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Abstract There has been much interest in the belief–desire–intention (BDI) agent-based
model for developing scalable intelligent systems, e.g. using the AgentSpeak framework.
However, reasoning from sensor information in these large-scale systems remains a signif-
icant challenge. For example, agents may be faced with information from heterogeneous
sources which is uncertain and incomplete, while the sources themselves may be unreliable
or conflicting. In order to derive meaningful conclusions, it is important that such infor-
mation be correctly modelled and combined. In this paper, we choose to model uncertain
sensor information in Dempster–Shafer (DS) theory. Unfortunately, as in other uncertainty
theories, simple combination strategies in DS theory are often too restrictive (losing valuable
information) or too permissive (resulting in ignorance). For this reason, we investigate how
a context-dependent strategy originally defined for possibility theory can be adapted to DS
theory. In particular, we use the notion of largely partially maximal consistent subsets (LPM-
CSes) to characterise the context for when to use Dempster’s original rule of combination
and for when to resort to an alternative. To guide this process, we identify existing measures
of similarity and conflict for finding LPMCSes along with quality of information heuristics to
ensure that LPMCSes are formed around high-quality information.We then propose an intel-
ligent sensor model for integrating this information into the AgentSpeak framework which
is responsible for applying evidence propagation to construct compatible information, for
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performing context-dependent combination and for deriving beliefs for revising an agent’s
belief base. Finally, we present a power grid scenario inspired by a real-world case study to
demonstrate our work.

Keywords Dempster–Shafer theory · Information fusion ·Context-dependent combination ·
BDI · AgentSpeak · Uncertain beliefs

1 Introduction and related work

Supervisory control and data acquisition (SCADA) systems [5,10] have been applied in a
wide variety of industries including power [1,26,27], manufacturing [38] and water treat-
ment [34]. In these settings, SCADA systems deploy large numbers of sensors to collect
information for use by control mechanisms, security infrastructure, etc. In the electric power
industry, for example, information from sensors may be used to identify faults, preempt
outages and manage participation in energy trading markets [39]. However, given this abun-
dance of information from heterogeneous and imperfect sensors, an important challenge is
how to accurately model and combine (merge) this information to ensure well-informed
decision-making. While this already applies to traditional SCADA systems, it is of particular
importance to intelligent and scalable SCADA systems which are gaining increased inter-
est, e.g. those based on autonomous multi-agent frameworks [26,27]. Therefore, it is also
necessary to understand how this information can be used by these more advanced SCADA
models.

Within these large systems, sensors represent independent sources of information. For
example, in electric power systems, sensors might independently gather information about
features of the environment such as voltage, amperage, frequency. However, the information
obtained by these sensors may be uncertain or incomplete (e.g. due to noisy measurements)
while the sensors themselves may be unreliable (e.g. due to malfunctions, inherent design
limitations). Moreover, information from different sensors may be conflicting and so we
need some way to combine this information to find a representative and consistent model
of the underlying sources. This combined information can then be used for higher-level
decision-making. In this paper, we apply the Dempster–Shafer (DS) theory of evidence [31]
to model imperfect sensor information since it can be used to model common types of sensor
uncertainty (e.g. ignorance and imprecise information) and, more importantly, has mature
methods for combining information.

Using DS theory, information from a sensor can be modelled as a mass function. The
original and most common method of combining mass functions is using Dempster’s rule of
combination [31], which assumes that the mass functions have been obtained from reliable
and independent sources. While sensors may be unreliable, there exist methods in DS theory
which allow us to first discount unreliable information [31] such that we can then treat this
discounted information as fully reliable [25]. Given that our mass functions are independent
and can be treated as fully reliable, it would seem that this is a sufficient solution. How-
ever, the main problem arises when combining conflicting information. A classical example,
introduced by Zadeh [37], illustrates the effect of a high degree of conflict when applying
Dempster’s rule. Suppose patient P1 is independently examined by two doctors A and B
who have the same level of expertise and are equally reliable. A’s diagnosis is that P1 has
meningitis with probability 0.99 or a brain tumour with probability 0.01. B agrees with A
that the probability of a brain tumour is 0.01, but B believes that P1 has a concussion with
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probability 0.99. By applying Dempster’s rule, we would conclude that P1 has a brain tumour
with probability 1. Clearly, this result is counter-intuitive since it implies complete support
for a diagnosis that both A and B considered highly improbable.

Since Zadeh first introduced this counter-example, there has been extensive work on han-
dling conflicts between mass functions. This has resulted in a broad range of approaches
which fundamentally differ in how they deal with conflict. We might mention, for exam-
ple, Smet’s Transferable Belief Model [33] which extends DS theory with an open-world
assumption by allowing a nonzero mass to be assigned to the empty set (representing “none
of the above”). On the other hand, a popular alternative within standard DS theory—Dubois
and Prade’s [13] disjunctive consensus rule being a notable example—is to incorporate all
conflict during combination. For example, by applying Dubois and Prade’s rule in Zadeh’s
example, we would intuitively conclude that P1 has a brain tumour with probability 0.0001.
Unfortunately, both approaches tend to increase ignorance when faced with conflict, which is
problematic since our goal is to improve support for decision-making. For example, another
patient P2 is examined by doctors A and B. A’s diagnosis is that P2 has meningitis with
probability 0.99 or either meningitis, a brain tumour or concussion with probability 0.01.
B’s diagnosis is that P2 has either meningitis, a brain tumour or concussion with probability
1. By applying Dubois and Prade’s rule, we would only conclude that P2 has meningitis, a
brain tumour or concussion with probability 1. Clearly, this result is counter-intuitive since
it implies complete ignorance about the three possibilities, even though A believes it is
highly probable that P2 has meningitis. Conversely, by applying Dempster’s rule, we would
intuitively conclude that P2 has meningitis with probability 0.99.

While there are thosewhomaintain thatDempster’s rule is the onlymethod of combination
that should ever be used [16], we argue that no rule is suitable for every situation. In fact,
comparable problems have been identified in other uncertainty theories for which adaptive
combination strategies have been proposed [12,14,15,17]. In the literature, the majority of
the adaptive combination strategies have been proposed in the setting of possibility theory. In
general, these approaches focus on deciding when to use a conjunctive rule and when to use
a disjunctive rule, where the former is applied to information from reliable and consistent
sources aiming to reinforce commonly agreed opinions frommultiple sources, while the latter
is applied to information from conflicting sources aiming to not dismiss any opinions from
any sources. An early proposal was Dubois and Prade’s [12] adaptive combination rule which
combines two sources by applying both a conjunctive and disjunctive rule while taking into
account the agreement between sources. However, this rule is not associative meaning that it
does not reliably extend to combining information from a set of sources. For this reason, there
has been more interest in subset-based context-dependent combination strategies. An early
example of this approach was proposed in [15] where the combination rule assumes there are
n sources from which an unknown subset of j sources are reliable. In this case, a conjunctive
rule is applied to all subsets with cardinality j where the cardinality j represents the context
for using a conjunctive rule. The conjunctively combined information is then combined using
a disjunctive rule. Thisworkwas further developed in [14] by proposing amethod for deciding
on the value of j . Specifically, j was chosen as the cardinality of the largest subset for which
the application of a conjunctive rule would result in a normalised possibility distribution.
This approach more accurately reflects the specified conditions (i.e. the context) for applying
a conjunctive rule in possibility theory than previous adaptive strategies. However, since all
the subsets with cardinality j are combined using a conjunctive rule, most of these subsets
may contain conflicting information. Thus, the approach does not completely reflect the
context for applying a conjunctive rule. Moreover, as highlighted in [17], this approach is
not appropriate for dealing with disjoint consistent subsets of different sizes. To address
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this issue, Hunter and Liu proposed another context-dependent combination strategy in [17]
based on finding a partition of sources, rather than a set of fixed-size subsets. They refer
to this partition as the set of largely partially maximal consistent subsets (LPMCSes), and
again, each LPMCS represents the context for applying a conjunctive rule. However, rather
than requiring that each combined LPMCS be a normalised possibility distribution as in [14],
they instead define a relaxation of this rule in order to find subsets which are “mostly” in
agreement.

