
Context-Dependent Views to Axioms and Consequences of Semantic Web Ontologies

Franz Baadera, Martin Knechtelb, Rafael Peñalozaa

aTheoretical Computer Science, TU Dresden, Germany
bSAP AG, SAP Research

Abstract

The framework developed in this paper can deal with scenarios where selected sub-ontologies of a large ontology are
offered as views to users, based on contexts like the access rights of a user, the trust level required by the application, or
the level of detail requested by the user. Instead of materializing a large number of different sub-ontologies, we propose
to keep just one ontology, but equip each axiom with a label from an appropriate context lattice. The different contexts
of this ontology are then also expressed by elements of this lattice. For large-scale ontologies, certain consequences (like
the subsumption hierarchy) are often pre-computed. Instead of pre-computing these consequences for every context, our
approach computes just one label (called a boundary) for each consequence such that a comparison of the user label with
the consequence label determines whether the consequence follows from the sub-ontology determined by the context. We
describe different black-box approaches for computing boundaries, and present first experimental results that compare the
efficiency of these approaches on large real-world ontologies. Black-box means that, rather than requiring modifications
of existing reasoning procedures, these approaches can use such procedures directly as sub-procedures, which allows us
to employ existing highly-optimized reasoners. Similar to designing ontologies, the process of assigning axiom labels
is error-prone. For this reason, we also address the problem of how to repair the labelling of an ontology in case the
knowledge engineer notices that the computed boundary of a consequence does not coincide with her intuition regarding
in which context the consequence should or should not be visible.

Keywords: Access Restrictions, Views, Contexts, Ontologies

1. Introduction

Description Logics (DL) [1] are a successful family of
knowledge representation formalisms, which can be used
to represent the conceptual knowledge of an application
domain in a structured and formally well-understood way.
They are employed in various application domains, such
as natural language processing, conceptual modelling in
databases, and configuration of technical systems, but
their most notable success so far is the adoption of the
DL-based language OWL as standard ontology language
for the Semantic Web. From the DL point of view, an on-
tology is a finite set of axioms, which formalize our knowl-
edge about the relevant concepts of the application do-
main. From this explicitly described knowledge, the rea-
soners implemented in DL systems can then derive im-
plicit consequence. Application programs or human users
interacting with the DL system thus have access not only
to the explicitly represented knowledge, but also to its
logical consequences. In order to provide fast access to
the implicit knowledge, certain consequences (such as the
subsumption hierarchy between named concepts) are often
pre-computed by DLs systems.

Email addresses: baader@tcs.inf.tu-dresden.de (Franz
Baader), martin.knechtel@sap.com (Martin Knechtel),
penaloza@tcs.inf.tu-dresden.de (Rafael Peñaloza)

In this paper, we investigate how this sort of pre-
computation can be done in an efficient way in a set-
ting where users can access only parts of an ontology, and
should see only what follows from these parts. To be more
precise, assume that you have a large ontology O, but you
want to offer different users different views on this ontology
with respect to their context. In other words, each user
can see only a subset of the large ontology, which is defined
by the context she operates in. The context may be the
level of expertise of the user, the access rights that she has
been granted, or the level of detail that is deemed to be
appropriate for the current setting, etc. More concretely,
one could use context-dependent views for reducing infor-
mation overload by providing only the information appro-
priate to the experience level of a user. For example, in a
medical ontology we might want to offer one view for a pa-
tient that has only lay knowledge, one for a general practi-
tioner, one for a cardiologist, one for a pulmonologist, etc.
Another example is provided by proprietary commercial
ontologies, where access is restricted according to a cer-
tain policy. The policy evaluates the context of each user
by considering the assigned user roles, and then decides
whether some axioms and the implicit consequences that
can be derived from them are available to this user or not.

One näıve approach towards dealing with such context-
dependent views of ontologies would be to materialize a

Preprint submitted to Special Issue of the Journal of Web Semantics on Reasoning with context in the Semantic Web November 15, 2011

separate sub-ontology of the overall large ontology for each
possible user context. However, this could potentially lead
to an exponential number of ontologies having to be main-
tained, if we define one user context for each subset of the
original ontology. This would imply that any update in
the overall ontology needs to be propagated to each of the
sub-ontologies, and any change in the context model, such
as a new user role hierarchy or a new permission for a
user role, may require removing or adding such subsets.
Even worse, for each of these sub-ontologies, the relevant
implicit consequences would need to be pre-computed and
stored separately. To avoid these problems, we propose a
different solution in this paper. The idea is to keep just the
large ontology O, but assign “labels” to all axioms in the
ontology and to all users in such a way that an appropriate
comparison of the axiom label with the user label deter-
mines whether the axiom belongs to the sub-ontology for
this user or not. This comparison will be computationally
cheap and can be efficiently implemented with an index
structure to look up all axioms with a given label. To
be more precise, we use a set of labels L together with a
partial order ≤ on L and assume that every axiom a ∈ O
has an assigned label lab(a) ∈ L.1 The labels ` ∈ L are
also used to define user contexts (which can be interpreted
as access rights, required level of granularity, etc.). The
sub-ontology accessible for the context with label ` ∈ L is
defined to be

O≥` := {a ∈ O | lab(a) ≥ `}.

