et al. used a collection of

separate left-to-right HMMs to classify approach sequences to one of 14

rooms.
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Figure 3. Performance of place recognition for a se-

quence that starts indoors and then (at frame � � ����)

goes outdoors. Top. The solid line represents the true lo-

cation, and the dots represent the posterior probability as-

sociated with each location, � �����
�
����, where shading in-

tensity is proportional to probability. There are 63 possible

locations, but we only show those with non-negligible prob-

ability mass. Middle. Estimated category of each location,

� �����
�
����. Bottom. Estimated probability of being in-

doors or outdoors.

doors (in building 400) and then (at frame � � �
��) moves

outdoors. The test sequence was captured in the same way

as the training sequences, namely by walking around the

environment, in no particular order, but with an attempt to

capture a variety of views and objects in each place. A qual-

itative impression of performance can be seen by looking

at Figure 3 (top). This plots the belief state, � �����
�
����,

over time. We see that the system believes the right thing

nearly all of the time. Some of the errors are due the in-

herent ambiguity of discretizing space into regions. For

example, during the interval � � ���� � ����, the sys-

tem is not sure whether to classify the location as “Draper

street” or “Draper plaza”. Other errors are due to poorly

estimating the transition matrix. For example, just before

� � �
��, there is a transition from “elevator 200/6” to “el-

evator 400/1”, which never occurred in the training set. The

Dirichlet prior prevents us from ruling out this possibility,

but it is considered unlikely; hence the incorrect belief that

the system is in “corridor 6a” just before � � �
��.

A more quantitative assessment of performance can be

obtained by computing precision-recall curves. The recall

rate is the fraction of frames which the system is required to
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label (with the most likely location); this can be varied by

adjusting a threshold, �, and only labeling frames for which

�
�� � ��� � ����
���� � �. The precision is the fraction of

frames that are labeled correctly.

The precision-recall framework can be used to assess

performance of a variety of parameters. In Figure 4(a) we

compare the performance of three different features, com-

puted by subsampling and then extracting the first 80 prin-

cipal components from (1) the intensity image, (2) the color

image, and (3) the output of the spatially averaged steerable

pyramid filter bank. We see that the filter bank works the

best, then color and finally PCA applied to the raw intensity

image.

In Figure 4(b), we show the effect of “turning the HMM

off”, by using a uniform transition matrix (i.e., setting

���	 �� � �

��
). It is clear that the HMM provides a signif-

icant increase in performance (at negligible computational

cost), because it performs temporal integration. We also

compared to a more ad hoc approach of using the average

of �
�����
�
��	 �	 
 
 
 	 
�����

�
� ��, as was done in [14]. We

found (by cross validation) that � � �� works best, and

this is what is shown in Figure 4(b); nevertheless, the HMM

is much better. (Results for � � � (i.e., without any tem-

poral averaging) are significantly worse (not shown).)

When using the HMM, we noticed that the observation

likelihood terms, ����� � 
���� ��� � ��, often dominated

the effects of the transition prior. This is a well-known prob-

lem with HMMs when using mixtures of high-dimensional

Gaussians (see e.g., [1, p142]). We adopt the standard solu-

tion of rescaling the likelihood terms; i.e., we use

������ �

���� ��� � ��
��
�� 
��

�
� ��� � ���
�

where the exponent �� is set by cross-validation. The net

effect is to “balance” the transition prior with the observa-

tion likelihoods. (It is possible that a similar effect could be

achieved using a density more appropriate to images, such

as a mixture of Laplace distributions.)

3.4 Categorizing novel places

In addition to recognizing the specific location, we

would like the system to be able to categorize places into

various high-level classes such as office, corridor, street, etc.

There are several ways to do this. The simplest is to use the

HMM described above, and then to sum up the probability

mass assigned to all places which belong to the same cate-

gory, e.g., the probability I’m in an office is P(in Antonio’s

office) + P(in Kevin’s office) + P(in Bill’s office). However,

this will not work in new, unfamiliar environments.