With regard to DS theory, sensor fusion is actively used in applications such as robotics
[28] and engine diagnostics [2]. Specifically, in Ref. [28], the authors propose an approach
to derive mass functions from information obtained from sensor observations and domain
knowledge by propagating the evidence into an appropriate frame of features. Once mass
functions are derived, they are then combined using a single combination rule, e.g.Dempster’s
rule.A robotwill then obtain a beliefwhere they can proceed or terminate a task.Alternatively,
in Ref. [2], an engine diagnostic problem requires a frame of discernment to represent fault
types, mass functions and Dempster’s rule for combination. The authors propose methods of
calculating mass functions as well as rational diagnosis decision-making rules and entropy
of evidence to improve and evaluate the performance of the combination. They demonstrate
through a scenario that decision conflicts can be resolved and the accuracy of fault diagnosis
can be improved by combining information from multiple sensors.

Within DS theory, the most relevant work is that proposed by Browne et al. [7]. In this
paper, the authors do not actually propose an adaptive combination strategy. Instead, they
use the variant of DS theory known as Dezert–Smarandache (DSm) theory to address some
of the limitations with standard DS theory in terms of handling conflict and handling non-
independent hypotheses. In particular, they propose a notion of maximal consistent subsets
which they use to characterise howmass functions should be discounted prior to combination
in DSm theory, given a number of possible discounting techniques. Oncemass functions have
been discounted, they then use the Proportional Conflict Redistribution Rule no. 5 (PCR5)
from DSm theory to combine evidence. As far as we are aware, there have been no other
approaches to context-dependent combination in DS theory.

To date, thework in [17] is arguably themost accurate reflection of the context for applying
a conjunctive rule. For this reason, we propose an approach to combine mass functions based
on the context-dependent strategy for combining information in possibility theory. In this
way, we aim to characterise the context for when to use Dempster’s rule and for when to
resort to an alternative (in this paper we focus onDubois and Prade’s rule). In particular, when
combining a set of mass functions, we first identify a partition of this set using a measure of
conflict in DS theory. This accurately reflects the accepted context for Dempster’s rule since,
even if a set of mass functions is highly conflicting, it is often possible to find subsets with a
low degree of conflict. Likewise, in Ref. [17], the authors use the most appropriate concepts
in possibility theory to determine the context for using the combination rule. Each element
in this partition is called a LPMCS and identifies a subset which should be combined using
Dempster’s rule. Once each LPMCS has been combined using Dempster’s rule, we then
resort to Dubois and Prade’s rule to combine the information which is highly conflicting.
Moreover, we utilise heuristics on the quality and similarity of mass functions to ensure
that each LPMCS is formed around higher-quality information. Similarly, in Ref. [17], the
authors use the most appropriate measures in possibility theory for measuring the quality
of information. When compared to traditional approaches, our context-dependent strategy
allows us to derive more useful information for decision-making while still being able to
handle a high degree of conflict between sources.
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Turning again to the issue of SCADA systems, we consider a particular multi-agent for-
mulation [35,36] of SCADA based on the belief–desire–intention (BDI) framework [6].
Recently, there has been interest in using the BDI framework for this purpose due to, among
other reasons, its scalability [18]. In this paper, we focus on the AgentSpeak [29] language
(for which there are a number of existing implementations [4]) which encodes a BDI agent by
a set of predefined plans used to respond to new event-goals. The applicability of these plans
is determined by preconditions which are evaluated against the agent’s current beliefs. As
such, our new context-dependent combination rule ensures that the agent can reason about a
large number of sensors which, in turn, ensures that they are well informed about the current
state of the world during plan selection. Importantly, we describe how combined uncertain
sensor information can be integrated into this agent model to improve decision-making. In
addition, we devise a mechanism to identify when information should be combined which
ensures the agent’s beliefs are up-to-date while minimising the computational cost associated
with combining information.

In summary, the main contributions of this work are as follows:

(i) We adapt a context-dependent combination rule from possibility theory to DS theory.
In particular, we identify suitable measures from DS theory for determining quality
and contextual information used to select subsets for which Dempster’s rule should be
applied.

(ii) We propose to handle uncertain sensor information in the BDI framework using an
intelligent sensor. This is responsible for constructing compatible mass functions using
evidence propagation, performing context-dependent combination and deriving beliefs
for revising an agent’s belief base.

(iii) Finally, we present a power grid scenario which demonstrates our framework. In par-
ticular, we describe the whole process from modelling uncertain sensor information as
mass functions to deriving suitable beliefs for an AgentSpeak agent’s belief base along
with the effect this has on decision-making.

The remainder of the paper is organised as follows. In Sect. 2, we introduce preliminaries
on DS theory. In Sect. 3, we describe our new context-dependent combination rule for mass
functions using LPMCSes. In Sect. 4, we demonstrate how to handle uncertain combined
sensor information in a BDI agent. In Sect. 5, we present a scenario based on a power grid
SCADA systemmodelled in the BDI framework to illustrate our approach. Finally, in Sect. 6,
we draw our conclusions.

2 Preliminaries

DS theory [31] is well suited for dealing with epistemic uncertainty and sensor data fusion.

Definition 1 LetΩ be a set of exhaustive and mutually exclusive hypotheses, called a frame
of discernment. Then, a function m : 2Ω → [0, 1] is called a mass function1 over Ω if
m(∅) = 0 and

∑
A⊆Ω m(A) = 1. Also, a belief function and a plausibility function from

m, denoted Bel and Pl, are defined for each A ⊆ Ω as:

Bel(A) =
∑

B⊆A

m(B),

Pl(A) =
∑

A∩B �=∅
m(B).

1 A mass function is also known as a basic belief assignment (BBA) andm(∅) = 0 is not required.
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Any A ⊆ Ω such that m(A) > 0 is called a focal element of m. Intuitively, m(A) is the
proportion of evidence that supports A, but none of its strict subsets. Similarly, Bel(A) is the
degree of evidence that the true hypothesis belongs to A andPl(A) is the maximum degree of
evidence supporting A. The values Bel(A) and Pl(A) represent the lower and upper bounds
of belief, respectively. To reflect the reliability of evidence, we can apply a discounting factor
to a mass function using Shafer’s discounting technique [31] as follows:

Definition 2 Let m be a mass function over Ω and α ∈ [0, 1] be a discount factor. Then, a
discounted mass function with respect to α, denotedmα , is defined for each A ⊆ Ω as:

mα(A) =
{

(1 − α) · m(A), if A ⊂ Ω,

α + (1 − α) · m(A), if A = Ω.

The effect of discounting is to remove mass assigned to focal elements and to then assign
this mass to the frame. When α = 0, the source is completely reliable, and when α = 1, the
source is completely unreliable. Once a mass function has been discounted, it is then treated
as fully reliable.

Definition 3 Let M be a set of mass functions overΩ. Then, a functionK : M×M → [0, 1]
is called a conflict measure and is defined for mi ,m j ∈ M as:

K(mi ,m j ) =
∑

B∩C=∅
mi (B)m j (C).

Understandably, it has been argued that K is not a good measure of conflict between mass
functions [22]. For example, given a mass functionm, then it is not necessarily the case that
K(m,m) = 0. Indeed, ifm has any non-nested focal elements, then it will always be the case
that K(m,m) > 0. Conversely, mass functions derived from evidence that is more dissimilar
(e.g. by some measure of distance) do not guarantee a higher degree of conflict. However,
the reason we consider this measure of conflict rather than more intuitive measures from the
literature is that this measure is fundamental to Dempster’s rule [31]:

Definition 4 Letmi andm j bemass functions overΩ from independent and reliable sources.
Then, the combined mass function usingDempster’s rule of combination, denotedmi ⊕m j ,
is defined for each A ⊆ Ω as:

(mi ⊕ m j )(A) =
{
c

∑

B∩C=A
mi (B)m j (C), if A �= ∅,

0, otherwise,

where c = 1
1−K(mi ,m j )

is a normalisation constant.

