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Abstract

This paper proposes a context-constrained hallucination

approach for image super-resolution. Through building a

training set of high-resolution/low-resolution image seg-

ment pairs, the high-resolution pixel is hallucinated from

its texturally similar segments which are retrieved from the

training set by texture similarity. Given the discrete hal-

lucinated examples, a continuous energy function is de-

signed to enforce the fidelity of high-resolution image to

low-resolution input and the constraints imposed by the hal-

lucinated examples and the edge smoothness prior. The re-

constructed high-resolution image is sharp with minimal ar-

tifacts both along the edges and in the textural regions.

1. Introduction

The goal of single image super-resolution system is to

estimate a sharp high-resolution image from low-resolution

input. The large body of work on this problem can be

roughly divided into two general categories:

• Edge-focused methods that focus on sharpening edges,

while staying faithful to the low-resolution input [20,

15, 16, 5, 23, 7, 24].

• Patch-based hallucination methods that seek to create

a high-resolution image by learning from patches of

example images [10, 9, 25, 4, 27, 1, 17, 29, 33, 34].

Both approaches have different advantages and weaknesses.

Edge-focused methods are able to produce sharp edges with

minimal jaggy or ringing artifacts. However, they cannot in-

troduce novel high frequency details which do not appear in

the low-resolution image. Patch-based hallucination meth-

ods can synthesize new details by constructing the high-

resolution estimate from example images, but the mathe-

matical models used to construct the image from patches

make it difficult to control artifacts introduced into the esti-

mate.

In this paper, we introduce a single-image super-

resolution method that makes two significant advances:

1. Our approach integrates edge-focused and patch-based

hallucination methods into a single, easily-optimized

energy-function framework. This framework makes it

possible to leverage edge-sharpness cues, while using

patches to hallucinate texture.

2. We present an improved approach for finding the

patches that are used to construct the high-resolution

image. While previous methods have searched for

high-resolution patches that can be down-sampled to

match the input, we formulate a patch-selection pro-

cess by analyzing the textural characteristics of a re-

gion surrounding each pixel to find better candidate

image patches for the high-resolution estimate.

The new patch-selection process is designed to utilize the

texture appearance around image pixel, which is called the

textural context, to search a database of high-resolution im-

age segments for segments with similar low-resolution tex-

tural properties. These texturally-similar segments are then

used to hallucinate the candidate examples for each pixel

of high-resolution image. The texturally-similar segments

help to introduce reasonable high-frequency details into the

high-resolution result. The texturally-constrained approach

can be thought of as bridging the gap between image hal-

lucination and texture synthesis [6, 14] by constraining the

hallucinated patches to match the low-resolution input.

Given the discrete hallucinated candidate examples, we

cast the image super-resolution problem into a continuous

energy minimization framework. The energy function en-

forces the fidelity of high-resolution image to the input low-

resolution image, the fidelity of pixel to their discrete can-

didate examples, and the edge smoothness. Compared with

the previous methods, our method not only produces sharp

edges but also hallucinates results with reasonable textures.

The rest of this paper is organized as follows. Related

works are discussed in Section 2. In Section 3, we in-

troduce how to perform context-constrained hallucination.

Section 4 presents how to utilize the hallucinated examples

to design a continuous energy model for super-resolution.

Comparisons and Experiments are performed in Section 5.

Finally, this paper is concluded in Section 6.
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(a) Input image (b) SSIM = 0.68 (c) SSIM = 0.78 (d) Ground truth

Figure 1. Comparison of super-resolution results (×3). (b) Without context constraint, examples are searched from randomly sampled pairs

of high-resolution/low-resolution patches and the wall textures are not well hallucinated. (c) With context constraint, the wall textures are

successfully hallucinated by learning examples from the texturally similar segments. The super-resolution model in Section 4 is used to

produce both of the results. Compared with the ground-truth image, our result achieves significantly higher SSIM value.

