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Abstract. The Sindice Semantic Web index provides search capabilities over
260 million documents. Reasoning over web data enables to make explicit what
would otherwise be implicit knowledge: it adds value to the information and en-
ables Sindice to ultimately be more competitive in terms of precision and recall.
However, due to the scale and heterogeneity of web data, a reasoning engine for
the Sindice system must (1) scale out through parallelisation over a cluster of
machines; and (2) cope with unexpected data usage. In this paper, we report our
experiences and lessons learned in building a large scale reasoning engine for
Sindice. The reasoning approach has been deployed, used and improved since
2008 within Sindice and has enabled Sindice to reason over billions of triples.

1 Introduction

Reasoning over semantic entity description enables to make explicit what would oth-
erwise be implicit knowledge: it adds value to the information and enables a web data
search engine such as Sindice to ultimately be more competitive in terms of precision
and recall [16]. The drawback is that inference can be computationally expensive, and
therefore drastically slow down the process of indexing large amounts of information.
Therefore, large scale reasoning through parallelisation is one requirement of Sindice.

A common strategy for reasoning with web data is to put several entity descriptions
together and to compute the deductive closure across all the entity descriptions. How-
ever, we can not expect web data to always adhere to strict rules. Web data is highly
heterogeneous and unexpected usage of data and data schema is common. For exam-
ple, data can be erroneous or crafted for malicious purposes. As a consequence, there
is a risk for a reasoner to infer undesirable logical assertions which is harmful for the
Information Retrieval system. These assertions increase the noise in the data collection
and decrease the precision of the system, losing the benefits that reasoning should pro-
vide. In addition, such inferences add an unnecessary computational overhead which
? A preliminary version [6] of this article was presented at the 4th International Workshop on

Scalable Semantic Web Knowledge Base Systems (SSWS 2008). We have extended it with a
comparison with other large scale reasoning approaches, a performance evaluation, and reports
on using and optimising the presented reasoning approach in a production system – the Sindice
Semantic Web index – since 2008.



augments the demand of computational resources and limits the performance of the
system. Therefore, a second requirement of inference engines for web data is the ability
to cope with disparate data quality.

For these reasons, a fundamental requirement has been to confine T-Box assertions
and reasoning tasks into “contexts” in order to track the provenance of inference results.
By tracking the provenance of each single T-Box assertion, we are able to prevent one
ontology to alter the semantics of other ontologies on a global scale. In addition, such
a context-dependent approach provides an efficient distributed computing model which
scales linearly with the amount of data.

Section 2 provide an overview of the current approaches for large scale reasoning
over web data. In Section 3, we introduce the core concepts our approach. Section 4
describes a context-dependent TBox, called an ontology base. The conceptual model
of the ontology base is detailed and our query and update strategies are discussed. Sec-
tion 5 discusses the distributed implementation and Section 6 an empirical evaluation
before concluding in Section 8.

2 Reasoning over Web Data

In this section, we first provide an overview of the current approaches for large scale
reasoning over web data. Next, we review existing contextual reasoning approaches and
other works related to our context-dependent reasoning technique. Finally, we introduce
the concept of Context on the Semantic Web and its formal framework as it is defined
by Guha [10]. This framework is used in the development of our context-dependent
reasoning mechanism.

2.1 Distributed Reasoning

Recently, we have seen major interests towards large scale reasoning based on parallel
distribution of inference. [25, 24] present parallel RDFS reasoning. In [23], they extend
their approach to cover the OWL Horst fragment [14]. SAOR [12, 13] aims to cover a
larger subset of OWL2RL.

In these approaches, the separation of terminological data from assertional data,
which are commonly known as the T-Box and A-Box respectively, is a key point for
parallel inference. The separation of T-Box from A-Box allows to distribute reasoning
among a cluster of machines more easily. Since the T-Box is relatively small, the T-Box
is replicated to each cluster node. The A-Box is partitioned and distributed among the
nodes. Each node calculates the closure of its A-Box partition.

