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ABSTRACT

An automatic speech recognition system searches for the
word transcription with the highest overall score for a given
acoustic observation sequence. This overall score is typically
a weighted combination of a language model score and an
acoustic model score. We propose including a third score,
which measures the similarity of the word transcription’s
pronunciation to the output of a less constrained phonetic
recognizer. We show how this phonetic string edit distance
can be learned from data, and that including context in the
model is essential for good performance. We demonstrate
improved accuracy on a business search task.

Index Terms— speech recognition, acoustic modeling,
string edit distance

1. INTRODUCTION

A standard automatic speech recognition system uses a lan-
guage model and an acoustic model to find the best match be-
tween a sequence of acoustic observations and its correspond-
ing word transcription. The language model score measures
the relative likelihoods of different transcriptions independent
of the acoustics, and the acoustic model score measures the
likelihood of the acoustic observations for a given transcrip-
tion’s expected pronunciation. The best hypothesis is found
using a weighted sum of these two scores.

In this paper, we introduce the use of a phonetic string
edit distance (PSED) score, which measures the similarity be-
tween the phone sequence for a given word hypothesis and
the phone sequence produced by a phonetic decoder, uncon-
strained by a pronunciation lexicon. We show how the param-
eters of the PSED can be easily learned from data, analyze the
distribution of edits for real speech data, and demonstrate how
context-dependent PSED models can improve the overall sys-
tem accuracy.

The concept of learning a good string edit distance has
been applied to handwriting recognition[1], pronunciation
learning[2], and unit selection[3]. In [4], the authors pre-
sented a method for transducing from phones to words which
used a context-independent error model. The novelty in
our approach is in combining our string edit distance with
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the standard acoustic and language model scores, and in
demonstrating the benefit of introducing context-dependent
parameters.

This paper is organized as follows. Section 2 presents the
theoretical background explaining how the new score fits into
the standard framework. The detail of the model is presented
in Section 3, as well as a description of how it is trained and
evaluated. Experimental results are presented in Section 4,
followed by a brief summary of the paper.

2. PHONETIC STRING EDIT DISTANCE

To understand the phonetic string edit distance, it is neces-
sary to explore the difference between a phonetic recognition
system and a word recognition system. Both systems use an
acoustic model to assign a score to a sequence of acoustic ob-
servations X for a hypothesized string of phones P, but rely
on different distributions for P.

2.1. Word Recognition

A simple word recognition system defines a joint score over
three sequences: a word string! W = {wy, ..., w}, a pho-
netic string P = {p1,...,pn}, and a sequence of acoustic
vectors X = {x1,...,27}.

The word symbols w; are members of a known set of
words. The language model p(W) = p(wy,...,wy) de-
scribes a prior distribution over word sequences of these
words.

The phonetic symbols p; are members of the phone alpha-
bet, a small set of speech sounds that exist for the language.
The pronunciation model

p(PIW) =p(p1,...,pmlwi, ..., wN)
is a sparse distribution over the possible phone strings for ev-
ery word string. It is typically described by a pronunciation
lexicon, formed for each word w; in W independently, and
may consist of only one allowed pronunciation per word.

1A string is defined as an ordered sequence of symbols chosen from a set
or alphabet.



The acoustic vectors are frame-based spectral measure-
ments, such as mel-frequency cepstral coefficients (MFCC),
and represent the audio to be recognized. The conditional
likelihood p(X|P) = p(x1,...,x7|p1,-..,pr) is computed
by the acoustic model, which produces a score for any pos-
sible phonetic string P from X. In modern large vocabulary
speech recognition systems, this model is structured as a set
of context dependent phone models.

Word recognition is performed by finding the most likely
word sequence and pronunciation given the acoustic observa-
tions, as in Eq. 1.

(W.P.,) = argmaxp(X|Pp(PIW)p(W) (1)

Because the word recognition system is constrained to
choose a phone string that can be decomposed into words, P,
is a string that is rigidly generated from a pronunciation lexi-
con, and may not be the same as a careful phonetic transcrip-
tion of the utterance. Consequently, the acoustic model score
p(X|P) will not necessarily be maximized at P = P,,. In-
stead, the acoustic model score indicates how close the acous-
tics are to the expected pronunciation of WW.

2.2. Phonetic Recognition

A phonetic recognition system relates a phonetic string P to
an acoustic sequence X, without reference to any underling
word string .

In this system, a phonetic language model p(P) describes
a prior distribution over phone strings. As in the word recog-
nition system, an acoustic model p(X | P) calculates the likeli-
hood of the acoustic sequence from the phone string. Recog-
nition is performed by finding the phonetic sequence that is
most likely under the phonetic language and acoustic models,
as in Eq. 2.

By = argmax p(P|X) = argmax p(X[P)p(P)  (2)

Because the phonetic recognition system is less con-
strained, it is free to search among all possible phone strings
P for the one that matches the acoustics X and has a reason-
able phonetic language model score. As a result, although
P(X|P,) will probably be larger than P(X|P,) from the
word recognizer, P, will not necessarily consist of pronunci-
ations from the lexicon.