2. Related work

Most of the edge-focused methods try to impose some

prior knowledge on the edges. Dai [5] propose a soft

edge smoothness prior and apply it to the alpha-channel of

salient edges. In [7, 24], the statistical relationship between

high-resolution and low-resolution edge features is studied

and imposed on high-resolution image. More edge-focused

methods can be found in [15, 20, 23, 26]. These methods

have produced excellent results with sharp edges. However,

they can hardly introduce novel high-frequency details in

the textural regions.

The hallucination method, which is also called learning

based method, advances the edge-focused method by learn-

ing high-resolution examples from a training database of

high-resolution/low-resolution patch pairs. Then the exam-

ples are synthesized to produce the high-resolution image

using Markov network [10, 27, 25] or combined to extend

the generalization ability of examples [4, 33, 28]. Due to the

difficulty in texture hallucination, Sun et al. [25] propose

to only hallucinate the primal sketches (e.g. edges, ridges

and corners). Xiong et al. [32] then propose to enhance

the image features before hallucination. To hallucinate cor-

rect textures, the domain specific texture priors are proposed

[21, 13], in which the within-class texture example should

be given. Recently, Glasner et al. [11] combine the hallu-

cination method and multi-image super-resolution method

in an unified framework. It learns the patch examples from

the single input low-resolution image and produce state-of-

the-art results. However, it might not produce the desired

high-frequecy details when no high resolution examples ex-

ist in the input image. These above hallucination methods

have achieved excellent results in primal sketches or textu-

ral regions. However, it is still hard to hallucinate both the

edges and textures automatically and simultaneously.

Unlike the previous work, the proposed method in this

paper takes advantage of the edge-focused method and hal-

lucination method in an unified energy minimization frame-

work and performs well both in textural regions and along

edges simultaneously.

3. Context-constrained hallucination

The first step in estimating the high-resolution image is

the selection of high-resolution examples that will be used

to create the high-resolution estimate. The goal is to pro-

duce a high-resolution image with rich and natural texture,

therefore the examples themselves must have the correct

texture.

We refer to hallucination under the constraint of textu-

ral context as context-constrained hallucination. The tex-

tural context of a pixel is defined as the textural appear-

ance of the segment surrounding the pixel. In this method,

the pixels in the high-resolution result are constrained by

the overall textural context of the corresponding pixels in

low-resolution input. This type of hallucination cannot be

achieved by directly finding the examples from the train-

ing set of high-resolution/low-resolution patch pairs as in

the traditional learning-based image hallucination [10, 25].

This is because just comparing the patch example with the

low-resolution observed patch makes it impossible to judge

if the texture in the high-resolution example, but not visible

in the corresponding low-resolution example, is correct.

We implement context-constrained image hallucination

by dividing all of the images in the training database into

segments with roughly uniform texture. The textural prop-

erties of example are controlled by drawing from the seg-

ments with textural properties that match the textural con-

text of the low-resolution pixel for which the example is

being generated.

Figure 1 presents an example for comparison between

the results with and without the textural context constraint

respectively. Using the same super-resolution model that

will be discussed in Section 4, the wall textures are success-

fully hallucinated in Figure 1(c) by learning examples from

the texturally similar segments. However, the traditional

hallucination methods, which directly find examples from

training set of high-resolution/low-resolution patch pairs,



Figure 2. The overview of context-constrained patch example search. The training set is composed of high-resolution/low-resolution

segment pairs. First, the input low-resolution image is up-sampled and segmented into texturally consistent segments [8, 19]. For each

pixel p, we utilize the segment surrounding the pixel to search ten texturally similar segment pairs from the training set by matching the

texture appearance in the low resolution. Then the texturally similar segments are searched to find the best example for the patch Ψp

surrounding p. Finally, the high-resolution example patch Ψ̂
h
p is hallucinated by high-frequency detail mapping from the example to the

observed patch (patches are normalized for better illustration).

similar to [10, 9], fail to hallucinate the correct textures.