With respect to computational optimisation, [24, 12, 13] have identified properties
about the ordering of rules in order to avoid multiple passes over the data when possible.
In addition, [23] proposes a fixpoint iteration to compute inference of rules that requires
multiple A-Box joins. SAOR avoids rules which require A-Box joins and consequently
is less complete than [23]. [25] does not need A-Box joins since it is restricted to RDFS
where there are no dependencies between partitions. With respect to IO load, [23, 12,
13] which deal with richer logics than RDFS necessitate generally more than one pass



over the data. This means that the data is read multiple times from disk. For very large
data collection, this is time and resource consuming.

In our context-dependent reasoning technique, we also separate T-Box from A-Box,
but compared to the previous approaches, we partition and distribute the A-Box on a
per context fashion. The statements in each A-Box partition belong to a same context,
e.g., a document and its related documents through implicit or explicit imports. Each
A-Box partition is small enough to be fully loaded in memory. We can then perform
conventional reasoning in memory and avoid to write and read intermediate results on
disk.

Although [25, 24, 23] have demonstrated to scale in the order of hundreds of mil-
lions or hundreds of billions triples, their experiments are focussed on scalability is-
sues, disregarding the problem of data quality and its consequences. In [12], Hogan et
al show evidences of a large number of unexpected inferences with real-world data.
SAOR proposes a technique called Authoritative Reasoning to avoid undesirable infer-
ence results. Their system performs an analysis of the authority of web data sources,
and imposes rule restrictions if non-authoritative T-Box statements are detected. Our
context-dependent reasoning technique adopts a completely different approach against
the problem of noisy data and undesirable inferences. Instead of imposing rule restric-
tions, we consider a context as a closed world where inferences are “quarantined” within
the context.

2.2 Contextual Reasoning

The notion of context has been extensively studied since the early 1990s, starting with a
first formalisation by Guha [9] followed by McCarthy [17] and by Giunchiglia [8]. For
more information about the domain, [20] presents a survey and comparison of the main
formalizations of context. There are also recent works that adapt context formalisations
to the Semantic Web such as [3, 10].

The previous references provide a strong theoretical background and framework
for developing a context-dependent reasoning mechanism for the Semantic Web. To
the best of our knowledge, only [22] proposes a concrete application of management
of contextualized RDF knowledge bases. But no one has described a methodology for
efficient large scale reasoning that deals with contextuality of web documents.

Assumption-based Truth Maintenance Systems [15] are somehow comparable to
our approach since such a system keeps track of dependency between facts in multiple
views (contexts) in order to maintain consistency in a knowledge base. The difference
with our approach lies in that we do not maintain consistency, instead we just maintain
the provenance of each inferred T-Box statement.

A side remark in [7] suggests that the authors follow a very similar strategy to
ours in determining the ontological closure of a document (see Section 3.1), but no
details on efficient contextual confinement and reuse of inferences, which are the main
contributions of this work, are discussed.



2.3 Contexts on the Semantic Web

The URI of an entity description provides a natural way to define a context for the
data it contains. Naming an RDF graph has multiple benefits [4]. It helps tracking the
provenance of each statement. In addition, since named graphs are treated as first class
objects, this enables the description and manipulation of a set of statements just as for
any other resource. In this work, the notion of context refers to the entity URI at which
the entity description is retrievable.

Guha [10] proposed a context mechanism for the Semantic Web which provides a
formal basis to specify the aggregation of contexts. Within his framework, a context
denotes the scope of validity of a statement. This scope is defined by the symbol ist
(“is true in context”), introduced by Guha in [9]. The notation ist(c, ϕ) states that a
proposition ϕ is true in the context c.

3 Context-Dependent Reasoning of RDF Models

It would be practically impossible, and certainly incorrect, to apply reasoning over a sin-
gle model composed of all the data found on the Web. Letting alone the computational
complexity, the problem here is clearly the integration of information from different
sources: data is published in a particular context, and a naive integration of informa-
tion coming from different contexts can result in undesirable inferences. We therefore
ensure that the context is maximally preserved when reasoning with web data.

To reason on contexts, we assume that the ontologies that these contexts refer to
are either included explicitly with owl:imports declarations or implicitly by using
property and class URIs that link directly to the data describing the ontology itself. This
later case should be the standard if the W3C best practices [18] for publishing ontologies
and the Linked Data principles [2] are followed by data publishers. As ontologies might
refer to other ontologies, the import process then needs to be recursively iterated as
explained in Section 3.1.