The effect of c is to redistribute the mass value that would otherwise be assigned to the
empty set. As mentioned in Sect. 1, Dempster’s rule is only well suited to combine evidence
with a low degree of conflict [30]. Importantly, when referring to the “degree of conflict”,
we are specifically referring to the K(mi ,m j ) value. It is this measure that we will use to
determine the context for using Dempster’s rule. In Ref. [13], an alternative to Dempster’s
rule was proposed as follows:

Definition 5 Let mi and m j be mass functions over Ω from independent sources. Then,
the combined mass function usingDubois and Prade’s (disjunctive consensus) rule, denoted
mi ⊗ m j , is defined for each A ⊆ Ω as:

(mi ⊗ m j )(A) =
∑

B∪C=A

mi (B)m j (C).
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Dubois and Prade’s rule incorporates all conflict and does not require normalisation. As
such, this rule is suitable for combining evidence with a high degree of conflict [30]. Impor-
tantly, each combination rule � ∈ {⊕,⊗} satisfies the following mathematical properties:
mi �m j = m j �mi (commutativity); andmi � (m j �mk) = (mi �m j ) �mk (associa-
tivity). This means that combining a set of mass functions using either rule, in any order, will
produce the same result. For this reason, given a set of mass functions M = {m1, . . . ,mn}
over Ω, we will use: ⊙

m∈M
m

to denote the combined mass functionm1 � · · ·�mn . It is worth noting, however, that these
rules do not satisfy m � m = m (idempotency).

The ultimate goal in representing and reasoning about uncertain information is to draw
meaningful conclusions for decision-making. To translate mass functions to probabilities, a
number of existing transformation models can be applied such as those in [9,11,32]. One
of the most widely used models is Smet’s pignistic model [32] which allows decisions to
be made from a mass function on individual hypotheses as follows (note that we use |A| to
denote the cardinality of a set A):

Definition 6 Let m be a mass function over Ω. Then, a function BetPm : Ω → [0, 1] is
called the pignistic probability distribution over Ω with respect tom and is defined for each
ω ∈ Ω as:

BetPm(ω) =
∑

A⊆Ω,ω∈A

m(A)

|A| .

3 Context-dependent combination

Various proposals have been suggested in the literature for adaptive combination rules [13,
14,24]. In this section, we explore ideas presented in [17] for the setting of possibility theory
and adapt these to DS theory. In particular, we find suitable measures to replace those used
in their work for determining contextual information, including a conflict measure (i.e. the K
measure from Dempster’s rule), quality measures (i.e. measures of non-specificity and strife)
and a similarity measure (i.e. a distancemeasure). However, before we explain how to adapt
their algorithm to DS theory, we provide the following intuitive summary. First, we identify
the highest quality mass function using quality of information heuristics.2 This mass function
is used as an initial reference point. Second, we find the most similar mass function to this
reference. Third, we use Dempster’s rule to combine the reference mass function with the
most similarmass function. Fourth,we repeat the second and third steps—using the combined
mass function as a new reference point—until the conflict with the next most similar mass
function exceeds some specified threshold. The set of mass functions prior to exceeding this
threshold constitutes an LPMCS. Finally, we repeat from the first step (on the remainingmass
functions) until all mass functions have been added to an LPMCS. Each LPMCS represents
a subset of mass functions with similar opinions and a “low” degree of conflict and thus
the context for using Dempster’s rule. On the other hand, the set of combined LPMCSes
represents highly conflicting information and thus the context for resorting to Dubois and
Prade’s rule.

2 We assume a strict preference ordering over sources when the selection is not unique.
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3.1 Preferring high-quality information

Themost commonmethods for characterising the quality of information inDS theory is using
measures of non-specificity (related to ambiguity) and strife (i.e. internal conflict). One such
measure of non-specificity was introduced in [21] as follows:

Definition 7 Let M be a set of mass functions over Ω. Then, a function N : M → R is
called a non-specificity measure and is defined for eachm ∈ M as:

N(m) =
∑

A⊆Ω s.t. A �=∅
m(A) log2 |A|.

Amass functionm is completely specific whenN(m) = 0 and is completely non-specific
when N(m) = log2 |Ω|. However, since a frame is a set of mutually exclusive hypotheses,
disjoint focal elements imply some disagreement in the information modelled by a mass
function. It is this type of disagreement which is characterised by a measure of strife. One
such measure was introduced in [21] as follows:

Definition 8 Let M be a set of mass functions over Ω. Then, a function S : M → R is
called a strife measure and is defined for eachm ∈ M as:

S(m) = −
⎛

⎝
∑

A⊆Ω s.t. A �=∅
m(A) log2

∑

B⊆Ω s.t. B �=∅
m(B)

|A ∩ B|
|A|

⎞

⎠ .

A mass function m has no internal conflict when S(m) = 0 and has complete internal
conflict when S(m) = log2 |Ω|. For example, given a mass function m over Ω = {a, b}
such that m({a}) = m({b}) = 0.5, then m has the maximum strife value S(m) = 1 =
log2 |Ω|. Using these measures for non-specificity and strife allows us to assess the quality
of information and, thus, to rankmass functions based on their quality. By adaptingDefinition
5 from [17], we can define a quality ordering over a set of mass functions as follows:

Definition 9 Let M be a set of mass functions over Ω. Then, a total order over M , denoted
Q , is called a quality order and is defined for mi ,m j ∈ M as:

mi �Q m j ⇔ (N(mi ) < N(m j )) ∨ (N(mi ) = N(m j ) ∧ S(mi ) < S(m j )),

mi ∼Q m j ⇔ N(mi ) = N(m j ) ∧ S(mi ) = S(m j ).

Moreover,mi Q m j ifmi �Q m j ormi ∼Q m j . Finally,mi is said to be of higher quality
than m j ifmi �Q m j .

Intuitively, amass function is of higher qualitywhen it ismore specific orwhen it is equally
specific but less internally conflicting. Thus, by definition, a lower non-specificity value is
preferred over a lower strife value. Obviously this quality ordering is not a strict order and so
does not guarantee a unique highest quality source. We denote the set of highest qualitymass
functions in M as max(M,Q) = {m ∈ M | �m′ ∈ M,m′ �Q m}. To handle the situation
where there are multiple highest quality mass functions, we make the assumption of a prior
strict preference ordering over sources, denoted �P . Given a set of mass functions M over
Ω, then for all mi ,m j ∈ M we say that mi is more preferred than m j if mi �P m j . This
preference ordering may be based on the reliability of sources, the significance of sources,
the order in which sources have been queried, etc. We denote the (unique) most preferred
mass function in M as max(M,�P ) = m such thatm ∈ M and �m′ ∈ M,m′ �P m.
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Table 1 Non-specificity and
strife values for a set of mass
functions M = {m1,m2,m3}
over Ω = {a, b, c}

mi mi ({a}) mi ({b, c}) N(mi ) S(mi )

m1 0.85 0.15 0.15 0.61

m2 0.7 0.3 0.3 0.881

m3 0.55 0.45 0.45 0.993

Definition 10 Let M be a set of mass functions over Ω. Then, the mass function Ref(M) =
max(max(M,Q),�P ) is called the reference mass function in M .

Example 1 Given the set of mass functions M as well as the non-specificity and strife values
for M as shown in Table 1, then the quality ordering over M is m1 �Q m2 �Q m3.
Thus, regardless of the preference ordering over M , the reference mass function in M is
Ref(M) = m1.

A reference mass function is a mass function with the maximum quality of information.
When this is not unique, we select the most preferred mass function from the set of mass
functions with the maximum quality of information. As we will see in Sect. 3.2, a reference
mass function is a mass function around which an LPMCS is formed. Thus, defining a
reference mass function in this way allows us to prefer higher-quality information when
finding LPMCSes.