The key to success in this approach is the ability to find im-

age segments in the training database that match the textual

context of each pixel in the low-resolution observation.

3.1. Overview of example generation

The example generation process is structured so that one

m × m high-resolution example patch is chosen for each

pixel in an upsampled version of the low-resolution input.

Excluding the borders, this leads to m2 candidate exam-

ples for each pixel in the estimated high-resolution image.

These candidate examples for each pixel will be utilized to

constrain the super-resolution model discussed in Section 4.

An example patch is found for a pixel p by two steps.

First, we search the database to find the top ten low-

resolution segments that are texturally similar to the im-

age segment that pixel p lies in. Then these ten segments

are searched to find the patch that best matches the patch

centered at p. For efficiency reasons, this search is lim-

ited to 100,000 randomly sampled locations within the ten

segments that are chosen for their textural similarity. Once

the best matching low-resolution patch is found, the high-

resolution example patch is extracted from the correspond-

ing high-resolution segments in the database.

Please refer to Figure 2 for the procedures of patch ex-

ample generation. The following paragraphs of Section 3

will discuss the components in detail.

3.2. Training database

The training database is constructed from 4000 natural

images of indoor and outdoor scenes, drawn from the in-

ternet photography forums (e.g. Flickr space) and LabelMe

database1. We down-sample the images and then up-sample

the derived low-resolution images by bicubic interpolation

to construct a set of high-resolution/low-resolution (i.e. the

up-sampled low-resolution) image pairs. Each pair is seg-

1http://labelme.csail.mit.edu

mented into roughly 40 segments using the Berkeley Seg-

mentation Engine 2(BSE) [8, 19], which produces segments

that are generally consistent texturally. In this way, we con-

struct a large training database with 1.6×105 pairs of high-

resolution/low-resolution segments. We denote the training

database as {Ωh
f , Ωl

f}, in which f is the down-sampling fac-

tor.

3.3. Texturally similar segments search

We now discuss the definition of textural context and the

method to find texturally similar segments from the training

database.

Visual context is a general term, and it has different def-

initions in object recognition [2], motion estimation [31],

etc. In this application, the textural context of a pixel is

defined as the textural appearance of segment surrounding

it. Inspired by biological vision research on texture percep-

tion [3], we define the texture appearance of an image seg-

ment by the distributions of its responses to the derivative

filter banks with 6 orientations and 3 scales. Each distribu-

tion of responses to a derivative filter at scale s and orien-

tation o is quantized by a histogram with 20 binsH{s,o} =
{h{s,o,b}}

20
b=1. Then the texture similarity between two seg-

ments S1 and S2 is measured by the distance between the

distributions across different scales and orientations:

χ2(S1, S2) =
∑

s

∑

o

∑

b

(h1
{s,o,b} − h2

{s,o,b})
2

h1
{s,o,b} + h2

{s,o,b}

, (1)

where the χ2 distance is the first-order approximation of the

Kullback-Leibler (KL) divergence distance [18].

For each segment Sk in the up-sampled low-resolution

image, we search the top 10 most similar low-resolution

segments in the training database, then their corresponding

high-resolution segments provide the textural context for

the hallucination of pixels in segment Sk. Figure 3 shows

three results of segment search. As we can observe, the

2http://www.cs.berkeley.edu/∼fowlkes/BSE/



Figure 3. Texturally similar segments search (segments are en-

closed in the red curves). The first column shows the upsampled

low-resolution segments. Two of the top similar segments in high

resolution are shown in the second to the third columns.

most similar segments have the texture appearance similar

to the query segment. Instead of providing the high-level

context information coming from the within-class objects,

the searched segments provide a middle-level textural con-

text for the pixels in the query segment.