A naive approach would be to execute such a recursive fetching for each entity de-
scription and to create an aggregate context (see Section 2.3 for a definition) composed
by the original description plus the imported ontologies. At this point the deductive clo-
sure of the aggregate context can be computed as explained in Section 3.2. Such a naive
procedure is however obviously inefficient since a lot of processing time will be used
to recalculate the T-Box deductions which could be instead reused for possibly large
numbers of other entity descriptions. Therefore, we propose a mechanism to store and
reuse such deductions in Section 4.

3.1 Import Closure of RDF Models

On the Semantic Web, ontologies are published in order to be easily reused by third
parties. OWL provides the owl:imports primitive to indicate the inclusion of a target
ontology inside an RDF model. Conceptually, importing an ontology brings the content
of that ontology into the RDF model.

The owl:imports primitive is transitive. That is, an import declaration states
that, when reasoning with an ontology O, one should consider not only the axioms



of O, but the entire import closure of O. The import closure of an ontology O is the
smallest set containing the axioms of O and of all the axioms of the ontologies that
O imports. For example, if ontology OA imports OB , and OB imports OC , then OA

imports both OB and OC .

Implicit Import Declaration The declaration of owl:imports primitives is a not a
common practice on the Semantic Web. Most published RDF models do not contain ex-
plicit owl:imports declarations. For example, among the 228 million of documents
in Sindice, only 704 thousands are declaring at least one owl:imports. Instead, RDF
models generally refer to classes and properties of existing ontologies by their URIs.
For example, most FOAF profile documents do not explicitly import the FOAF ontol-
ogy, but instead just refer to classes and properties of the FOAF vocabulary. Following
the W3C best practices [18] and Linked Data principles [2], the URIs of the classes and
properties defined in an ontology should be resolvable and should provide the machine-
processable content of the vocabulary.

In the presence of dereferenceable class or property URIs, we perform what we call
an implicit import. By dereferencing the URI, we attempt to retrieve a graph containing
the description of the ontological entity and to include its content inside the source RDF
model. Also the implicit import is considered transitive. For example, if a RDF model
refers to an entity EA from an ontology OA, and if OA refers to an entity EB in an
ontology OB , then the model imports two ontologies OA and OB .

Import Lifting Rules Guha’s context mechanism defines the importsFrom lifting rule
(see Section 2.3 for a definition) which corresponds to the inclusion of one context
into another. The owl:imports primitive and the implicit import declaration are easily
mapped to the importsFrom rule.

A particular case is when import relations are cyclic. Importing an ontology into
itself is considered a null action, so if ontology OA imports OB and OB imports OA,
then the two ontologies are considered to be equivalent [1]. Based on this definition,
we extend Guha’s definition to allow cycles in a graph of importsFrom. We introduce
a new symbol eq, and the notation eq(c1, c2) states that c1 is equivalent to c2, i.e., that
the set of propositions true in c1 is identical to the set of propositions true in c2.

Definition 1 (Cyclic Import Rule). Let c1 and c2 be two contexts. If c1 contains the
proposition importsFrom(c1, c2) and c2 the proposition importsFrom(c2, c1), then
the two contexts are considered equivalent:

ist(c2, importsFrom(c2, c1)) ∧ ist(c1, importsFrom(c1, c2))→ eq(c1, c2)

3.2 Deductive Closure of RDF Models

In context-dependent reasoning, the deductive closure of an entity description is the set
of assertions that is entailed in the aggregate context composed of the entity description
and its ontology import closure. Before defining formally the deductive closure of an
aggregate context, we discuss the incomplete reasoning aspect of our approach.



Incomplete Reasoning with Web Data When reasoning with Web data, we can not ex-
pect to deal with a level of expressiveness of OWL-DL [5], but would need to consider
OWL Full. Since under such circumstances, we can not strive for a complete reason-
ing anyway, we therefore content ourselves with a finite entailment regime based on a
subset of RDFS and OWL, namely the ter Horst fragment [14]. Such a deductive clo-
sure provides useful RDF(S) and OWL inferences such as class hierarchy, equalities or
property characteristics (inverse functional properties or annotation properties), and is
sufficient with respect to increasing the precision and recall of the search engine.