Clearly, the user of a DL-based ontology is not only able
to access its axioms, but also the consequences of these
axioms. That is, a user whose context has label ` should
also be allowed to see all the consequences of O≥`.
As mentioned already, certain consequences are usually

pre-computed by DL systems in order to avoid expensive
reasoning during the deployment phase of the ontology.
For example, in the version of the large medical ontology
Snomed ct2 that is distributed to hospitals and doctors,
all the subsumption relationships between the concept
names occurring in the ontology are pre-computed. For
a labelled ontology as introduced above, pre-computing
that a certain consequence c follows from the whole ontol-
ogy O is not sufficient. In fact, a user whose context has
label ` should only be able to see the consequences of O≥`,
and since O≥` may be smaller than O, the consequence c
of O may not be a consequence of O≥`. As said above,
pre-computing consequences for all possible user labels is
not a good idea since then one might have to compute and
store consequences for exponentially many different sub-
sets of O. Our solution to this problem is to compute a
so-called boundary for the consequence c, i.e., an element ν
of L such that c follows from O≥` iff ` ≤ ν. Thus, instead

1We will in fact impose the stronger restriction that (L,≤) defines
a lattice (see Section 2).

2http://www.ihtsdo.org/snomed-ct/

of pre-computing whether this consequence is valid for ev-
ery possible sub-ontology, our approach computes just one
label for each consequence such that a simple comparison
of the context label with the consequence label determines
whether the consequence follows from the corresponding
sub-ontology or not.

There are two main approaches for computing a bound-
ary. The glass-box approach takes a specific reasoner (or
reasoning technique) for an ontology language and mod-
ifies it such that it can compute a boundary. Examples
for the application of the glass-box approach to specific
instances of the problem of computing a boundary are
tableau-based approaches for reasoning in possibilistic De-
scription Logics [2, 3] (where the lattice is the interval [0, 1]
with the usual order), glass-box approaches to axiom pin-
pointing in Description Logics [4, 5, 6, 7, 8] (where the lat-
tice consists of (equivalence classes of) monotone Boolean
formulae with implication as order [8]), and RDFS reason-
ing over labelled triples with modified inference rules for
access control and provenance tracking [9, 10]. The prob-
lem with glass-box approaches is that they have to be de-
veloped and implemented for every ontology language and
reasoning approach anew and optimizations of the original
reasoning approach do not always apply to the modified
reasoners.

In contrast, the black-box approach can re-use existing
optimized reasoners without modifications, and it can be
applied to arbitrary ontology languages: one just needs
to plug in a reasoner for this language. In this paper, we
introduce three different black-box approaches for com-
puting a boundary. The first approach uses an axiom
pinpointing algorithm as black-box reasoner, whereas the
second one modifies the Hitting-Set-Tree-based black-box
approach to axiom pinpointing [11, 12]. The third uses bi-
nary search and can only be applied if the context lattice
is a linear order. It can be seen as a generalization of the
black-box approach to reasoning in possibilistic Descrip-
tion Logics described in [13].

Of course, the boundary computation only yields the
correct results if the axiom labels have been assigned in a
correct way. Unfortunately, just like creating ontology ax-
ioms, appropriately equipping these axioms with context
labels is an error-prone task. For instance, in an access
control application, several axioms that in isolation may
seem innocuous could, together, be used to derive a con-
sequence that a certain user is not supposed to see. If
the knowledge engineer detects that a consequence c has
an inappropriate boundary, and thus allows access to the
consequence by users that should not see it, then she may
want to modify the axiom labelling in such a way that
the boundary of c is updated to the desired label. This
problem is very closely related to the problem of repairing
an ontology. Indeed, to correct the boundary of a conse-
quence, one needs to be able to detect the axioms that are
responsible for it, since only their labels have an influence
on this boundary. In a large-scale ontology, this task needs
to be automated, as analysing hundreds of thousands of

2

axioms by hand is not feasible.
To provide for such an automated label repair mecha-

nism, we develop a black-box method for computing min-
imal sets of axioms that, when relabelled, yield the de-
sired boundary for c; we call these minimal change sets.
The main idea of this method is again based on the Hit-
ting Set Tree (HST) algorithms that have been developed
for axiom-pinpointing. However, we show that the orig-
inal labelling function can be exploited to decrease the
search space. This algorithm can be used to output all
minimal change sets. The knowledge engineer can then
choose which of them to use for the relabelling, depend-
ing on different criteria. Unfortunately, just as in axiom-
pinpointing, there may be exponentially many such mini-
mal change sets, and thus analysing them all by hand may
not be possible. We thus also develop an algorithm that
computes only one change set having the smallest cardi-
nality. This choice is motivated by a desire to make as few
changes in the original labelled ontology as possible during
the repair. We show that, in this case, a cardinality limit
can be used to further optimize the algorithm.

All the algorithms described in this paper have been im-
plemented and tested over large-scale ontologies from real-
life applications, and using a context lattice motivated by
an access control application scenario. Our experimental
results show that our methods perform well in practice.