3.2 Defining the context for combination rules

While our motivation in finding a reference mass function is to prefer higher-quality informa-
tion, it is possible that high-quality mass functions are also highly conflicting. As such, it is
not advisable to rely on the quality ordering for choosing the next mass function to consider
since this may result in smaller LPMCSes than is necessary. On the other hand, as mentioned
in Sect. 2, the conflict measure K may assign a low degree of conflict to very dissimilar
information. Therefore, relying on the conflict measure for choosing the next mass func-
tion to consider does not reflect our stated aim of forming LPMCSes around higher-quality
information. For this reason, we resort to a distance measure since this is a more appropriate
measure of similarity. In DS theory, distance measures have been studied extensively in the
literature and have seen theoretical and empirical validation [20]. One of the most popular
distance measures was proposed by Jousselme et al. [19] as follows:

Definition 11 Let M be a set of mass functions over Ω. Then, a function d : M × M → R

is called a distance measure and is defined for mi ,m j ∈ M as:

d(mi ,m j ) =
√
1

2

(−→mi − −→m j

)T
D

(−→mi − −→m j

)
,

where−→m is a vector representation ofmass functionm,−→m T is the transpose of vector−→m , and
D is a 2Ω ×2Ω similarity matrix whose elements are D(A, B) = |A∩B|

|A∪B| such that A, B ⊆ Ω.

Importantly, for any mass functionsm, we have that d(m,m) = 0. We can formalise the
semantics of this distance measure over a set of mass functions as follows:
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Table 2 Distance and conflict values for the set of mass functions M from Table 1

mi d(mi ,m1) d(mi ,m2) d(mi ,m3) K(mi ,m1) K(mi ,m2) K(mi ,m3)

m1 0 0.15 0.3 0.255 0.36 0.465

m2 0.15 0 0.15 0.36 0.42 0.48

m3 0.3 0.15 0 0.465 0.48 0.495

m1 ⊕ m2 0.08 0.23 0.38 0.199 0.328 0.457

m1 ⊕ m3 0.024 0.174 0.324 0.238 0.35 0.463

m2 ⊕ m3 0.11 0.04 0.19 0.332 0.404 0.476

Definition 12 Let M be a set of mass functions over Ω and m be a mass function over Ω.
Then, a total order over M , denoted �m

d , is called a distance order with respect to m and is
defined for mi ,m j ∈ M as:

mi �m
d m j ⇔ d(m,mi ) ≤ d(m,m j ).

Moreover, mi ∼m
d m j if mi �m

d m j and m j �m
d mi . Also, mi ≺m

d m j if mi �m
d m j and

m j �
m
d mi . We say that mi is closer to m thanm j is to m ifmi ≺m

d m j .

We denote the set of closest mass functions in M to m as min(M,�m
d ) = {m′ ∈ M |

�m′′ ∈ M,m′′ ≺m
d m′}. Using this distance ordering and the previously defined reference

mass function, we can then define a preferred sequence for combining a set of mass functions
with Dempster’s rule by adapting Definition 9 from [17] as follows:

Definition 13 Let M = {m1, . . . ,mn} be a set of mass functions over Ω such that n ≥ 1.
Then, the sequence (m1, . . . ,mn) is called the preferred sequence for combining M if one
of the following conditions is satisfied: (i) n = 1; or (ii) n > 1, Ref(M) = m1 and for each
i ∈ 2, . . . , n, we have that:

mi = max
(
min

(
{mi , . . . ,mn},�m1⊕...⊕mi−1

d

)
,�P

)
.

Example 2 (Continuing Example 1) Given the distance values for M as shown in Table 2,
then the preferred sequence for combining M is (m1,m2,m3).

Again we resort to the prior preference ordering over mass functions if there does not exist
a uniquemass function which is closest to the previously combinedmass functions. From this
preferred sequence of combination, we can then identify an LPMCS directly. Specifically,
given a set of mass functions, then an LPMCS is formed by applying Dempster’s rule to the
first m elements in the sequence until the conflict between the combined m mass functions
and the next mass function exceeds a specified threshold. This threshold reflects the degree of
conflict which we are willing to tolerate and is thus domain specific. By adapting Definition
10 from [17], we have the following:

Definition 14 Let M be a set of mass functions over Ω, (m1, . . . ,mn) be the preferred
sequence for combining M such that n = |M | and n ≥ 1 and εK be a conflict threshold.
Then, a set of mass functions {m1, . . . ,mm} ⊆ M such that 1 ≤ m ≤ n is called the largely
partially maximal consistent subset (LPMCS) with respect to εK, denoted L(M, εK), if one
of the following conditions is satisfied:
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(i) n = 1;
(ii) m = 1, n > 1 and K(m1 ⊕ . . . ⊕ mm,mm+1) > εK;
(iii) m > 1, m = n and for each i ∈ 2, . . . ,m then K(m1 ⊕ . . . ⊕ mi−1,mi ) ≤ εK;
(iv) m > 1, m < n and for each i ∈ 2, . . . ,m then K(m1 ⊕ . . . ⊕ mi−1,mi ) ≤ εK but

K(m1 ⊕ . . . ⊕ mm,mm+1) > εK.

Example 3 (Continuing Example 2) Given the conflict values for M as shown in Table 2
and a conflict threshold εK = 0.4, then the LPMCS in M is L(M, 0.4) = {m1,m2} since
K(m1,m2) = 0.36 ≤ 0.4 but K(m1 ⊕ m2,m3) = 0.457 > 0.4.

In this way, an LPMCS is the set of mass functions corresponding to the first maximal
subsequence (from the preferred sequence of combination) where the conflict is deemed (by
the conflict threshold) to be sufficiently low enough to apply Dempster’s rule. The complete
set of LPMCSes can then be recursively defined as follows:

Definition 15 Let M be a set of mass functions over Ω, εK be a conflict threshold and
L(M, εK) ⊆ M be the LPMCS in M . Then, the set of LPMCSes in M , denoted L∗(M, εK),
is a partition of M defined as:

L∗(M, εK) =
⎧
⎨

⎩

{L(M, εK)} if M\L(M, εK) �= ∅;
∪L∗(M\L(M, εK), εK),

{L(M, εK)}, otherwise.

Example 4 (Continuing Example 3) Given that L(M, εK) = {m1,m2}, then by the first
condition in Definition 15 we have that L∗(M, εK) = {{m1,m2}} ∪ L∗({m3}, εK), since
M\{m1,m2} = {m3} �= ∅. Now, by condition (i) in Definition 14, we have that
L({m3}, εK) = {m3}. Thus L∗({m3}, εK) = {{m3}} by the second condition in Defini-
tion 15 since {m3}\{m3} = ∅. Therefore, the set of LPMCSes in M is L∗(M, εK) =
{{m1,m2}} ∪ {{m3}} = {{m1,m2}, {m3}}.

Having defined the set of LPMCSes, we can now define our context-dependent combina-
tion rule using both Dempster’s rule and Dubois and Prade’s rule as follows:

Definition 16 Let M be a set of mass functions from independent and reliable sources and
εK be a conflict threshold. Then, the combined mass function from M with respect to εK
using the context-dependent combination rule is defined as:

⊗

M ′∈L∗(M,εK)

⊕

m∈M ′
m.

In other words, the combined mass function is found by combining each LPMCS using
Dempster’s rule and then combining the set of combined LPMCSes using Dubois and Prade’s
rule.

Example 5 (Continuing Example 4) Given a conflict threshold εK = 0.4, then the context-
dependent combined mass function from M with respect to εK is shown in Table 3. For
comparison, the combined mass functions using only Dempster’s rule and only Dubois and
Prade’s rule are also shown in Table 3.

It is evident from Example 5 that the context-dependent combination rule finds a balance
between the two other combination rules: neither throwing away too much information (as
is the case with Dempster’s rule), nor incorporating too much conflict such that it is difficult
to make decisions (as is the case with Dubois and Prade’s rule).