A rule-based inference engine is currently used to compute full materialisation of
the entailed statements with respect to this finite entailment regime. In fact, a finite
deduction is a requirement in such a setting, which in terms of OWL Full can only be
possible if the entailment regime is incomplete (as widely known the RDF container
vocabulary alone is infinite already [11]). This is deliberate and we consider a higher
level of completeness hardly achievable on the Web of Data: in a setting where the
target ontology to be imported may not be accessible at the time of the processing, for
instance, we just ignore the imports primitives and are thus anyway incomplete from
the start. Also the context-dependent reasoning approach misses inferences from rules
that requires multiple A-Box joins across contexts, for example with a transitivity rule
across entity descriptions. However, completeness is not our aim. Instead our goal is to
take the best out of the data we have and in a very efficient way.

Deductive Closure of Aggregate Context We now explain how the deductive closure of
an aggregate context is performed. Given two contexts c1 and c2, for example an entity
description and an ontology, their axioms are lifted (see Section 2.3 for a definition) into
an aggregate context labelled c1 ∧ c2. The deductive closure of the aggregate context is
then computed using the rule-based inference engine.

It is to be noticed that the deductive closure of an aggregate context can lead to
inferred statements that are not true in any of the source contexts alone. For example,
if a context c1 contains an instance x of the class Person, and a context c2 contains a
proposition stating that Person is a subclass of Human, then the entailed conclusion that
x is a human is only true in the aggregate context c1 ∧ c2:

ist(c1, P erson(x)) ∧ ist(c2, subClass(Person,Human))

→ ist(c1 ∧ c2, Human(x))

The set of inferred statements that are not true in any of the source contexts alone
are called aggregate entailment:

Definition 2 (Aggregate Entailment). Let c1 and c2 be two contexts with respectively
two propositions ϕ1 and ϕ2, ist(c1, ϕ1) and ist(c2, ϕ2), and ϕ1 ∧ ϕ2 |= ϕ3, such
that ϕ2 6|= ϕ3, ϕ1 6|= ϕ3, then we call ϕ3 a newly entailed proposition in the aggregate
context c1∧c2. We call the set of all newly defined propositions an aggregate entailment
and denote it as ∆c1,c2 :

∆c1,c2 = {ist(c1, ϕ1) ∧ ist(c2, ϕ2) |= ist(c1 ∧ c2, ϕ3)

and ¬(ist(c1, ϕ3) ∨ ist(c2, ϕ3))}



The aggregate entailment property enables the reasoning engine to confine inference
results to specific contexts and therefore protects other contexts from unexpected data
usage. Unexpected data usage in one context will not alter the intended semantics of
other contexts, if and only if no direct or indirect import relation exists between them.

Note that - by considering (in our case (Horn) rule-based) RDFS/OWL inferences
only - aggregate contexts enjoy the following monotonicity property3: if the aggregate
context c1 ⊆ c2 then ist(c2, φ) implies ist(c1, φ), or respectively, for overlapping con-
texts, if ist(c1 ∩ c2, φ) implies both ist(c1, φ) and ist(c2, φ). This property is exploited
in our ontology base, which is described next, to avoid storing duplicate inferred state-
ments.

4 Context-Dependent Ontology Base

A problem when reasoning over a large number of entity descriptions independently is
that the process of computing the ontology import closure and its deductive closure has
to be repeated for each entity description. This is inefficient since the computation of
the import closure and the deductive closure is resource demanding and can in fact be
reused for other entity descriptions. The import closure necessitates to execute multiple
web requests that are network resource demanding and time consuming, while the com-
putation of the deductive closure is CPU bound. In addition, we observe in Section 6
that the computation of the T-Box closure is more CPU intensive than the computation
of the A-Box closure. This observation suggests to focus on the optimisation of the
T-Box closure computation. Thanks to the smaller scale of the T-Box with respect to
the A-Box, we can store the computed ontology import closure as well as the deductive
closure in a ontology base in order to reuse them in later computation.