3.4. High frequency detail mapping

Once the segments with the most similar textural appear-

ance have been found, the next step is to pick the actual ex-

ample patch. To extend the generalization ability of patch

representation, we normalize the low-resolution patch, both

in the query image and training set, by its mean and vari-

ance as in [25]. Patches are then compared using their Mean

Squared Error (MSE). For the observed patch Ψp centered

at p, denote the best sampled high-resolution/low-resolution

patch examples as {Ψl, Ψh}, then the actual high-resolution

example is produced by modifying the mean and norm of

Ψh to match the observed patch Ψp:

Ψ̂h
p =

(Ψh − µl)

σl
σl

p + µl
p, (2)

where {µl, σl} and {µp, σp} are the means and stardard de-

viations of patches Ψl and Ψp.

4. Image super-resolution model

In this section, we apply the hallucinated candidate ex-

amples to image super-resolution. Instead of modeling

super-resolution as a discrete-valued Markov network, as

in [10, 9, 27, 25], to choose among the candidate examples,

we cast the super-resolution problem into a continuous en-

ergy minimization problem, which is natural to combine the

high-resolution image reconstruction constraint and natural

image sparseness constraint [27].

Given the low-resolution image I l, in order to recon-

struct the high-resolution image Ih, we minimize the fol-

lowing energy function:

E(Ih) = E(Ih|I l) + β1Eh(Ih) + β2Ee(I
h) (3)

The first energy term is the high-resolution image recon-

struction term: E(Ih|I l) = |(Ih ∗ G) ↓ −I l|2, which

forces the down-sampled version (denoted by operator ↓)

of the high-resolution image to be close to the input low-

resolution image I l. The down-sampling of the high-

resolution image is approximated through the convolution

with a Gaussian kernel (with bandwidth 0.8, 1.2, 1.5 for

down-sampling factor of 2, 3, 4 in our implementation) and

then down-sampling by nearest neighbor interpolation as

in [5, 24].

The second and third energy term will be introduced in

the following subsections.

4.1. Hallucination term

The energy term Eh(Ih) forces the value of pixel p in

high-resolution image Ih to be close to the hallucinated can-

didate examples learned in Section 3.

For each pixel p, the patch examples Ψ̂h
q of size m × m

(in Equation (2)) centered at pixel q in m × m neighbor-

hood of p provide m2 candidate examples {ci}
m2

i=1 for pixel

p. Since the example pixels are discrete values, we should

develop a continuous energy term with local minima located

at these candidate examples. This can be modeled as:

Eh(Ih) =
∑

p

mini{(I
h(p) − ci(p))2} (4)

which achieves the minimum value 0 when Ih(p) equals

one of the examples ci(p) for each pixel p.

However, this energy term is not differentiable and in-

troduces the difficulty in energy minimization. Therefore,

we propose to approximate Equation (4) by a continuous

energy function:

Eh(Ih) = −
1

λ

∑

p

log(

m2∑

i=1

exp(−λdi(p))) (5)

where di(p) = (Ih(p) − ci(p))2.

This term is effectively a smooth approximation to the

minimum operator in Equation (4), where

min{d1, d2, ..., dm2} ≈ −
1

λ
log

m2∑

i=1

exp(−λdi). (6)

This is reasonable because the exponential of the min-

imum among {λdi} will dominate the summation in the

right formula, then the logarithm of the summation will ap-

proximate the minimum among {di}. The λ is set to scale

the differences among {di}, which is set to 10 in order to

make the minimum di sufficiently dominate the summation.

The energy term in Equation (5) is called the hallucina-

tion term. It forces Ih(p) to be close to one of the candidate

examples when the local minimum is achieved.



(a) (b) Bicubic (c) Without hallucination term (d) Without edge term (e) Final result

Figure 4. Comparison of super-resolution results (×4). (b) shows the result of bicubic interpolation, and it is blurry both in textural regions

and along edges. Combining the edge smoothness term and reconstruction term, the result shown in (c) is still not sharp in the hat region,

and artifacts along edges are introduced by the reconstruction term. Combining the hallucination term and reconstruction term, the result

shown in (d) is sharp in the hat region. However, there are still artifacts along the salient edges. The model combining reconstruction term,

hallucination term and edge smoothness term produces sharp edges with minimum artifacts and reasonable textures as shown in (e).