This paper extends and improves the results previously
published in [14, 15]. More precisely, the algorithms for
computing the boundaries of consequences were presented
in [14], while the problem of repairing the boundaries was
addressed in [15]. Here, we (i) provide full proofs for all the
theoretical results presented, (ii) present better optimiza-
tions to our algorithms, and (iii) provide a thorough com-
parison of the different algorithmic approaches through our
experimental results. In order to make the paper acces-
sible also for practitioners who want to apply the general
framework, but are not interested in the full formal details
and proofs, we use a running example that should provide
enough details to understand the main ideas underlying
our approach.

2. Preliminaries

To stay as general as possible, we do not fix a specific
ontology language. We just assume that we have one such
ontology language determining which finite sets of axioms
are admissible as ontologies, such that every subset of an
ontology is itself an ontology. If O′ is a subset of the ontol-
ogy O, then O′ is called a sub-ontology of O. Consider, for
instance, a Description Logic L (e.g., the DL SROIQ(D)
underlying the OWL 2 web ontology language). Then an
ontology is a finite set of general concept inclusion axioms
(GCIs) of the form C v D, with C,D L-concept descrip-
tions, and assertional axioms of the form C(a) and r(a, b),
with C an L-concept description, a, b individual names,
and r a role name. For a fixed ontology language, a mono-
tone consequence relation |= is a binary relation between

ontologies O of this language and consequences c such that,
for every ontology O, it holds that if O′ ⊆ O and O′ |= c,
then O |= c. Examples of consequences in SROIQ(D)
are subsumption relations A v B for concept names A,B
or assertions C(a). Note that we can abstract from the
details of the ontology language and the consequence rela-
tion since we intend to use a black-box approach, i.e., all
we need is that there is an algorithm that, given an on-
tology O and a consequence c, is able to deduce whether
O |= c holds or not.
If O |= c, we may be interested in finding the axioms

responsible for this fact. Axiom-pinpointing is the task of
finding the minimal sub-ontologies that entail a given con-
sequence (MinAs), or dually, the minimal sets of axioms
that need to be removed or repaired to avoid deriving the
consequence (diagnoses).

Definition 2.1 (MinA, diagnosis). A sub-ontology S ⊆ O
is called a MinA for O,c if S |= c and for every S′ ⊂ S, it
holds that S′ 6|= c.3

A diagnosis for O,c is a sub-ontology S ⊆ O such that
O \ S 6|= c and O \ S′ |= c for all S′ ⊂ S.

The sets of MinAs and diagnoses are dual in the sense
that from the set of all MinAs, it is possible to compute
the set of all diagnoses, and vice versa, through a Hitting
Set computation [4].

As a running example, we will use the following scenario
of access restrictions, which is part of the research project
THESEUS/PROCESSUS [16]. Within this project, se-
mantically annotated documents describe Web services of-
fered and sold on a marketplace in the Web, like traditional
goods are sold on Amazon, eBay, and similar Web market-
places. Different types of users are involved with different
permissions that allow them to create, advertise, sell, buy,
etc. the services. Access is restricted not only to individual
documents but also to a large ontology containing all the
semantic annotations at one place.

Example 2.2. Consider an ontology O from a market-
place in the Semantic Web representing knowledge about
the Ecological Value Calculator service (ecoCalc), EU
Ecological Services (EUecoS), High Performance Services
(HPerfS), services with few customers (SFewCust), ser-
vices generating low profit (LowProfitS), and services with
a price increase (SPrIncr) having the following axioms:

a1 : EUecoS uHPerfS (ecoCalc)
a2 : HPerfS v SFewCust u LowProfitS
a3 : EUecoS v SFewCust u LowProfitS
a4 : SFewCust v SPrIncr
a5 : LowProfitS v SPrIncr

The assertion SPrIncr(ecoCalc) is a consequence of O that
follows from each of the MinAs {a1, a2, a4}, {a1, a2, a5},
{a1, a3, a4}, and {a1, a3, a5}, and has three diagnoses,
namely {a1}, {a2, a3}, and {a4, a5}.

3MinAs are sometimes also called justifications, e.g. in [6, 11].

3

As mentioned before, our axiom labels come from an
appropriate lattice. A lattice (L,≤) is a set L together
with a partial order ≤ on L such that a finite subset S ⊆ L
always has a join (least upper bound)

⊕

S and a meet
(greatest lower bound)

⊗

S [17]. The lattice (L,≤) is
distributive if the join and meet operators distribute over
each other. Another lattice-theoretic notion that will be
important for the rest of the paper is that of join-prime
elements.

Definition 2.3 (Join prime). Let (L,≤) be a lattice.
Given a finite set K ⊆ L, let K⊗ := {

⊗

`∈M ` | M ⊆ K}
denote the closure of K under the meet operator. An ele-
ment ` ∈ L is called join prime relative to K if, for every
K ′ ⊆ K⊗, ` ≤

⊕

k∈K′ k implies that there is an k0 ∈ K ′

such that ` ≤ k0.

For instance, the lattice (L,≤) depicted in Figure 1 has
four join prime elements relative to L, namely `0, `2, `3,
and `5. The element `4 is not join prime relative to L
since `4 ≤ `4 = `5 ⊕ `3, but `4 6≤ `5 and `4 6≤ `3.