The ontology base, which can be seen as a persistent context-dependent T-Box, is in
charge of storing any ontology discovered on the web along with their import relations.
The ontology base also stores the inference results that has been performed in order
to reuse them later. The ontology base serves the inference engine by providing the
appropriate and pre-computed T-Box for reasoning over an entity description.

In the next, we first introduce the basic concepts used in the formalisation of the
ontology base. We then discuss an optimised strategy to update the ontology base. We
finally describe how to query the ontology base.

4.1 Ontology Base Concepts

The ontology base uses the notion of named graphs [4] for modelling the ontologies
and their import relations. The ontology base relies on a rules-based inference engine
to compute the deductive closure of either one ontology or of a combination of them.

Ontology Entity An Ontology Entity is a property, instance of rdf:Property, or a
class, instance of rdfs:Class. The ontology entity must be identified by an URI (we
exclude entities that are identified by a blank node) and the URI must be resolvable and
must point to a document containing the ontological entity description.

3 We remark here that under the addition of possibly non-monotonic rules to the Semantic Web
architecture, this context monotonicity only holds under certain circumstances [19].



Ontology Context An Ontology Context is a named graph composed by the ontology
statements that have been retrieved after dereferencing the entity URIs of the ontology.
The content of this graph consists of the union of the descriptions of all properties and
classes associated to a same ontology namespace. According to best practices [18],
properties and classes defined in an ontology should have the same URI namespace.

Usually, this means that the data associated with the ontology context simply reflects
the content of the ontology document as found on the Web. There are cases however,
e.g., in the case of the OpenCyc ontology4, where each property and class has its own
view. The ontology context is therefore composed by the union of all these views.

Ontology Network An ontology context can have import relationships with other on-
tology contexts. A directed link lAB between two contexts, OA and OB , stands for OA

importsOB . A link lAB is mapped to an importsFrom lifting rule and serves as a pointer
to a frame of knowledge that is necessary for completing the semantics of OA.

Definition 3 (Ontology Network). An ontology network is a directed graph 〈O,L〉
with O a set of vertices (ontology contexts) and L a set of directed edges (import rela-
tions).

The import closure of an ontology can be seen as an activation of a subset of the
ontology network.

Definition 4 (Import Closure). The import closure of an ontology context OA for an
ontology network 〈O,L〉 is a subgraph 〈O′,L′〉 such that:

O′ ⊆ O,L′ ⊆ L | ∀Oi ∈ O′,∃ path(OA, Oi)

where path(OA, O) denotes a sequence of vertices OA, . . . , Oi such that from each of
its vertices there is an edge to the next vertex.

For the purpose of this work, we consider the import closure to also contain the de-
ductive closure of the union of all the ontologies. For example, given two ontology con-
texts OA and OB , with OA importing OB , the import closure of OA will consist of the
context aggregating OA, OB and the deductive closure of the union of the two ontolo-
gies (i.e., the entailment of OA and OB as well as the aggregate entailment ∆OA,OB

).

4.2 Ontology Base Update

When a new ontology context is added to the ontology network, its import closure
is materialised. Then, the deductive closure is computed by first lifting the axioms of
the import closure and by computing the newly aggregate entailment as explained in
Definition 2. Finally the new statements are added to the ontology network so that they
are never duplicated.

This is better explained by an example. In Figure 1a, an entity E1 imports explicitly
two ontologies O1 and O2. The import closure of E1 is calculated and this is found
to include also O3 since O3 is imported by O2. At this point, the following step are
performed:

4 OpenCyc: http://sw.opencyc.org/



1. The deductive closure of O1 and O3 is computed separately and stored in their
respective nodes.

2. The deductive closure of O2 is computed by first lifting the axioms of O3. The
entailed propositions ∆O2,O3 are stored in O2.

3. Finally, the deductive closure of O1, O2 and O3 is calculated. The entailed state-
ments∆O1,O2,O3

resulting from the reasoning overO1,O2 andO3 together but that
are not found already in any of the source contexts are stored in a virtual context
∆123.