4.2. Edge smoothness term

The third energy term Ee(I
h) is the edge smoothness

term which forces the edges of the high-resolution image to

be sharp, with minimal ringing or jaggy artifacts. This en-

ergy term is designed to compensate the possible artifacts

along the salient edges introduced when optimizing the hal-

lucination term or reconstruction term.

We regularize the high-resolution image edges by natu-

ral image statistics. The student’s t-distribution [22] is used

to model the heavy-tailed distribution of image responses to

the first-order derivative filters [−0.25, 0.25] in four direc-

tions (i.e. 0o, 45o, 90o and 135o). By performing the neg-

ative logarithm of this sparseness prior, it imposes an edge

smoothness term on the high-resolution image:

Ee(I
h) = −

∑

p

{pb(p) ·
4∑

k=1

αk log[1 +
1

2
(fk ∗ Ih(p))2]},

where fk is the k-th filter and pb measures the probability

of boundary computed by color gradient and texture gra-

dient [19]. Due to the multi-orientation nature of natural

images, the distribution parameters αk (k = 1, 2, 3, 4) can

be reasonably assumed to be same, and then they will be

incorporated into the coefficient β2 of the energy term in

Equation (3).

The edge smoothness energy term mainly performs edge

enhancement on the salient edges weighted by pb, which

is always aligned with the segment boundaries produced

by the BSE [8, 19] algorithm when performing context-

constraint hallucination. Due to the high repetition of image

patches [11], the image pixels on the boundary of segments

can be mostly hallucinated by the context-constrained hallu-

cination. This edge smoothness term helps to produce clean

and sharp edges by suppressing the possible artifacts along

the salient edges.

4.3. Optimization

The energy function in Equation (3) for super-resolution

can be optimized by gradient descent method:

Ih
t+1 = Ih

t − τ∇E(Ih
t ), (7)

where t is iteration index and τ is the step size, which is set

to 0.25. The gradient of the energy function is:

∇E(Ih) = ((Ih∗G) ↓ −I l) ↑ ∗G+β1∇Eh(Ih)+β2∇Ee(I
h),

(8)

where ∇Eh(Ih) =
∑

p

∑m2

i=1
exp(−λdi(p))

P

k
exp(−λdk(p)) (I

h(p) − ci(p)),

and ∇Ee(I
h) = −pb

∑4
k=1 f−

k ∗ (fk∗Ih)
1+1/2(fk∗Ih)2

.

When optimizing the energy function, we initialize the

high-resolution pixel Ih(p) by the median of hallucinated

examples. The parameters β1 and β2 are set to 1 and 2

respectively by experimental justification, and the size of

patch m is set to 7, which produce all of the results in this

paper.

5. Experiments

We test our approach on a variety of natural images with

rich textures and edges. For color images, we only perform

image super-resolution on the illuminance channel in YUV

color space, and the color channels are up-sampled by the

bicubic interpolation.

To show the quality of results produced by the proposed

super-resolution model, Figure 4 compares the results of

models by combining the reconstruction term, edge smooth-

ness term and hallucination term in different ways. Fig-

ure 4 (c) is the result of the model combining construction

term and edge smoothness term, in which the strength of

edge smoothness term (i.e. β2) is set to 2 in order to bet-

ter suppress artifacts while preserving textures. The result



(a) Input (b) Hallucination (c) Deconvolution (d) Gradient profile prior (e) Our method

Figure 5. Comparison (×4) with hallucination [10], deconvolution [23], gradient profile prior [24] methods. Our method produces sharp

edges and reasonable textures in the result.

(a) Bicubic (b) Back-projection (c) Method in [11] (d) Our method

Figure 6. Comparison (×3) on zebra and koala images. The results of back-projection [12] have ringing and jaggy artifacts along edges.