We now explain how lattices can be used to encode con-
texts, and solve reasoning problems relative to them. From
our running example, we want to produce an access con-
trol system that regulates the allowed permissions for each
user according to her user role. Our example focuses on
reading access only. A common representation of user roles
and their permissions to access objects is the access control
matrix [18]. Using methods from Formal Concept Anal-
ysis, as presented in [19], a lattice representation of the
access control matrix can be obtained. In fact, the lattice
depicted in Figure 1 was derived in this way.

In the general setting, we will use elements of the lattice
(L,≤) to define different contexts or views of an ontol-
ogy. Depending on the application in hand, these contexts
can have different meanings, such as access rights, level of
expertise, trustworthiness, etc.

Given an ontology O, every axiom a ∈ O is assigned a
label lab(a) ∈ L, which intuitively expresses the contexts
from which the axiom a can be accessed. An ontology
extended with such a labelling function lab will be called a
labelled ontology. We will use the expression Llab to denote
the set of all labels occurring in the labelled ontology O;
that is, Llab := {lab(a) | a ∈ O}. Each element ` ∈ L then
defines the context sub-ontology4

O≥` := {a ∈ O | lab(a) ≥ `}.

Conversely, every sub-ontology S ⊆ O defines an element
λS ∈ L, called the label of S, given by λS :=

⊗

a∈S lab(a).
Some simple relationships between ontologies and their

labels are stated in the following lemma.

Lemma 2.4. Let (L,≤) be a lattice, O an ontology, and
lab : O → L. For every ` ∈ L and S ⊆ O, it holds that

4To define this sub-ontology, an arbitrary partial order would suf-
fice. However, the existence of suprema and infima will be important
for the computation of a boundary of a consequence (see Section 4).

Figure 1: A lattice with 4 contexts and 5 axioms assigned to it

1. ` ≤ λO≥`
,

2. S ⊆ O≥λS
, and

3. O≥` = O≥λO≥`
.

Proof. For the first statement, by definition ` ≤ lab(a)
holds for all a ∈ O≥`. Thus, ` ≤

⊗

a∈O≥`
lab(a) = λO≥`

.

Regarding the second claim, for every a ∈ S it holds that
λS =

⊗

s∈S lab(s) ≤ lab(a), which implies that a ∈ O≥λS
.

Now, consider the last claim. First, as ` ≤ λO≥`
, it holds

trivially that O≥λO≥`
⊆ O≥`. From the second claim it

also follows that O≥` ⊆ O≥λO≥`
.

Example 2.5. Let (L,≤) be the lattice shown in Figure 1,
where elements `0, `2, `3, `5 represent the different kinds of
users (that is, contexts) that have access to an ontology.
Let lab be the labelling function assigning to each axiom
ai of the ontology O from Example 2.2 the label `i, as
depicted also in Figure 1. The label `3 defines the con-
text of a development engineer for which the sub-ontology
O≥`3 = {a1, a2, a3, a4}, along with all its consequences, is
visible.

Notice that labels that are lower in the lattice define
larger context sub-ontologies. In other words, a user as-
signed to a context sub-ontology lower in the lattice will
have access to more axioms (and thus, consequences) than
a user belonging to a context above her.

3. Pre-Computing Context-Dependent Implicit

Knowledge

Just as every axiom is accessible only for certain con-
texts, a consequence of the ontology will only be derivable
in those contexts that have access to enough axioms to
deduce it. We are interested in computing adequate labels
(called boundaries) for such implicit consequences, which
express, just as the labels of the axioms, which contexts
are capable of deducing them from their visible axioms.

Notice that, if a consequence c follows from O≥` for
some ` ∈ L, it must also follow from O≥`′ for every `′ ≤ `,
since then O≥` ⊆ O≥`′ . A maximal element of L that still
entails the consequence will be called a margin for this
consequence.

4

Definition 3.1 (Margin). Let c be a consequence that
follows from the ontology O. The label µ ∈ L is called a
(O, c)-margin if O≥µ |= c, and for every ` with µ < ` we
have O≥` 6|= c.

If O and c are clear from the context, we usually ignore
the prefix (O, c) and call µ simply a margin. The following
lemma shows three basic properties of the set of margins,
which will be useful throughout this paper.

Lemma 3.2. Let c be a consequence that follows from the
ontology O. We have:

1. If µ is a margin, then µ = λO≥µ
;

2. if O≥` |= c, then there is a margin µ such that ` ≤ µ;

3. there are at most 2|O| margins for c.

Proof. To show 1, let µ ∈ L. Lemma 2.4 yields µ ≤ λO≥µ

and O≥µ = O≥λO≥µ
, and thus O≥λO≥µ

|= c. If µ < λO≥µ
,

then this λO≥µ
contradicts our assumption that µ is a mar-

gin; hence µ = λO≥µ
. Point 3 is a trivial consequence

of 1: since every margin has to be of the form λS for some
S ⊆ O, there are at most as many margins as there are
subsets of O.
For the remaining point, let ` ∈ L be such that O≥` |= c.