123



270 S. Calderwood et al.

Table 3 Combined mass functions from the set of mass functions M from Table 1

Context-dependent (εK = 0.4) Dempster’s rule Dubois and Prade’s rule

m({a}) 0.511 0.942 0.327

m({b, c}) 0.032 0.058 0.02

m({a, b, c}) 0.457 0 0.652

Algorithm 1: Context-dependent combination of a set of mass functions.
Input: Set of mass functions M �= ∅, conflict threshold εK and preference ordering �P
Output: Combined mass functionmr
M ′ ← ∅;1

mr ← max
(
max

(
M, Q

)
, �P

)
;2

M ← M \ {mr };3
while M �= ∅ do4

mc ← max
(
min

(
M, �mr

d

)
, �P

)
;5

if K(mr ,mc) ≤ εK then6
mr ← mr ⊕ mc;7
M ← M \ {mc};8

else9
M ′ ← M ′ ∪ {mr };10

mr ← max
(
max

(
M, Q

)
, �P

)
;11

M ← M \ {mr };12

foreach m′
r ∈ M ′ do13

mr ← mr ⊗ m′
r ;14

return mr ;15

3.3 Computational aspects

Algorithm 1 provides a method for executing context-dependent combination of a set of mass
functions M , given a conflict threshold εK and strict preference ordering �P . On line 1, the
set of LPMCSes is initialised. On line 2, a list of mass functions representing the combined
quality and preference orderings can be constructed with respect to the non-specificity and
strife values of each mass function in M and the preference ordering�P . The first element in
this list would then be selected as the initial reference mass functionmr as in Definition 10.
Moreover, this list can be referred to again on line 11. Lines 5–8 describe how to compute an
LPMCS with respect to the current reference mass function mr . Specifically, on line 5, mc

represents the closest and most preferred mass function to mr as in Definition 13. It is not
necessary to compute the full ordering mr

d on line 5; instead, we only require one iteration
through M (in order of �P ) to find mc. This mass function is compared with mr on line
6 which represents the condition for including a mass function in the current LPMCS as in
Definition 14. On line 7, we combine the reference mass function with the closest and most
preferred mass function, and this combined mass function becomes our new reference. Lines
9–12 describe the behaviour when a complete LPMCS has been found. In particular, the
complete LPMCS (which has been combined using Dempster’s rule) is added to the set of
previously found LPMCSes on line 10. Then, on line 11, we find the reference mass function
for a new LPMCS by referring back to the combined quality and preference list constructed
on line 2. Finally, when there are no remaining mass functions in M , the current reference
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mr represents the final combined LPMCS. However, this LPMCS is not added to the set of
LPMCSes M ′, rather we just begin combining each combined LPMCS in M ′ withmr using
Dubois and Prade’s rule as described on lines 13 and 14. Once this is complete, the mass
functionmr represents the final context-dependent combined mass function as in Definition
16 and this is returned on line 15.

Proposition 1 The complexity of applying the context-dependent combination rule on a set
of mass functions M is O(n2) such that n = |M |.

Proof In order to select a reference mass function, we only need to compute n pairs of non-
specificity and strife values. Thus, the complexity of selecting a reference mass function is
O(n). After selecting a reference mass function, there can be at most n − 1 mass functions
which have not been added to an LPMCS. In this case, selecting a closest and most preferred
mass function requires the computation of n − 1 distance values. Thus, the complexity of
selecting a closest and most preferred mass function is also O(n). In the worst case, where
every LPMCS is a singleton, we need to select n reference mass functions of which there are
n − 1 requiring the selection of a closest and most preferred mass function. Thus, the overall
complexity is O(n2).

4 Handling sensor information in BDI

In this section we begin by introducing preliminaries on the AgentSpeak framework [29] for
BDI agents. We then describe the necessary steps for handling uncertain sensor information
in AgentSpeak. In Sect. 5, wewill present a power grid SCADA scenario which demonstrates
howsensor information can bemodelled and combined usingDS theory and then incorporated
into a BDI agent defined in AgentSpeak.

4.1 AgentSpeak

AgentSpeak is a logic-based programming language related to a restricted form of first-order
logic, combined with notions for events and actions. In practice, it shares many similarities
with popular logic programming languages such as Prolog. The language itself consists of
variables, constants, predicate symbols, action symbols, logical connectives and punctua-
tion. Following logic programming convention, variables begin with uppercase letters, while
constants, predicate symbols and action symbols begin with lowercase letters. As in first-
order logic, these constructs can be understood as terms, i.e. a variable is a term, a constant
is a term, and if p is an n-ary predicate symbol and t1, . . . , tn are terms, then p(t1, . . . , tn)
is a term. A term is said to be ground or instantiated if there are no variables or if each
variable is bound to a constant by a unifier. We will use t to denote the terms t1, . . . , tn .
The supported logical connectives are ¬ and ∧ for negation and conjunction, respectively.
Also, the punctuation in AgentSpeak includes !, ?, ; and ← and the meaning of each will be
explained later. From [29], the syntax of the AgentSpeak language is defined as follows:

Definition 17 If b is a predicate symbol, then b(t) is a belief atom. If b(t) is a belief atom,
then b(t) and ¬b(t) are belief literals.

Definition 18 If g is a predicate symbol, then !g(t) and ?g(t) are goals where !g(t) is an
achievement goal and ?g(t) is a test goal.
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Definition 19 If b(t) is a belief atom and !g(t) and ?g(t) are goals, then+b(t),−b(t),+!g(t),
−!g(t),+?g(t) and−?g(t) are triggering eventswhere+ and− denote addition and deletion
events, respectively.

Definition 20 If a is an action symbol, then a(t) is an action.

Definition 21 If e is a triggering event, l1, . . . , lm are belief literals and h1, . . . , hn are goals
or actions, then e : l1 ∧ . . . ∧ lm ← h1; . . . ; hn is a plan where l1 ∧ . . . ∧ lm is the context
and h1; . . . ; hn is the body such that ; denotes sequencing.

An AgentSpeak agent A is a tuple 〈Bb, Pl, A, E, I 〉3 with a belief base Bb, a plan library
Pl, an action set A, an event set E and an intention set I . The belief base Bb is a set of belief
atoms4 which describe the agent’s current beliefs about the world. The plan library Pl is a
set of predefined plans used for reacting to new events. The action set A contains the set of
primitive actions available to the agent. The event set E contains the set of events which the
agent has yet to consider. Finally, the intention set I contains those plans which the agent has
chosen to pursue where each intention is a stack of partially executed plans. Intuitively, when
an agent reacts to a new event e, it selects those plans from the plan library which have e as
their triggering event (called the relevant plans for e). A relevant plan is said to be applicable
when the context of the plan evaluates to true with respect to the agent’s current belief base.
For a given event e, there may bemany applicable plans fromwhich one is selected and either
added to an existing intention or used to form a new intention. Intentions in the intention set
are executed concurrently. Each intention is executed by performing the steps described in the
body of each plan in the stack (e.g. executing primitive actions or generating new subgoals).
Thus, the execution of an intention may change the environment and/or the agent’s beliefs.
As such, if the execution of an intention results in the generation of new events (e.g. the
addition of subgoals), then more plans may be added to the stack for execution. In Sect. 5,
we will consider AgentSpeak programs in more detail, but for the rest of this section, we are
primarily interested in how to derive belief atoms from sensors.

4.2 Deriving beliefs from uncertain sensor information

By their nature, heterogeneous sensors output different types of sensor information. While
this presents some important practical challenges in terms of how to construct mass functions
from original sensor information, any solutions will be unavoidably domain-specific. In this
paper, we do not attempt to address this issue directly, but we can suggest some possibilities.
For example, if a sensor returns numerical information in the form of an interval, then we can
assign a mass of 1 to the set of discrete readings included in the interval. Similarly, if a sensor
returns a reading with a certainty of 80 %, then we can assign a mass of 0.8 to the relevant
focal set. So, without loss of generality, we assume that an appropriate mass function can
be derived from any source. Moreover, we assume that each source has a reliability degree
1 − α and that each mass function has been discounted with respect to the α value of the
originating source. Thus, for the remainder of this section, we assume that eachmass function
is actually a discounted mass function mα which can be treated as fully reliable. However,
it is unlikely that all compatible sources (i.e. sources with information which is suitable for
combination) will return strictly compatible mass functions (i.e. mass functions defined over

3 For simplicity, we omit the selection functions SE , SO and SI .
4 In the AgentSpeak language, ¬ denotes negation as failure rather than strong negation since the belief base
only contains belief atoms, i.e. positive belief literals.
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the same frame). To address this issue, the notion of an evidential mapping was introduced
in [23] as follows:

Definition 22 Let Ωe and Ωh be frames. Then, a function Γ : Ωe × 2Ωh → [0, 1] is
called an evidential mapping from Ωe to Ωh if for each ωe ∈ Ωe, Γ (ωe,∅) = 0 and∑

H⊆Ωh
Γ (ωe, H) = 1.