At this point a new entity E2 comes which only imports O1 and O3 as shown in
Figure 1b. The update strategy will:

1. calculate the deductive closure of O1 and O3 and store the new assertions ∆O1,O3

in a new virtual context ∆13;
2. subtract these triples from the content of the previous context ∆123. ∆123 is con-

nected to ∆13 by an import relation.

A last optimisation is based on Definition 1. Whenever a cycle is detected into the
ontology network, the ontology contexts present in the cycle are aggregated into one
unique context.

(a) The ontology
network after pro-
cessing an entity
E1.

(b) The ontology net-
work after processing a
second entity E2.

Fig. 1: Example of ontology network

4.3 Ontology Base Querying

The ontology base is used by the A-Box reasoner to retrieve the appropriate T-Box for
each entity description being processed. The A-Box reasoner first performs an analysis
of the entity description and extracts all the references to the ontological terms being
used. It then queries the ontology base with the set of ontological terms.

The ontology base maps each ontological terms to their ontology and computes the
import closure for each of the ontology. Finally, it merges the different import closures,



including the aggregate entailments ∆, into one model and returns this model to the
A-Box reasoner to be used as T-Box.

For example in Figure 1b, the entity E1 imports the two ontologies O1 and O2.
This lifts the contexts {O1, O2, O3, ∆13, ∆123} into the entity E1 before computing
the A-Box deductive closure.

Sometimes, the computed T-Box can be large for two reasons: (1) when the import
closure is large, i.e., a large number of ontologies are merged together; or (2) when large
ontologies are present in the import closure. As a consequence, the amount of informa-
tion transferred through the network between the A-Box reasoner and the ontology base
increases. In addition, the memory requirement of the A-Box reasoner also increases.
However, we found that the A-Box reasoner does not need the complete T-Box, i.e., the
complete set of ontologies, but that only a subset of the T-Box could be used instead
without having any impact on the A-Box inference result. This T-Box subset is com-
posed of the union of the descriptions of all the ontological entities used in the original
entity description. To extract the description of one ontological entity, the ontology base
relies on a technique similar to the Symmetric Concise Bounded Description [21] where
not only blank nodes are followed, but also the symmetric property owl:inverseOf.
[1] states that “an axiom of the form P1 owl:inverseOf P2 asserts that for every
pair (x,y) in the property extension of P1, there is a pair (y,x) in the property extension
of P2, and vice versa”. By not including the description of the inverse property, the
A-Box reasoner might miss some logical assertions about the property.

5 Implementation

The ontology base is implemented using a RDF database to store the ontology state-
ments in their context. A secondary index is used to store the import relations between
the contexts. A caching mechanism is used on top of the ontology base to cache frequent
requests. The caching mechanism is especially useful when processing multiple entities
from a single dataset. Since entities from a same dataset are likely to be described with
the same ontologies, the requests to the ontology base are identical and the cache hit
rate increases.

The reasoning engine which is used by the ontology base is especially designed
and optimised to compute entailments in memory. Each term (i.e., URIs, Blank Nodes
and Literals) in a statement is mapped to a unique identifier (integer). Statements are
indexed using in-memory data structures, similar to triple tables, in order to lookup
any kind of statement patterns. Rules are then checked against the index in an iterative
manner, with one rule being applied at a given iteration. The result of the rule is then
added to the index before proceeding to the next iteration. Iterations continue until a
fixpoint is reached. For rules that requires joins between multiple statements, since we
are working with a small amount of data and a small number of elements, we rely on
an efficient merge-join algorithm where both relations are sorted on the join attribute
using bit arrays. The bit arrays are then intersected using bitwise operations.

The A-Box reasoning is distributed on a cluster of machines using the following
strategy. In our approach, the A-Box is divided on a per-context basis (in our settings,
on a per-entity basis). Each context provides a chunk of data which is distributed to



different computing nodes. A computing node acts as A-Box reasoner and has its own
ontology base. The A-Box rule engine is based on the same rule engine used by the
ontology base.

Since each chunk of data is relatively small, the deductive closure of the A-Box can
be entirely performed in memory without relying on disk accesses. With respect to other
distributed approaches that perform reasoning on the global model, we avoid to read
and write multiple times the data directly from the disk, and therefore we obtain better
performance. Finally, it is to be noticed that such a distributed model scales linearly
with the number of available nodes in the cluster.