Let m := λO≥`
. From Lemma 2.4, it follows that ` ≤ m

and O≥m = O≥`, and hence O≥m |= c. If m is a margin,
then the result holds; suppose to the contrary that m is
not a margin. Then, there must exist an `1,m < `1, such
that O≥`1 |= c. As m = λO≥m

, there must exist an axiom
a ∈ O such that m ≤ lab(a), but `1 6≤ lab(a). In fact, if
m ≤ lab(a) ⇒ `1 ≤ lab(a) would hold for all a ∈ O, then
m = λO≥`

= λO≥m
=

⊗

lab(a)≥m lab(a) ≥ `1, contradicting
our choice of `1. The existence of this axiom a implies that
O≥`1 ⊂ O≥m. Let m1 := λO≥`1

; then m < `1 ≤ m1. If m1

is not a margin, then we can repeat the same process to
obtain a new m2 with m < m1 < m2 and O≥m ⊃ O≥m1

⊃
O≥m2

, and so on. As O is finite, there exists a finite k
where this process stops, and hence mk is a margin.

If we know that µ is a margin for the consequence c, then
we know whether c follows from O≥` for all ` ∈ L that are
comparable with µ: if ` ≤ µ, then c follows from O≥`,
and if ` > µ, then c does not follow from O≥`. However,
this gives us no information regarding elements that are
incomparable with µ. In order to obtain a full picture of
when the consequence c follows from O≥` for an arbitrary
element ` of L, we can try to strengthen the notion of mar-
gin to that of an element ν of L that accurately divides the
lattice into those elements whose associated sub-ontology
entails c and those for which this is not the case, i.e., ν
should satisfy the following: for every ` ∈ L, O≥` |= c iff
` ≤ ν. Unfortunately, such an element need not always
exist, as demonstrated by the following example.

Example 3.3. Consider the lattice (L,≤) depicted in Fig-
ure 1 and let O’ be an ontology consisting of axioms b1 and
b2, labelled with `4 and `2, respectively. Let now c be a
consequence such that, for every S ⊆ O′, we have S |= c

iff |S| ≥ 1. It is easy to see that there is no element ν ∈ L
that satisfies the condition described above. Indeed, if we
choose ν ∈ {`0, `3, `4, `5}, then `2 violates the condition,
as `2 6≤ ν, but O′

≥`2
= {b2} |= c. Similarly, if we choose

ν = `2, then `1 violates the condition. Finally, if ν = `1
is chosen, then `1 itself violates the condition: `1 ≤ ν, but
O′

≥`1
= ∅ 6|= c.

It is nonetheless possible to find an element that satis-
fies a restricted version of the condition, where we do not
impose that the property (i.e. O≥` |= c iff ` ≤ ν) must
hold for every element of the context lattice, but only for
those elements that are join prime relative to the labels of
the axioms in the ontology.

Definition 3.4 (Boundary). Let O be an ontology and c a
consequence. An element ν ∈ L is called a (O, c)-boundary
if for every element ` ∈ L that is join prime relative to Llab

it holds that ` ≤ ν iff O≥` |= c.

As with margins, if O and c are clear from the con-
text, we will simply call such a ν a boundary. When it is
clear that the computed boundary and no assigned label
is meant, we also often call it consequence label. In Exam-
ple 3.3, the element `1 is a boundary. Indeed, every join
prime element ` relative to {`4, `2} (i.e., every element of
L except for `1) is such that ` < `1 and O′

≥` |= c.
From a practical point of view, our definition of a bound-

ary has the following implication: we must enforce that
contexts are always defined through labels that are join
prime relative to the set Llab of all labels occurring in the
ontology. In Example 2.5, all the elements of the con-
text lattice except `1 and `4 are join prime relative to Llab

and for this reason `0, `2, `3, `5 are all valid context labels
and can thus be used to represent user roles as illustrated.
Given a context label `u, we will say that a consequence c
is in the context if `u ≤ ν for some boundary ν.
Notice however that the boundary is not guaranteed to

be unique, as shown in the following example.

Example 3.5. Consider the lattice L obtained from the
lattice in Figure 1 by removing the element `4 and keeping
the order relation unchanged. Let now O = {a1, a2} and
c be such that S |= c iff a1 ∈ S. If we set lab(a1) = `3,
lab(a2) = `5, it then follows that (i) `0, `3, `5 are all join-
prime elements relative to Llab, and (ii) O≥` |= c iff ` ≤ `3.
But notice that `3 ≤ `2 and `5 6≤ `2; thus, `2 and `3 are
both (O, c)-boundaries.

Before formally describing how to compute (Section 4)
and correct (Section 5) boundaries for consequences of an
ontology, we briefly describe what are the requirements
and benefits of our method from a knowledge engineering
point of view.
As a prerequisite, we assume that the context lattice L

is known, and that every axiom of the ontology is labelled
with an element of L expressing the set of contexts that
have access to it. To obtain this lattice and labeling, the

5

knowledge engineer can first build a context matrix relat-
ing every relevant context to the sub-ontology that it can
access. The knowledge engineer only needs to “tag” every
axiom with the corresponding contexts; tagging elements
is already a common task in Web 2.0 applications, and
no further effort is required from our framework. Formal
Concept Analysis [20] can then be used to obtain a lat-
tice representation of this matrix, together with a labelling
function. This labelling function is ensured to be the least
restrictive possible satisfying all the restrictions specified
by the knowledge engineer in the context matrix. Indeed,
the context lattice depicted in Figure 1 was derived in this
way [19].