2.3. A Third Score

As described above (Eq. 1), a word recognition system re-
lies on two different scores to rank the possible (W, P) hy-
potheses: the acoustic model p(X |P), and the combined pro-
nunciation and language model p(P, W). In practice, better
recognition is achieved by using a logarithmic weighting of

r eh g ax n € k a 1 ax s
r a¢ g ax n sil p ae 1 ih s
r ae g ax n sil p € 1 ey s
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Fig. 1. Alignment between the expected pronunciation of
“Dragon Palace” (center) and recognized phone string for an
utterance of “Dragon Palace” (top) and “Dragon Place” (bot-
tom).

these two scores. By convention, a weight -y is applied to the
language model score.

Inp(X, P,W) = Inp(X|P) +yInp(P,W)  (3)

In the proposed system, we incorporate the most likely
phone string P, from a phonetic recognizer, which is un-
constrained by word pronunciations. To do this, Eq. 3 is
augmented with a term measuring the similarity between
the hypothesized phone string P and P,. This is similar to
the approach in [4], which uses a language model score and
a context-independent phonetic error model, but omits the
acoustic model score. In Eq. 4, this term is shown weighed
by a phonetic model weight (.

Ing(X,P,W) = Inp(X|P) +vInp(P,W) — BD(P, P,)
(4)

3. PHONETIC STRING EDIT DISTANCE

Intuitively, a word string W is likely to be correct when its as-
sociated pronunciation string P is identical to the string found
by our phonetic decoder P,. Conversely, if the two phone
strings are quite different, then W is probably not correct.
Therefore, the phonetic string edit distance should assign a
high score to similar strings, and a low score to dissimilar
strings.

A common string similarity measure is the Levenshtein
distance, which is defined as the minimum number of edit
operations (insertions, deletions, or substitutions) needed to
transform one string into another. It has the desired property
that identical string pairs have zero distance, and the distance
increases with the number of edit operations needed to trans-
form one string into another.

But, as Figure 1 shows, this distance measure is in-
sufficient. It shows how the expected pronunciation for
“Dragon Palace” (center) aligns with a phonetic recognition
of “Dragon Palace” (top) and “Dragon Place” (bottom). In the
matched case where the user actually said “Dragon Palace”,
there are four edits (ae — eh, p — k, ih — ax, and sil — ¢).
In the mismatched case, there are only two edits (ae — €, and
ih — ey).

The problem with the Levenshtein distance is that it ig-
nores the relative likelihood errors. It would be better if the
model understood that some edits (e.g., substituting ax for ih)



are relatively common and benign, while others (e.g., substi-
tuting ey for ih) are unlikely and should be penalized. Be-
cause the differences between P, and the expected pronun-
ciation of the true word string are caused by acoustic confus-
ability, accented speech, noise, or unexpected pronunciations,
these patterns should be systematic and learnable.

We define the phonetic string edit distance (PSED) from a
hypothesized phone string P to P, as the conditional proba-
bility of the edits required to produce P, from P after aligning
the two strings to minimize the Levenshtein distance.?

p(lf’z\P):p(Ol,Oz,-- 'ahN)'

Unfortunately, this joint model over strings of phones has
far too many parameters to train. So, instead, we restrict the
model to consider left context on both the observed phone
string and the hypothesized phone string only up to order j.

., on|hi, ho, ..

N
p(pz|P) ~ ]:[p(ot|0t—17 <. ';Ot—j; hta cey ht—j) (5)
t=1

The model parameters are trained using two parallel sets
of phonetic strings generated from the training data. For each
utterance, the correct phone string P is generated by forced
alignment of the reference word string using a standard pro-
nunciation model. The observed phone string P, is gener-
ated by running phonetic recognition on each utterance. After
aligning P, and P to minimize the number of edits between
the strings, we accumulate a table that contains the necessary
counts. This table is then used to estimate maximum likeli-
hood parameters for the model. For example, to compute the
likelihood of recognizing A after B when the reference con-
tains symbols C and D,

A, B;C,D
pAIBC.D) = TS B

where #(A, B; C, D) is the number of times in the training
data that the symbols A and B occurred in order aligned with
the symbols C' and D. The sum over ¢ is meant to compute
how many times the same pattern occurred with any symbol
in place of A.

To evaluate the model, we align Pw with the various P
being considered, and assign a score to each P according to
Eq. 5.

3.1. How Much Context is Appropriate

In this section, we demonstrate that the usefulness of con-
text in modeling our data. For illustrative purposes, we col-
lapse all possible edit operations into two classes: correct (C),
which include all match edits, and incorrect (E), which in-
cludes all substitution, insertion, and deletion edits. If the

2Under simplifying assumptions, our phonetic string distance is just the
maximum over all possible edits of the probability that string P is observed
when the intended phone string was P.