In other words, for each ωe ∈ Ωe, an evidential mapping defines a mass function over
Ωh which describes how ωe relates to Ωh . In line with DS terminology, a set H ⊆ Ωh is
called a projected focal element of ωe ∈ Ωe if Γ (ωe, H) > 0. Importantly, given a mass
function over Ωe, then an evidential mapping allows us to derive a new mass function over
Ωh directly as follows [23]:

Definition 23 Let Ωe and Ωh be frames, me be a mass function over Ωe and Γ be an
evidential mapping from Ωe to Ωh . Then, a mass functionmh over Ωh is called an evidence
propagated mass function fromme with respect to Γ and is defined for each H ⊆ Ωh as:

mh(H) =
∑

E⊆Ωe

me(E)Γ ∗(E, H),

where:

Γ ∗(E, H) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑
ωe∈E

Γ (ωe,H)
|E | , if H �= ⋃

HE ∧ ∀ωe ∈ E, Γ (ωe, H) > 0,
1 − ∑

H ′∈HE
Γ ∗(E, H ′), if H = ⋃

HE ∧ ∃ωe ∈ E, Γ (ωe, H) = 0,
1 − ∑

H ′∈HE
Γ ∗(E, H ′) if H = ⋃

HE ∧ ∀ωe ∈ E, Γ (ωe, H) > 0,
+∑

ωe∈E
Γ (ωe,H)

|E | ,

0, otherwise,

such that HE = {H ′ ⊆ Ωh | ωe ∈ E, Γ (ωe, H ′) > 0} and ⋃
HE = {ωh ∈ H ′ | H ′ ∈ HE }.

The valueΓ ∗(E, H) fromDefinition 23 actually represents a complete evidentialmapping
for E and H as defined in [23] such thatΓ is a basic evidentialmapping function. In particular,
the first condition defines the mass for E and H directly from Γ if each ωe ∈ E implies
H to some degree, i.e. if H is a projected focal element of each ωe ∈ E . In this case, the
actual mass for E is taken as the average mass from the basic mapping for all supporting
elements in E . The second condition then recursively assigns the remaining mass that was
not assigned by the first condition to the set of possible hypotheses implied by E , i.e. the
union of all projected focal elements for all ωe ∈ E . The third condition says that when H
is a projected focal element of each ωe ∈ E and when H = ⋃

HE , then we need to sum the
results from the first two conditions. Finally, the fourth condition just assigns 0 to all other
subsets. Note that it is not necessary to compute the complete evidential mapping function
in full since we are only interested in focal elements ofme.

Example 6 Given the evidential mapping from Table 4 and a mass function me over Ωe

such that me({e2}) = 0.7 and me(Ωe) = 0.3, then a mass function mh over Ωh is the
evidence propagatedmass function fromme with respect toΓ such thatmh({h1, h2}) = 0.49,
mh(Ωh) = 0.3 andmh({h4}) = 0.21.

In terms of integrating uncertain sensor information into AgentSpeak, evidence propaga-
tion provides two benefits. Firstly, it allows us to correlate relevant mass functions that may
be defined over different frames such that we can derive compatible mass functions which
are suitable for combination. Secondly, it allows us to map disparate sensor languages into
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Table 4 Evidential mapping Γ

from Ωe = {e1, e2, e3} to
Ωh = {h1, . . . , h4}

{h1, h2} {h3} {h4}
(a) Evidential mapping Γ

e1 0.5 0.5 0

e2 0.7 0 0.3

e3 0 0 1

{h1, h2} {h3} {h4} {h1, h2, h4} Ωh

(b) Complete evidential mapping Γ ∗
{e1} 0.5 0.5 0.0 0.0 0.0

{e2} 0.7 0.0 0.3 0.0 0.0

{e3} 0.0 0.0 1.0 0.0 0.0

{e1, e2} 0.6 0.0 0.0 0.0 0.4

{e1, e3} 0.0 0.0 0.0 0.0 1.0

{e2, e3} 0.0 0.0 0.65 0.35 0.0

Ωe 0.0 0.0 0.0 0.0 1.0

a standard AgentSpeak language, i.e. where each frame is a set of AgentSpeak belief atoms.
For the remainder of this section, we will assume that evidence propagation has been applied
and that any mass functions which should be combined are already defined over the same
frame. However, in terms of decision-making (i.e. the selection of applicable plans), classical
AgentSpeak is not capable of modelling and reasoning with uncertain information. As such,
it is necessary to reduce the uncertain information modelled by a mass function to a classical
belief atom which can be modelled in the agent’s belief base. For this purpose, we propose
the following:

Definition 24 Let m be a mass function over Ω and 0.5 < εBetP ≤ 1 be a pignistic
probability threshold. Then, m entails the hypothesis ω ∈ Ω, denoted m |�εBetP ω, if
BetPm(ω) ≥ εBetP .

When amass function is defined over a set of belief atoms, the threshold εBetP ensures that
at most one belief atom is entailed by the mass function. However, this definition also means
that it is possible for no belief atom to be entailed. In this situation, the interpretation is that
we have insufficient reason to believe that any belief atom in the frame is true. Thus, if no
belief atom is entailed by a mass function, then we are ignorant about the frame of this mass
function. In AgentSpeak, we can reason about this ignorance using negation as failure. While
this approach is a drastic (but necessary) step to modelling uncertain sensor information in
classical AgentSpeak, an extension to AgentSpeak was proposed in [3] which allows us to
model and reason about uncertain beliefs directly. Essentially, for each mass functionm, the
pignistic probability distibutionBetPm would bemodelled as one ofmany epistemic states in
the extended AgentSpeak agent’s belief base, now called a global uncertain belief set (GUB).
Using an extended AgentSpeak language, we can then reason about uncertain information
held in each epistemic state using qualitative plausibility operators (e.g. describing that some
belief atom is more plausible than another). For simplicity, we will not present this work in
detail, but instead refer the reader to [3] for the full definition of a GUB.
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Obviously, there is a computational cost associated with combination. For this reason, we
introduce the following conditions to describe when information has changed sufficiently to
warrant combination and revision:

Definition 25 Let S be a set of sources, Ω be a frame, ms,t be a mass over Ω from source
s ∈ S at time t , and εd be a distance threshold. Then, the context-dependent combination
rule is applied at time t + 1 to the set {ms,t+1 | s ∈ S} if there exists a source s′ ∈ S such
that d(ms′,t ,ms′,t+1) ≥ εd.

This definition says that the context-dependent combination rule should only be applied
when the information obtained from any one source has changed sufficiently (formalised
by the distance threshold εd). However, to ensure that smaller incremental changes are not
overlooked, it is still necessary to combine and revise information at some specified intervals.
Thus, this definition just provides a method to minimise redundant computation.

In summary, integration with anAgentSpeak agent can be handled by a sensor information
preprocessor or intelligent sensor which can perform the following steps:

(i) Discount each mass function with respect to the source reliability degree 1 − α.
(ii) Apply evidence propagation using evidential mappings to derive compatible mass func-

tions for combination which are defined over AgentSpeak belief atoms.
(iii) Combine relevant mass functions by applying the context-dependent combination rule

if any source has returned sufficiently dissimilar information from the information
previously recorded for that source.

(iv) Derive a belief atom from the combined mass function and revise the AgentSpeak
agent’s belief base with this new belief atom.

Note that even if information for some source does not need to be combined with information
for another, then steps (i), (ii) and (iv) can still be performed to reflect the reliability of the
source and to derive suitable AgentSpeak belief atoms.