Given a labelled ontology, computing a boundary corre-
sponds to reasoning with respect to all contexts simulta-
neously, modulo an inexpensive label comparison: given a
boundary ν for a consequence c, every context below ν in
the lattice can derive c, while all others cannot.

Boundaries also simplify the work of verifying the cor-
rectness of the labelling function, since the knowledge en-
gineer needs only compare the boundary of implicit conse-
quences with the set of contexts that should access them,
rather than analysing every context independently. If a
consequence has an undesired boundary, then our method
provides suggestions for correcting it, while keeping the
changes in the labelling function to the minimum. In the
same manner, our approach is helpful for the maintenance
of labelled ontologies.

4. Computing a Boundary

We now focus on the problem of computing a boundary.
We first present an algorithm based on axiom-pinpointing,
which introduces the main ideas for the computation of a
boundary. We then improve on these ideas by taking the
labels of the axioms into account during the computation.
Finally, we show that, if the lattice is a total order, then
a modification of binary search can be used to compute a
boundary. All these algorithms are based on the following
lemma.

Lemma 4.1. Let µ1, . . . , µn be all (O, c)-margins. Then
⊕n

i=1 µi is a boundary for O, c.

Proof. Let ` ∈ L be join prime relative to Llab. We need
to show that ` ≤

⊕n
i=1 µi iff O≥` |= c. Assume first that

O≥` |= c. Then, from 2 of Lemma 3.2, it follows that there
is a margin µj such that ` ≤ µj , and thus ` ≤

⊕n
i=1 µi.

Conversely, let ` ≤
⊕n

i=1 µi. From 1 of Lemma 3.2, it
follows that µi ∈ (Llab)⊗ for every i, 1 ≤ i ≤ n. As `
is join prime relative to Llab, it then holds that there is
a j such that ` ≤ µj and hence, by the definition of a
margin and the monotonicity of the consequence relation,
O≥` |= c.

By Lemma 3.2, a consequence always has finitely many
margins, and thus Lemma 4.1 shows that a boundary al-
ways exists. As shown in Example 3.5, a consequence may

have boundaries different from the one of Lemma 4.1. To
identify the particular boundary of Lemma 4.1, we will call
it the margin-based boundary. For the rest of this section,
we will focus on computing this boundary.

4.1. Using Full Axiom Pinpointing

From Lemma 4.1 we know that the set of all margins
yields sufficient information for computing a boundary.
The question is thus how to compute this set. We now
show that every margin can be obtained from some MinA.

Lemma 4.2. For every margin µ for c there is a MinA S
such that µ = λS.

Proof. If µ is a margin, then O≥µ |= c by definition. Thus,
there exists a MinA S ⊆ O≥µ. Since µ ≤ lab(a) for every
a ∈ O≥µ, this in particular holds also for every axiom in
S, and hence µ ≤ λS . Additionally, as S ⊆ O≥λS

, we have
O≥λS

|= c. This implies µ = λS since otherwise µ < λS ,
and then µ would not be a margin.

Notice that this lemma does not imply that the label
of any MinA S corresponds to a margin. Indeed, for the
ontology and consequence of Example 2.5, two of the four
MinAs are {a1, a2, a5}, {a1, a2, a4} whose labels are `0 and
`3, respectively, and hence the label of the former cannot
be a margin (since `0 < `3). However, as the consequence
follows from every MinA S, Point 2 of Lemma 3.2 shows
that λS ≤ µ for some margin µ. The following theorem
is an immediate consequence of this fact together with
Lemma 4.1 and Lemma 4.2.

Theorem 4.3. If S1, . . . , Sn are all MinAs for O and c,
then

⊕n
i=1 λSi

is the margin-based boundary for c.

Example 4.4. We continue Example 2.5 where each ax-
iom ai is labelled with lab(ai) = `i. We are interested
in the boundary for the consequence SPrIncr(ecoCalc),
which has the MinAs {a1, a2, a4}, {a1, a2, a5}, {a1, a3, a4},
and {a1, a3, a5}. From Theorem 4.3, it follows that the
margin-based boundary for c is `3 ⊕ `0 ⊕ `3 ⊕ `0 = `3.
This in particular shows that only the contexts of devel-
opment engineers and customer service employees, defined
through the labels `3 and `0, respectively, can derive the
consequence.

According to the above theorem, to compute a bound-
ary, it is sufficient to compute all MinAs. Several meth-
ods exist for computing the set of all MinAs, either di-
rectly [4, 11, 21] or through a so-called pinpointing for-
mula [22, 8, 7], which is a monotone Boolean formula en-
coding all the MinAs. The main advantage of using the
pinpointing-based approach for computing a boundary is
that one can simply use existing implementations for com-
puting all MinAs, such as the ones offered by the ontology
editor Protégé 45 and the CEL system.6 However, since not

5http://protege.stanford.edu/
6http://code.google.com/p/cel/

6

all MinAs may really contribute to computing the bound-
ary, first computing all MinAs may require extensive su-
perfluous work.