The method in [11] produces excellent results. However, the stripes of horse and fur of koala shown in rectangles are not perfect. Our

method produces both sharp stripes with little artifacts on the body of horse, and sharp textures on the body of koala.

is still not sharp in the hat textural region, and there are

jaggy artifacts along the edges. Figure 4 (d) shows the re-

sult of model combining hallucination term and reconstruc-

tion term. In this result, the hat texture is sharp. However,

there are still jaggy artifacts along the edges as shown in the

rectangle. The model combining reconstruction term, hallu-

cination term and edge smoothness term produces the best

result with sharp edges and reasonable textures as shown in

Figure 4 (e).

In Figure 5, we compare our method with the edge-

focused approach, including deconvolution [23] and gradi-

ent profile prior [24] methods, and the traditional hallucina-

tion method [10]. The result of hallucination method in Fig-

ure 5 (b) is sharp in the textures. However, unpleasant arti-

facts are also introduced. The deconvolution-based method

uses the sparseness prior to regularize the high-resolution

image, which suppresses the high frequency details in the

texture region as shown in Figure 5 (c). The result of gra-

dient profile prior method shown in Figure 5 (d) is sharp

along salient edges. However, the sweater texture is blurry.



(a) SSIM = 0.871 (b) SSIM = 0.903 (c) SSIM = 0.914 (d) SSIM = 0.919

Figure 7. Comparison (×4) of results of (a) hallucination [10], (b) edge statistics [7], (c) method in [11] and (d) our method. Our method produces

comparable sharp edges as (b) (c) and hallucinates reasonable textures shown in the rectangle. Our method also produces the highest SSIM score.

Figure 8. More results (×3 in the left and middle examples and ×4 in the right example).

Our result in Figure 5 (e) is sharp both along edges and in

the textural regions as shown in the rectangle.

In Figure 6, we compare our result with back-projection

method [12] and the method in [11] on the images of zebra

and koala. The results of back-projection shown in Fig-

ure 6 (b) have ringing and jaggy artifacts along edges. The

method in [11] performs well through self-learning. How-

ever, the results are not sharp in the fur texture of koala

and there are artifacts in the stripes of zebra as shown in the

rectangles. Our method produces both sharp stripes with lit-

tle artifacts on the body of horse and reasonable textures on

the body of koala through context-constrained hallucination

and edge smoothness constraint.

In Figure 7, we apply our method to the test image in [7]

and compare with the results of hallucination method [10],

edge statistics method [7], and the method in [11]. Our

method produces comparable sharp edges as Figure 7 (b)

(c), and hallucinates sharp and reasonable textures in the



hat region enclosed by rectangle. We also quantitatively

compare the Structural Similarity [30] (SSIM) index of re-

sults with the original high-resolution image, and our result

produces the highest SSIM index.

Figure 8 shows more results which are magnified in fac-

tors of 3 and 4. All of these results show that our algorithm

performs well both in textural regions and along edges.

6. Conclusion

This paper proposed a context-constrained hallucination

approach by learning high-resolution examples from the

texturally similar training segments. This hallucination ap-

proach helps to introduce reasonable high frequency details

in results. Then an easily-optimized energy function com-

bining the hallucinated examples, edge smoothness con-

straint and high-resolution image reconstruction constraint

was proposed. We have shown that our method produces

better textures and comparable sharp edges compared with

the other state-of-the-art super-resolution methods.

Figure 9. Left: our result. Right: result in [11].

In Figure 9, we compare with the method in [11] on

an image with repeated characters across different scales.

For this type of image with repeated patterns in different

scales, the method in [11] is able to hallucinate the smaller

characters guided by their high resolution examples in the

same image. Our method also produces sharp and clear

high-resolution result. However, it does not recover the

smaller characters, as it is hard to recognize the same high-

resolution characters from the training database by texture

similarity. In the future, we are interested in defining high-

level context of image pixels and learning examples by rec-

ognizing the textures from the same object, in order to fur-

ther improve the hallucination term in our super-resolution

framework.
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