5 Scenario: power grid SCADA system

This scenario is inspired by a case study on an electric power grid SCADA system used to
manage power generation, transmission and distribution. In the power grid, system frequency
refers to the frequency of oscillations of alternating current (AC) transmitted from the power
grid to the end-user. In the UK, the frequency standard is 50 Hz and suppliers are obligated to
maintain the frequency within a deviation of±1%. If demand is greater than generation, then
frequencywill decrease, but if generation is greater thandemand, then frequencywill increase.
Thus, maintaining the correct frequency level is a load-balancing problem between power
demand and power generation. In this scenario, the power grid is managed by a BDI agent
encoded in AgentSpeak with a set of belief atoms, a set of primitive actions and a predefined
plan library.With regard to frequency, the agentmay believe the current level is low, normal or
high (represented by belief atomsfreq(l),freq(n) andfreq(h), respectively). Examples
of AgentSpeak plans in the agent’s plan library include the following:

P1 +!run_combiner : freq(n) < − !run_inverter; distribute_power;
…

P2 +freq(l) : true < − !generate_alert; !stop_combiner; !
run_windfarm; …
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The plan P1 describes the steps that should be taken if the agent obtains the goal
!run_combiner and also believes that the current frequency level is normal. These steps
involve a new sub-goal !run_inverter and a primitive action distribute_power.
On the other hand, the plan P2 describes the steps that should be taken when the agent
obtains the belief that the current frequency level is low. In this case, the steps involve new
sub-goals !generate_alert, !stop_combiner and !run_windfarmwith the aim
of increasing power generation.

Obviously, determining an accurate view of the current frequency level is vital for ensuring
that the correct level is maintained. In this scenario, there are many sources of informa-
tion which the agent may consult to determine the current level. For simplicity, we will
focus on two main types of sources relevant to frequency. The first is sensors which provide
numerical measurements of frequency levels from the set Ωs

e = {48.7, 48.8, . . . , 51.3}. The
second is experts which provide general estimations of frequency levels from the set Ωe

e =
{normal, abnormal}. Information from both types of sources may be effected by uncertainty.
For example, the accuracy of sensors may vary due to design limitations or environmental
factors, experts may lack confidence in their estimations, and sources may be treated as unre-
liable due to previously incorrect information. In Table 5, we define evidential mappings from
Ωs

e and Ωe
e to the set of AgentSpeak belief atoms Ωh = {freq(l),freq(n),freq(h)}.

These mappings allow us to combine different types of information and to derive suitable
belief atoms for revising the agent’s belief base. Essentially the sensor mapping defines a
fuzzy distribution over the range of possible sensor values, while the expert mapping defines
a probabilistic relation between the abnormal estimation and the belief atoms freq(l) and
freq(h) (assigning equal probability to each).

Table 6a represents an illustrative scenario in which a number of sensors and experts have
provided information about the current frequency level. Some sensor values have a deviation
(e.g. ±0.1 Hz), while experts have expressed a degree of confidence in their assessment (e.g.
90% certain). For example, source s2 is a sensor which has determined that the frequency
is 51.2 Hz with a deviation ±0.1 Hz, whereas s5 is an expert which has estimated that the
frequency level is abnormal with 90% certainty. Moreover, each source has a prior reliability
rating 1 − α based on historical data, age, design limitations and faults, etc. Table 6a shows
that s1 is the most reliable source, while s10 is the least reliable. In Table 6b, we can see how
the information provided in Table 6a is modelled as mass functions and how these correspond
to discounted mass functions, given their respective α values. For example, source s1 has
determined that the frequency is 51.2 Hz. By modelling this sensor information as a mass
function m1, we have that a mass of 1 is assigned to the singleton set {51.2}. Alternatively,
source s10 has estimated that the frequency level is abnormal with 75 % certainty. By mod-
elling this expert information as a mass functionm10, we have that a mass of 0.75 is assigned
to the singleton set {abnormal}, while the remaining mass is assigned to the frame Ω. Each
mass function is then discounted with respect to the reliability of the original source. For
example, the source s1 has a reliability of 0.98 and so the mass function m1 is discounted
using a discount factor α = 1 − 0.98 = 0.02. Finally, Table 6c provides the evidence prop-
agated mass functions over Ωh with respect to Table 5 representing the compatible mass
functions from each source.

In this scenario, we are not interested in the information provided by individual sources;
rather, we are only interested in reasoning about the information as a whole. To achieve
this, we must first combine the set of evidence propagated mass functions from Table 6c.
Table 7 demonstrates how to apply the context-dependent combination rule on this set ofmass
functions by computing LPMCSes using an arbitrarily chosen conflict threshold εK = 0.3.
Firstly, Table 7a provides the quality of information heuristics used to find a reference mass
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Table 5 Evidential mappings from Ωs
e and Ωe

e to Ωh

{freq(l)} {freq(l),freq(n)} {freq(n)} {freq(n),freq(h)} {freq(h)}
(a) Sensor frame Ωs

e

48.7 1 0 0 0 0

48.8 1 0 0 0 0

48.9 1 0 0 0 0

49 0.75 0.25 0 0 0

49.1 0.5 0.5 0 0 0

49.2 0.25 0.75 0 0 0

49.3 0 1 0 0 0

49.4 0 1 0 0 0

49.5 0 1 0 0 0

49.6 0 0.75 0.25 0 0

49.7 0 0.5 0.5 0 0

49.8 0 0.25 0.75 0 0

49.9 0 0 1 0 0

50 0 0 1 0 0

50.1 0 0 1 0 0

50.2 0 0 0.75 0.25 0

50.3 0 0 0.5 0.5 0

50.4 0 0 0.25 0.75 0

50.5 0 0 0 1 0

50.6 0 0 0 1 0

50.7 0 0 0 1 0

50.8 0 0 0 0.75 0.25

50.9 0 0 0 0.5 0.5

51 0 0 0 0.25 0.75

51.1 0 0 0 0 1

51.2 0 0 0 0 1

51.3 0 0 0 0 1

(b) Expert frame Ωe
e

normal 0 0 1 0 0

abnormal 0.5 0 0 0 0.5

function. In this case, we selectmh
1 as the reference since it has the minimum non-specificity

and strife values. This mass function is then used to form a new (partial) LPMCS. Secondly,
Table 7b provides the distance values betweenmh

1 and all other mass functions. From these,
we select mh

3 as the next mass function in the preferred sequence of combination since it
has the minimum distance to mh

1 . Thirdly, referring to Table 7c we can see that the conflict
between mh

1 and mh
3 is under the threshold meaning that mh

3 is added to the LPMCS and
mh

1 ⊕ mh
3 becomes the new reference mass function. This process continues until we reach

mh
5 where the conflict betweenm

h
1 ⊕ . . . ⊕mh

7 andm
h
5 is above the threshold. Thus, the set

{mh
1, . . . ,m

h
4,m

h
6, . . . ,m

h
9} is the first LPMCS with respect to εK and a new reference must

be selected from the set {mh
5,m

h
10}. Referring again to Table 7a, we find thatmh

5 is the highest
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Table 7 Finding LPMCSes in {mh
1 , . . . ,mh

10} when εK = 0.3

mh
1 mh

2 mh
3 mh

4 mh
5 mh

6 mh
7 mh

8 mh
9 mh

10

(a) Non-specificity and strife values

N(mh
i ) 0.032 0.475 0.127 0.509 0.372 0.557 0.543 0.158 0.158 0.812

S(mh
i ) 0.031 0.272 0.11 0.286 0.774 0.288 0.228 0.132 0.133 0.487

mh
i mh

2 mh
3 mh

4 mh
5 mh

6 mh
7 mh

8 mh
9 mh

10

(b) Distance values

mh
1 0.229 0.049 0.251 0.509 0.294 0.351 0.065 0.076 0.584

mh
1 ⊕ mh

3 0.244 – 0.266 0.521 0.308 0.363 0.08 0.089 0.598

mh
1 ⊕ mh

3 ⊕ mh
8 0.245 – 0.267 0.522 0.309 0.364 – 0.09 0.599

mh
1 ⊕ . . . ⊕ mh

9 0.245 – 0.267 0.522 0.309 0.364 – – 0.6

mh
1 ⊕ . . . ⊕ mh

2 – – 0.267 0.523 0.309 0.364 – – 0.6

mh
1 ⊕ . . . ⊕ mh

4 – – – 0.523 0.309 0.364 – – 0.6

mh
1 ⊕ . . . ⊕ mh

6 – – – 0.523 – 0.364 – – 0.6

mh
1 ⊕ . . . ⊕ mh

7 – – – 0.523 – – – – 0.6

mi m j K(mi ,m j )