6 Performance Evaluation

In this section, we evaluate the performance of our approach on three datasets:

Geonames: is a geographical database and contains 13.8 million of entities5.
DBPedia: is a semi-structured version of Wikipedia and contains 17.7 million of enti-

ties6.
Sindice: is a representative subset of the Web of Data containing, at the time of the

experiment, more than 110 million of documents. It is composed of Semantic Web
online repositories and pages with Microformats or RDFa markups crawled on a
regular basis for more than three years.

We first start by comparing the size of the T-Box and A-Box data for each dataset. We
then benchmark the performance of the context-dependent reasoning approach with and
without an ontology base. We finally estimate the performance in a distributed setting.

6.1 Quantifying T-Box and A-Box

We perform a random sample of 100.000 entities for each dataset. For each entity, we
apply our context-dependent reasoning approach and record various characteristics such
as:

Ontology: the number of ontologies in the ontology closure;
T-Box - Explicit: the number of axioms in the original ontology closure;
T-Box - Implicit: the number of entailed statements from the ontology closure;
A-Box - Explicit: the number of facts in the original entity description;
A-Box - Implicit: the number of inferred facts from the entity description and the on-

tology closure.

Table 1 reports the arithmetic mean of the 100.000 measurements for each dataset.
We can notice that in general the ontology import closure is relatively large with in

average 14 and 15 ontologies per entity on the Sindice and Geonames dataset respec-
tively. The DBpedia dataset has in average less ontologies. This can be explained by the
fact that this dataset contains many small entity descriptions which solely consist of a

5 Geonames: http://www.geonames.org/
6 DBpedia: http://dbpedia.org/



T-Box Size A-Box Size

Dataset Ontology Explicit Implicit Explicit Implicit

Geonames 15 1820 4005 6 14

DBPedia 8 657 1556 7 16

Sindice 14 2085 4601 69 170

Table 1: Statistics about T-Box and A-Box of 100.000 random entity descriptions.

few links of type dbpedia:wikilink with other entities. However, we report that it also
contains some fairly complex ones having an import closure of more than 30 ontologies.

These ontologies account for a large number of axioms, up to 2085 for Sindice
dataset. The deductive closure provides a larger number of additional axioms. On all
the datasets, the ratio of inferred statements is around 2.2, i.e., 2.2 implicit axioms in
average are inferred for 1 explicit axiom.

The A-Box is relatively small compared to the T-Box. The ratio between T-Box and
A-Box statements varies greatly across datasets, with 300:1 for Geonames, 94:1 for
DBPedia and 30:1 for Sindice. In average, the ratio of inferred statements on the A-Box
varies between 2 and 3, which is very close to the inference ratio of the T-Box.

These statistics show that, when reasoning over an entity, there is more data to be
processed in the T-Box than there is in the A-Box, suggesting that most of the com-
putational complexity will reside on the T-Box level. Therefore, these observations
strengthen the needs of an appropriate caching system such as the ontology base to
reuse T-Box computation whenever it is possible.

6.2 Optimisation with Ontology Base

In the next experiment, we show the performance improvements provided by the on-
tology base. We compare the time to reason over an entity with and without ontology
base. We then show the gradual performance improvement as the ontology base is being
updated.

Experimental Settings The hardware system we use in our experiments is a 2 x Opteron
250 @ 2.4 GHz (2 cores, 1024 KB of cache size each) with 4GB memory and a local
SATA disk. The operating system is a 64-bit Linux 2.6.31-20-server. The version of the
Java Virtual Machine (JVM) used during our benchmarks is 1.6.0 20. The reasoning
engine and the ontology base is written in Java. The A-Box reasoner runs on a single
thread.

Experimental Design In the first experiment, we reason sequentially over 100.000 ran-
domly selected entities with and without the ontology base activated. When the ontol-
ogy base is deactivated, we measure the time to compute the deductive closure of the
T-Box and A-Box for each entity. When the ontology base is activated, we measure the
time to request the T-Box from the ontology base and to perform the deductive closure
of the A-Box. Beforehand, we load all the ontology closures, i.e., their import closures
and their deductive closures, in the ontology base.