Instead, we train an independent HMM on category la-

bels, i.e., we estimate the category, � �����
�
����, indepen-

dently of the place, � �����
�
����. (Below we will see that
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Figure 4. Precision-recall curves for different features for

place recognition. The solid lines represent median per-

formance computed using leave-one-out cross-validation

on all 17 sequences. The error bars represent the 80%

probability region around the median. The curves repre-

sent different features. From top to bottom: filter bank,

color, monochrome (see text for details). (a) With HMM

(�� � ���, � � �, � = learned). (b) Without HMM

(�� � �, � � ��, � = uniform).

the category appearance model, � �������, uses different

features of �� than the specific place appearance model,

� �������.) We used 17 categories, including “office”, “cor-

ridor”, “street”, etc. We also used the same methodology (a

third, independent HMM) to classify the scene as indoor or

outdoor.

We train the categorization system on outdoor and in-

door sequences from building 200, and then test it on a se-

quence which starts in building 400 (not in the training), and

then, at � � �
��, moves outside (included in the training).

The results are shown in Fig. 5. Before the transition, the

place recognition system has a uniform belief state, repre-

senting complete uncertainty, but the categorization system

performs well. As soon as we move to familiar territory,

the place recognition system becomes confident again (the

system is able to re-localize itself within the map).

We also computed precision recall curves to assess the

performance of different features at the categorization task.

The results are shown in Figure 6. Categorization perfor-

mance is worse than recognition performance, despite the

fact that there are fewer categories than places (17 instead

of 63). There are several reasons for this. First, the variabil-

ity of a class is much larger than the variability of a place,

so the problem is intrinsically harder. Second, some cate-

gories (such as “open space” and “office”) are visually very

similar, and tend to get confused, even by people. Third,

we have a smaller training set for estimating � ���������,
since we observe fewer transitions between categories than

between instances.

Interestingly, we see that color performs very poorly at

the categorization task. This is due to the fact that the color
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Figure 5. Place categorization when navigating in a new

environment not included in the training set (frames 1 to

1500). During the novel sequence, the place recognition

system has low confidence everywhere, but the place cate-

gorization system is still able to classify offices, corridors

and conference rooms. After returning to a known environ-

ment (after � � ����), performance returns to the levels

shown in Figure 3.

of many categories of places (such as offices, kitchens, etc.)

may change dramatically from one environment to the next

(see Figure 7). The structural composition of the scene, on

the other hand, is more invariant. Hence, although color is a

good cue for recognition, it is not so good for categorization

(with the exception of certain natural “objects”, such as sky,

sun, trees, etc., whose color is more constrained).

4. From scenes to objects

Most approaches to object detection and recognition in-

volve examining the local visual features at a variety of po-

sitions and scales, and comparing the result with the set of

all known object types. However, the context can provide a

strong prior for which objects are likely to appear, as well

as their expected size and position within the image, thus

reducing the need for brute force search [15, 13]. In addi-

tion, the context can help disambiguate cases where local

features are insufficient. In this paper, the context consists

of both the global scene representation, ��� , the current lo-

cation, ��, and/or the current place category, � �. We show

how we can use the context to predict properties of objects

without even looking at the local visual evidence.
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Figure 6. Precision-recall curves for categorization of

non-familiar indoor environments. The curves represent

different features sets. From top to bottom: filter bank,

monochrome and color. Note that now color performs

worse than monochrome, the opposite to Figure 4.

Building 200

Average office Average corridor

Building 400

Average office Average corridor

Figure 7. Average of color (top) and texture (bottom) sig-

natures of offices and corridors for two different buildings.

While the algorithm uses a richer representation than sim-

ply the mean images shows here, these averages show that

the overall color of offices/corridors varies significantly be-

tween the two buildings, whereas the texture features are

more stable.

Let ���� represent the attributes of all objects of type �

in image ��; these attributes could include the number of

such objects (zero or more), their size, shape, appearance,

etc. Let ��� � �����	 
 
 
 	 �����
�, where �� � �� is the

number of object types considered here (bicycles, cars, peo-

ple, buildings, chairs, computers, etc.). We can compute

� � ������	 ��� as follows:

� � ��������� �
�

�

� � ������	 �� � ��� ��� � �������

where we assume that knowing the current location, � �,

renders previous frames, ������, irrelevant. The second

term is the output of the HMM, as discussed in Section 3.