4.2. Using Label-Optimized Axiom Pinpointing

From Lemma 4.2 we know that every margin is of the
form λS for some MinA S. In the previous subsection we
have used this fact to compute a boundary by first obtain-
ing the MinAs and then computing their labels. However,
this idea ignores that the relevant part of the computation
of a boundary are the labels of the MinAs, rather than
the MinAs per se. This process can be optimized if we
directly compute the labels of the MinAs, without neces-
sarily computing the actual MinAs. Additionally, it is not
necessary to compute the label of every MinA, but only
of those that correspond to margins, that is, those that
are maximal w.r.t. the lattice ordering ≤. For instance,
in Example 4.4, we could avoid computing the two MinAs
that have label `0.

We present here a black-box algorithm that uses the la-
bels of the axioms to find the boundary in an optimized
way. Our algorithm is a variant of the Hitting-Set-Tree-
based [23] method (HST approach) for axiom pinpoint-
ing [11, 12]. First, we briefly describe the HST approach
for computing all MinAs, which will serve as a starting
point for our modified version.

The HST-based method for axiom pinpointing computes
one MinA at a time while building a tree that expresses
the distinct possibilities to be explored in the search of
further MinAs. It first computes an arbitrary MinA S0 for
O, which is used to label the root of the tree. Then, for
every axiom a in S0, a successor node is created. If O\{a}
does not entail the consequence, then this node is a dead
end. Otherwise, O \ {a} still entails the consequence. In
this case, a MinA S1 for O \ {a} is computed and used
to label the node. The MinA S1 for O \ {a} obtained
this way is also a MinA of O, and it is guaranteed to
be distinct from S0 since a /∈ S1. Then, for each axiom
a′ in S1, a new successor is created, and treated in the
same way as the successors of the root node, i.e., it is
checked whether O \ {a, a′} still has the consequence, etc.
This process obviously terminates since O is a finite set
of axioms, and the end result is a tree, where each node
that is not a dead end is labelled with a MinA, and every
existing MinA appears as the label of at least one node of
the tree (see [11, 12] for further details).

An important ingredient of the HST algorithm is a pro-
cedure that computes a single MinA from an ontology.
Such a procedure can, e.g., be obtained by going through
the axioms of the ontology in an arbitrary order, and re-
moving redundant axioms, i.e., ones such that the ontology
obtained by removing this axiom from the current sub-
ontology still entails the consequence (see [21] for a de-
scription of this and of a more sophisticated logarithmic
procedure for computing one MinA).

We will use this same idea as a basis for computing the
margin-based boundary for a consequence. As said before,

Algorithm 1 Compute a MinLab of one MinA

Procedure min-lab(O, c)
Input: O: ontology; c: consequence
Output: ML ⊆ L: a MinLab

1: if O 6|= c then

2: return no MinA
3: S := O
4: ML := ∅
5: for every k ∈ Llab do

6: if
⊗

l∈ML
l 6≤ k then

7: if S ̸=k |= c then

8: S := S ̸=k

9: else

10: ML := (ML \ {l | k < l}) ∪ {k}
11: return ML

we are now not interested in actually computing a MinA,
but only its label. This allows us to remove all axioms
having a “redundant” label rather than a single axiom.
Algorithm 1 describes a black-box method for computing
the label of some MinA S based on this idea. More pre-
cisely, the algorithm does not compute a single label, but
rather a minimal label set (MinLab) of a MinA S.

Definition 4.5 (Minimal label set). Let S be a MinA
for c. A set K ⊆ {lab(a) | a ∈ S} is called a MinLab
of S if the elements of K are pairwise incomparable and
λS =

⊗

`∈K `.

Algorithm 1 removes all the labels that do not contribute
to a MinLab. If O is an ontology and ` ∈ L, then the ex-
pression O ̸=` appearing at Line 7 denotes the sub-ontology
O ̸=` := {a ∈ O | lab(a) 6= `}. If, after removing all the
axioms labelled with k, the consequence still follows, then
there is a MinA none of whose axioms is labelled with k.
In particular, this MinA has a MinLab not containing k;
thus, all the axioms labelled with k can be removed in our
search for a MinLab. If the axioms labelled with k cannot
be removed, then all MinAs of the current sub-ontology
need an axiom labelled with k, and hence k is stored in the
set ML. This set is also used to avoid useless consequence
tests: if a label is greater than or equal to

⊗

`∈ML
`, then

the presence or absence of axioms with this label will not
influence the final result, which will be given by the infi-
mum of ML; hence, there is no need to apply the (possibly
complex) decision procedure for the consequence relation
(Line 6).

Theorem 4.6. Let O and c be such that O |= c. There is
a MinA S0 for c such that Algorithm 1 outputs a MinLab
of S0.

Proof. As O |= c, the algorithm will enter the for loop.
This loop keeps the following two invariants: (i) S |= c
and (ii) for every ` ∈ ML, S̸=` 6|= c. The invariant (i) is
ensured by the condition in Line 7 that must be satisfied
before S is modified. Otherwise, that is, if S ̸=` 6|= c, then `

7

is added toML (Line 10) which, together with the fact that
S is always modified to a smaller set (Line 8), ensures (ii).
Hence, when the loop finishes, the sets S and ML satisfy
both invariants. As S |= c, there is a MinA S0 ⊆ S for c.
For each ` ∈ ML, there must be an axiom a ∈ S0 such that
lab(a) = `, otherwise, S0 ⊆ S ̸=` and hence S ̸=` |= c, which
contradicts invariant (ii); thus, ML ⊆ {lab(a) | a ∈ S0}
and in particular λS0

≤
⊗

`∈ML
`.