In the second experiment, we start with an empty ontology base and record the
evolution of the computational time while the ontology base is being created,i.e., while
the import and deductive closures are being computed and stored.

In the two experiments, we ignore the time spent by the ontology base to resolve
URIs and fetch the associated documents from the Web. This is deliberate since such
a time is dependent of the network resources available and of the availability of the
documents on the Web at the time of the fetching.

Experimental Results Figure 2a reports the total time to reason over the 100.000 entities
for each dataset. The total time is composed of the time spent computing the A-Box and
T-Box closure. The bar D, G and S denotes the time to reason without an ontology base
on DBpedia, Geonames and Sindice dataset respectively. The bar D-OB, G-OB and S-
OB denotes the reasoning time with an ontology base. Each bar is divided in two parts
in order to differentiate the time spent to compute the A-Box and T-Box closures.

A first observation is that the time increases with the complexity of the dataset and
with the number of statements inferred. DBpedia is the fastest to process following by
Geonames and then Sindice. We can also notice that the time to compute the closure of
the A-Box on Sindice is much higher than on the other datasets, which correlates with
the larger number of A-Box statement inferred found in Table 1.

The most interesting result is the improvement provided by the ontology base. On
the three datasets, we can observe that the computation of the T-Box closure is the most
time consuming operation. However, it becomes negligible when the ontology base is
activated.
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Figure 2b depicts the performance improvement of the reasoning engine while the
ontology base is being updated, i.e., when the import and deductive closure are being
computed for each new ontology. We analyse the measurements by computing the cu-
mulative average of the reasoning time over the past five entities. We can see that at the
beginning, while the ontology base is still empty, the reasoning time is very high with
more than 3 seconds. However, the time rapidly decreases under the second and starts
to reach its steady state of performance after 10000 entities.



6.3 Distributed Performance

Since the distributed model scales linearly with the number of nodes available in the
cluster, we can estimate the number of entities per second that can be processed on
a given number of nodes. This estimation is based on the previous results where in
average 83.3, 50 and 13.9 entities per second where processed on DBpedia, Geonames
and Sindice respectively. A system with 32 nodes is able to ingest more than 2000
entities per second on DBPedia, more than 1500 on Geonames and more than 400
on heterogeneous data collection such as Sindice. It is to be noticed that these results
come from a prototypical implementation, still to be subject to many possible technical
optimisations.

7 Discussion and Future Works

The technique presented in this chapter is mainly focussed on the T-Box level. The im-
port relations between ontologies provide a good support for lifting rules. However, on
A-Box level, it is not clear which relations between entity descriptions should be con-
sider as lifting rules. We will investigate equality relations such as the owl:sameAs
relations in the future. But even more importantly there is a concept of “dataset scope”
when applying said rules. For example, these rules might be applied differently within
a dataset or across datasets7 as the level of trust is different. This calls for augmentation
of this work and will be discussed in future works.

8 Conclusions

We report our experiences and lessons learned in building a context dependent method-
ology for large scale web data reasoning. We first define the problem conceptually and
then illustrate how to create an ontology repository which can provide the materializa-
tion of implicit statements while keeping track of their provenance. Our implementation
currently support a subset of RDFS and OWL. We find this level of inference to be in
line with Sindice’s target objective to support the RDF community of practice, e.g., the
Linked Data community, which usually relies only on RDFS and OWL features covered
by the OWL ter Horst fragment [14]. The reasoning methodology has been deployed,
used and improved since 2008 within Sindice and has enabled Sindice to reason over
billions of triples.

The context mechanism allows Sindice to avoid the deduction of undesirable asser-
tions in RDF models, a common risk when working with the Web Data. This context
mechanism does not restrict the freedom of expression of data publishers. Data publish-
ers are still allowed to reuse and extend ontologies in any manner, but the consequences
of their modifications will be confined in their own context, and will not alter the in-
tended semantics of the other RDF models published on the Web.

7 A dataset denotes a web site with metadata markups or a RDF database.
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