Context Length

0 1 2 3 4
P(C|C7) | 678% 784% 82.6% 83.5% 84.8%
P(E|EY) | 322% 540% 55.1% 57.0% 60.3%

Table 1. The conditional probability of C-type and E-type
edits changes dramatically with context. The longer the string
of C-type edits, the more likely another C-type edit becomes.
The same is true for E-type edits.

edits are context independent, then the probability of seeing
one error after another, p(E|E) should be equal to seeing one
error regardless of context, p(E).

This, however, is not the case. Table 1 illustrates how
the likelihood of C-type and E-type errors changes based on
context. In the table, the shorthand E’ represents a string of E/
repeated ¢ times. It is clear from the data that a conditionally
independent modeling assumption would be inadequate for
this data.

The example demonstrates how errors tend to cluster to-
gether, which indicates a model with insufficient context will
misestimate the PSED. In general, there may be other pat-
terns present in the data that we should capture. To take these
possibilities into account, we trained the full model up to a
context of 3 (order j = 2), and leave the question of model
smoothing for future work.

4. RECOGNITION EXPERIMENTS

The system is evaluated on the Windows Live Search for Mo-
bile voice search task [5]. This data contains about 1.5 million
business listing queries taken from a deployed voice search
application. The data is divided into 1.47 million training,
8777 development, and 12758 test utterances. The same data
was used to train both the acoustic model and the phonetic
string edit distance model. We used the development set to
tune the model parameters and configuration, and the test set
to report final accuracy improvements.

A single acoustic model was used for generating both
word and phonetic string hypotheses. This model contains
27760 diagonal Gaussian components, shared among 863
states, which are in turn shared by 2612 hidden Markov mod-
els (HMM). These HMM represent the context-dependent
versions of 40 phone units, as well as two silence models and
three garbage models. The phonetic vocabulary size is 46,
and is modeled by a trigram language model with 16 thousand
n-grams. The word vocabulary is 65 thousand, and is mod-
eled by a trigram language model with 4.7 million n-grams.
The pronunciation lexicon has 92 thousand entries, with an
average of 1.4 pronunciations per word. Both systems were
trained from in-domain data.

Although it should be possible to build a system that in-
corporates both the acoustic and the phonetic score into the



Baseline | j=0|j=1];=2
5522 | 5563 | 5578 | 5591

Table 2. Number of correct utterances in the development set
increases with model context.

search algorithm, the prototype system presented here is im-
plemented using n-best rescoring. For each utterance in the
development and test sets, we used the word recognition base-
line system to find a list of up to 40 hypothesis word strings,
along with their corresponding language model and acous-
tic model scores. We then computed the phonetic string edit
distance for each hypothesized word string by measuring the
PSED between its pronunciation and the output of a phonetic
recognition system.

As expected, including more context in the PSED model
improves overall system accuracy. Table 2 reports the max-
imum number of correctly recognized utterances in the de-
velopment data as the model history variable j is increased.
Because the accuracy is still increasing at j = 2, it is possible
that increasing the context further could still improve the sys-
tem, but at that point some sort of model parameter smoothing
would probably be necessary.
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Fig. 2. Number of correct utterances in the development set,
as a function of acoustic and phonetic model weights.

Using the development data, we performed a grid search
for optimal values of the acoustic model weight and phonetic
model weight, while holding the language model weight con-
stant at 15. Figure 2 shows how the accuracy on the devel-
opment set changes as a function of these weights when the
context is set to 7 = 2. According to this figure, if the pho-
netic model weight is zero, the optimal acoustic model weight
is 0.95. If we use a nonzero phonetic weight, the peak of
Figure 2 occurs near an acoustic model weight of 0.85 and a
phonetic model weight of 3.0.

Table 3 shows the result of evaluating the system on the
development and test data. Out of the 12758 utterances in the
test set, the oracle accuracy is only 10219 utterances, or 80%.
That means, for 20% of the data, the correct hypothesis is not
in the top 40 word strings identified by the word recognizer,
and our rescoring system has no chance of producing a correct

Weight Correct
System LM AM PM | Dev Test
Baseline | 15.0 095 0.0 | 5522 7754
Proposed | 15.0 0.85 3.0 | 5591 7847
Oracle | - - - | 7084 10219

Table 3. Number of correct utterances for the baseline and
the proposed system, which adds a PM score.

result.

On the test data, the proposed score corrects 3.8% of the
errors that the oracle system is able to correct with respect to
the baseline. When we consider the entire data set, including
utterances that the oracle system is unable to correct, the pro-
posed system reduces the utterance error rate by 1.8%. We
expect the real gain for integrating the PSED directly into the
recognition process to be somewhere between these extremes.

5. CONCLUSION

In this paper, we have proposed adding a phonetic string edit
distance to the standard language model and acoustic model
scores in a speech recognition system. The phonetic string
edit distance is trained to learn the relative likelihood of pho-
netic recognition strings given an expected pronunciation. We
built a prototype that consists of two stages: standard n-best
word recognition followed by rescoring with the new objec-
tive function, and showed that by incorporating this into a
recognition system, the utterance error rate can be improved.
The present gain is 1.8% relative, but with a full integration
of the PSED we expect a gain between 1.8% and 3.8%.
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