The first term can be computed using Bayes’ rule:

� � ������	 ��� � 
���� ���	 ���� � �������
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�
�

�


��������	 ���
�

�

� ���������

where we have assumed that the likelihood and prior are

both fully factorized. This allows us to treat each object

(type) independently. In particular, the posterior marginals

can be computed as follows:

� ����������� �
�

�

� ��������	 ��� ��������� ��������


In order to compute 
��������	 ���, we have to make

some approximations. A common approximation is to as-

sume that the object’s properties (presence, location, size,

appearance, etc.) only influence a set of local features, � �
�

(a subset of ��). Thus


�������� � �	�� � �� � 
���� ��	 ��

However, the global context is a very powerful cue that we

want to exploit. Hence we include some global scene fea-

tures, ��� (a deterministic function of ��):


�����	 �� � 
���	 �
�
� ��	 ��

� 
�����
�
� 	 �	 ��
��

�
� ��	 ��

� 
���� ��	 �	 �
�
� �
���� ��	 ��

The first term, 
���� ��	 �	 �
�
� �, can be approximated by


���� ��	 �� assuming that the object attributes � specify the

object appearance (although this ignores the effect of some

global scene factors, such as lighting). For this paper,

we ignore the first term (i.e., the local appearance model


���� ��	 �	 �
�
� �), and focus on the second term, 
���

� ��	 ��,
which is related to the global context.

4.1 Contextual priming for object detection

In this section, we assume ���� is just a binary random

variable, representing whether any object of type � is present

in the image or not. � ����� � ����
���� can be used to do ob-

ject priming, i.e., to decide which object detectors to run.

It can also be used to rank-order images for image retrieval

tasks in which we try to find images likely to contain in-

stances of ��. We can compute the probability an object

type is present using Bayes rule:

� �������
�
� 	 �� � �� �


���� �����	 ��� ��������


���� �����	 ��� �������� � 
���� �
�����	 ��� � ��������

We labeled a set of about 1000 images to specify whether

or not each type of object was present. We estimated

� ������ by counting (analogous to estimating the HMM

transition matrix). We model the conditional likelihood us-

ing another mixture of spherical Gaussians. We chose the

means for 
���� �����	 �� � �� from the set of all images

labelled as location � in which object � was present. Simi-

larly, we chose the means for 
���
� �

�����	 �� � �� from the

set of all images labelled as location � in which object � was

absent. We chose the number of mixture components and

the variance by cross validation.

Figure 8 shows the results of applying this procedure to

the same test sequence as used in Figure 3. The system is

able to correctly predict the presence of 24 different kinds

of objects quite accurately, without even looking at the local

image features. Many of the errors are “inherited” from

the place recognition system. For example, just before � �
�
��, the system believes it is in corridor 6a, and predicts

objects such as desks and printers (which are visible in 6a);

however, the system is actually in the floor 1 elevator lobby,

where the only identifiable object is a red couch.

A more quantitative assessment of performance is pro-

vided in Figure 9, where we plot ROC (receiver operat-

ing characteristic) curves for 20 of the most frequent object

classes. (This can be computed by varying a threshold � and

declaring an object to be present if � ����� � ����
���� � �;

we then count compare the number of estimated positive

frames with the true number. We did this for the same

indoor-outdoor sequence as used in Figures 3 and 5.) The

easiest objects to detect are things like buildings, which are

almost always present in every outdoor scene (in this data

set at least). The hardest objects are moving ones such as

people and cars, since they are only present in a given con-

text for a small fraction of the time.

4.2 Contextual priors for object localization

In this section, we try to predict the location of an ob-

ject within the image. We can use this information e.g., to

run an object detector only in the most probable image loca-

tions. One approach [15] is to model the expected location,

� �������
�
� 	 ���� � ��, using cluster weighted regression (a

variant on the mixtures-of-experts model). In this paper, we

adopt a different approach: We divide the image into 80

non-overlapping patches, and represent the location using

an �� �� bit mask: �����
 � � iff any object of type � over-

laps image region �, where � � ��	 
 
 
 	 ���. This provides a

crude way of representing location and size/shape.