(c) Conflict values

mh
1 mh

3 0

mh
1 ⊕ mh

3 mh
8 0

mh
1 ⊕ mh

3 ⊕ mh
8 mh

9 0

mh
1 ⊕ . . . ⊕ mh

9 mh
2 0

mh
1 ⊕ . . . ⊕ mh

2 mh
4 0

mh
1 ⊕ . . . ⊕ mh

4 mh
6 0

mh
1 ⊕ . . . ⊕ mh

6 mh
7 0

mh
1 ⊕ . . . ⊕ mh

7 mh
5 0.382

mh
5 mh

10 0.186

quality mass function and select this as our new reference. Since mh
10 is the only remaining

mass function,we just need tomeasure the conflict betweenmh
5 andm

h
10 wherewefind that the

conflict is below the threshold. Thus, the set {mh
5,m

h
10} is the secondLPMCSand the complete

set of LPMCSes is L∗({mh
1, . . . ,m

h
10}, 0.3) = {{mh

1, . . . ,m
h
4,m

h
6, . . . ,m

h
9}, {mh

5,m
h
10}}.

The combinedmass function after applying the context-dependent combination rule on the
set of mass functions, using an arbitrary conflict threshold εK = 0.3, is provided in Table 8a.
In addition, the results for the full range of conflict thresholds εK = 0, 0.01, . . . , 1 are shown
graphically in Fig. 1. For comparison, the combinedmass functions after applyingDempster’s
rule and Dubois and Prade’s rule in full are also provided. Table 8b then includes the results
for applying the pignistic transformation on these combined mass functions. Regarding these
results, it is apparent that Dempster’s rule arrives at a very strong conclusion with complete
belief in the belief atom freq(h). On the other hand, Dubois and Prade’s rule arrives at
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Table 8 Combined results

Context-
dependent
(εK = 0.3)

Dempster’s
rule

Dubois and
Prade’s rule

(a) Combined mass functions

m({freq(h)}) 0.426 1 0.008

m({freq(l),freq(h)}) 0.426 0 0.024

m({freq(n),freq(h)}) 0 0 0.021

m(Ωh) 0.148 0 0.947

(b) Pignistic probability distributions

BetPm (freq(l)) 0.262 0 0.328

BetPm (freq(n)) 0.049 0 0.326

BetPm (freq(h)) 0.688 1 0.346
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m
(A
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A={freq(h)}
A={freq(l), freq(h)}

A=Ωh
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( ω
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ω = freq(h)

ω = freq(l)

ω = freq(n)

(a) (b)

Fig. 1 Effect of varying the conflict threshold on m(A) and BetPm (ω). a Effect of conflict threshold on
m(A), b effect of conflict threshold on BetPm (ω)

almost complete ignorance over the set of possible belief atomsΩh . The result of the context-
dependent rule is arguably more intuitive since it does not throw away differing opinions (as
is the case with the former) or incorporate too much conflict (as is the case with the latter).
For example, after applying the context-dependent rule we can conclude that freq(l) is
more probable than freq(n). Conversely, this conclusion is not supported using Dempster’s
rule, while the support is relatively insignificant using Dubois and Prade’s rule. Nonetheless,
the final stage of this scenario is to attempt to derive a belief atom for revising the agent’s
belief base. In this case, if we assume a pignistic probability threshold εBetP = 0.6, then we
can derive the belief atom freq(h). If freq(h) is added to the agent’s belief base, then any
plans with this belief addition event as their triggering event will be selected as applicable
plans. Thus, the agent can respond by reducing power generation in order to return to a
normal frequency level.

Figure 1 shows the effect of varying the conflict threshold and pignistic probabil-
ity threshold. Figure 1a shows the mass values of focal elements after combining all
relevant mass functions and for each conflict threshold εK = 0, 0.01, . . . , 1. For exam-
ple, when εK = 0.1, m({freq(h),freq(l)}) = 0.28, m({freq(h)}) = 0.093,
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m(Ω) = 0.627. When εK ≤ 0.18, the context-dependent combination rule results
in three LPMCSes {{mh

1, . . . ,m
h
4,m

h
6, . . . ,m

h
9}, {mh

5}, {mh
10}}, where Ωh is assigned

the highest combined mass value. In contrast, when a conflict threshold is in the
interval [0.19, 0.38], the context-dependent combination rule results in two LPMCSes
{{mh

1, . . . ,m
h
4,m

h
6, . . . ,m

h
9}, {mh

5,m
h
10}}. In this case, Ωh has the lowest combined mass

value, while the other focal sets are assigned equal combined mass values. Furthermore,
when εK ≥ 0.39, the context-dependent combination rule results in one LPMCS, i.e.
{{mh

1, . . . ,m
h
10}}, where {freq(h)} is assigned a combined mass value of 1. In this case,

the context-dependent combination rule reduces to Dempster’s rule. Conversely, in this sce-
nario, the context-dependent combination rule never reduces to Dubois and Prade’s rule
since, even when εK = 0, we never have a set of singleton LPMCSes. Notably, as the conflict
threshold increases, the mass value of {freq(h)} increases, while the mass value of Ωh

decreases. However, the mass value of {freq(l),freq(h)} fluctuates (i.e. increasing first
before decreasing). In particular, the mass value increases in the interval [0, 0.38], due to the
mass value ofΩh being shifted to strict subsets. By comparing the results from Figure 1a, we
can conclude in this scenario that a conflict threshold in the interval [0, 0.38] will offer a bal-
ance between both rules such that our rule does not reduce to one rule or the other. Figure 1b
shows the corresponding pignistic probability distribution after applying the pignistic trans-
formation on the combined mass function to demonstrate the effect of varying the conflict
threshold on decision-making. For example, when εK = 0.1, BetPm(freq(h)) = 0.442,
BetPm(freq(l)) = 0.349, BetPm(freq(n)) = 0.209. As can be seen, when the conflict
threshold increases, the probability assigned to freq(h) increases, while the probability of
freq(l) and freq(n) decreases. By comparing the probability distributions in Figure 1b, it
indicates freq(h) is the obvious conclusion for deriving a belief atom for decision-making.
However, the choice of thresholdswill affect whether a belief atom is actually derived. Specif-
ically, if εBetP ≤ 0.7 and εBetP ≥ 0.2, then freq(h) will be derived; otherwise, nothing
will be derived. This demonstrates the benefit of our rule since relying on Dubois and Prade’s
rule alone would not allow us to derive a belief atom, while Dempster’s rule loses potentially
useful uncertain information.

6 Conclusion

In this paper we presented an approach to handling uncertain sensor information obtained
from heterogeneous sources for aiding decision-making in BDI. Specifically, we adapted
an existing context-dependent combination strategy from the setting of possibility theory to
DS theory. As such, we proposed a new combination strategy which balances the benefits of
Dempster’s rule for reachingmeaningful conclusions for decision-making and of alternatives,
such asDubois andPrade’s rule, for handling conflict.We also proposed an approach to handle
this sensor information in the AgentSpeak model of the BDI framework. In particular, we
described the formulation of an intelligent sensor for AgentSpeak which applies evidence
propagation, performs context-dependent combination and derives beliefs for revising the
agent’s belief base. Finally, in Sect. 5 we demonstrated the applicability of our work in
terms of a scenario related to a power grid SCADA system. An implementation of the work
presented in the paper is available online.5

5 http://www.eeecs.qub.ac.uk/~kmcareavey01/context_dependent.html.
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