Let ���� be the whole image mask (an 80-dimensional

bit vector). Since � ������
 � �� � �������
℄, we can sum-

marize the distribution in terms of its marginals using the

expected mask. This can be computed as follows:

��������
�
���℄ �

�

�������

�

�

� ����� � �	�� � ����
����

���������
�
� 	 �� � �	 ���� � �℄

where � �����	 ����
�
���� was computed by the object priming

system discussed in Section 4.1. When the object is absent
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Figure 8. Contextual priors for object detection. We

have trained the system to predict the presence of 24 ob-

jects. Top. The predicted place, � �����
�
���� (the same as

Figure 3). Middle. The probability of each object being

present, � �	��� � ��������. Bottom. Ground truth: a black

dot means the object was present in the image. We only

show results for the frames that have ground truth.
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Figure 9. ROC curves for the prediction of object pres-

ence in the image. We plot hit rate vs false alarm rate as we

vary the threshold on � �	��� � ��������.

(���� � �), we have ��������
�
� 	 ��	 ���� � �℄ � ��. If the

object is present (���� � �), the expected mask is given by

������ � ������ 	 ��	 ���� � �℄ �

�

��

��

���	 ��� ���	 ���� � ��


���� ���	 ���� � ��

We adopt a product kernel density estimator to model the

joint on � �
� and ����:


���	 ��� ��� � �	 ���� � �� �

�����

���

�

����

�����  ������������ �  �������

where ���� �  ������� � Æ���	  ������� and ����� �  �������
is the same Gaussian kernel as used in the object priming

system. Since the mask kernel is a delta function2 we have

�

��

�� 
���	 ��� ��� � �	 ���� � �� �

�

�

�

����

 ����������� �  �������

Putting it all together, we get the intuitive result that the

expected mask is a set of weighted prototypes,  ������ ,

��������
�
� ℄ �
�

�

�

�

������ �  ������

where the weights are given by how similar the image ���
is to previous ones associated with place � and object � (as

encoded by the  ������ prototypes), times the probability of

being in place � and seeing object �:

������ �
����� �  �������� � ��� � �	 ���� � ����

�����
�� ����� �  ��������

We trained this model as follows. We manually created a

set of about 1000 image masks by drawing polygons around

the objects in each image. (The images were selected from

the same training set as used in the previous sections.) We

then randomly picked up to 20 prototypes  �
����� for each

location � and object �. A small testing set was created in

the same way.

Some preliminary results are shown in Figure 10. The

figure shows the probability of each object type appearing in

each grid cell (the expected mask ��������
�
���℄), along with

2We can use kernels with better generalization properties than a delta

function. This can be done, for instance, by using other representations

for �� instead of a bit mask. We can model the distribution of masks as

����� � �������� where � is a one-to-one mapping. For instance, � can

be the function that converts a binary number to an integer. Then, we can

use a gaussian kernel �������� ����
�����

��.
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Figure 10. Some results of object localization. The gray-

level images represent the probability of the objects being

present at that location; the black-and-white images repre-

sent the ground truth segmentation (gray indicates absent

object). Images are ordered according to � �	�����
�
����.
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Figure 11. Summary of the context-based system. The

dotted lines show how local features could be included in

the model (not implemented in the system presented here).

the ground truth segmentation. In some cases, the corre-

sponding ground truth image is blank (gray), indicating that

this object does not appear, even though the system predicts

that it might appear. Such false positives could be easily

eliminated by checking the local features at that position.

Overall, we find the results encouraging, despite the small

nature of the training set.

5. Summary and Conclusions

We have shown how to exploit an holistic, low-

dimensional representation of the image to perform robust

place recognition, categorization of novel places, and object

priming. A summary of the system is shown in Figure 11.

In current work, we are extending this system by com-

bining the top-down prior provided by context with the

results of a more standard bottom-up object recognition

phase [5].
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