It remains to show that the inequality in the other di-
rection holds as well. Consider now k ∈ {lab(a) | a ∈ S}
and let Mk

L be the value of ML when the for loop was en-
tered with value k. We have that

⊗

`∈ML
` ≤

⊗

`∈Mk
L
`. If

⊗

`∈ML
` 6≤ k, then also

⊗

`∈Mk
L
` 6≤ k, and thus it fulfills

the test in Line 6, and continues to Line 7. If that test is
satisfied, then all the axioms with label k are removed from
S, contradicting the assumption that k = lab(a) for some
a ∈ S. Otherwise, k is added to ML, which contradicts the
assumption that

⊗

`∈ML
` 6≤ k. Thus, for every axiom a

in S,
⊗

`∈ML
` ≤ lab(a); hence

⊗

`∈ML
` ≤ λS ≤ λS0

.

Once the label of a MinA has been found, we can
compute new MinLabs by a successive deletion of ax-
ioms from the ontology using the HST approach. Sup-
pose that we have computed a MinLab M0, and that
` ∈ M0. If we remove all the axioms in the ontology la-
belled with `, and compute a new MinLab M1 of a MinA
of this sub-ontology, then M1 does not contain `, and thus
M0 6= M1. By iterating this procedure, we could compute
all MinLabs, and hence the labels of all MinAs. However,
since our goal is to compute the supremum of these la-
bels, the algorithm can be further optimized by avoiding
the computation of those MinAs whose labels will have no
impact on the final result. Based on this we can actually
do better than just removing the axioms with label `: in-
stead, all axioms with labels ≤ ` can be removed. For an
element ` ∈ L and an ontology O, O ̸≤` denotes the sub-
ontology obtained from O by removing all axioms whose
labels are ≤ `. Now, assume that we have computed the
MinLab M0, and that M1 6= M0 is the MinLab of the
MinA S1. For all ` ∈ M0, if S1 is not contained in O ̸≤`,
then S1 contains an axiom with label ≤ `. Consequently,
⊗

m∈ℳ1
m = λS1

≤
⊗

m∈ℳ0
m, and thus M1 need not

be computed. Algorithm 2 describes our method for com-
puting the boundary using a variant of the HST algorithm
that is based on this idea.
In the procedure HST-boundary, three global variables

are declared: C, H (initialized with ∅), and ν. The vari-
able C stores all the MinLabs computed so far, while each
element of H is a set of labels such that, when all the ax-
ioms with a label less than or equal to any label from the
set are removed from the ontology, the consequence does
not follow anymore; the variable ν stores the supremum of
the labels of all the elements in C and ultimately corre-
sponds to the boundary that the method computes. The
algorithm starts by computing a first MinLab M, which
is used to label the root of a tree. For each element of M,
a branch is created by calling the procedure expand-HST.

Algorithm 2 Compute a boundary by a HST algorithm

Procedure HST-boundary(O, c)
Input: O: ontology; c: consequence
Output: boundary ν for c

1: Global : C,H := ∅; ν
2: M := min-lab(O, c)
3: C := {M}
4: ν :=

⊗

`∈ℳ `
5: for each label ` ∈ M do

6: expand-HST(O ̸≤`, c, {`})
7: return ν

Procedure expand-HST(O, c,H)
Input: O: ontology; c: consequence; H: list of lattice
elements
Side effects: modifiesC,H, ν

1: if there exists some H ′ ∈ H such that {h ∈ H ′ |
h 6≤ ν} ⊆ H or H ′ contains a prefix-path P with
{h ∈ P | h 6≤ ν} = H then

2: return (early path termination ⊗)
3: if there exists M ∈ C such that for all ` ∈ M, h ∈ H,

` 6≤ h and ` 6≤ ν then

4: M′ := M (MinLab reuse)
5: else

6: M′ := min-lab(O ̸≤ν , c)
7: if O ̸≤ν |= c then

8: C := C ∪ {M′}
9: ν :=

⊕

{ν,
⊗

`∈ℳ′ `}
10: for each label ` ∈ M′ do

11: expand-HST(O ̸≤`, c,H ∪ {`})
12: else

13: H := H ∪ {H} (normal termination �)

The procedure expand-HST implements the ideas of HST
construction for computing all MinAs [11, 12] with addi-
tional optimizations that help reduce the search space as
well as the number of calls to min-lab. First notice that
each M ∈ C is a MinLab, and hence the infimum of its el-
ements corresponds to the label of some MinA for c. Thus,
ν is the supremum of the labels of a set of MinAs for c. If
this is not yet the boundary, then there must exist another
MinA S whose label is not less than or equal to ν. This
in particular means that no element of S may have a label
less than or equal to ν, as the label of S is the infimum of
the labels of the axioms in it. When searching for this new
MinA we can then exclude all axioms having a label ≤ ν,
as done in Line 6 of expand-HST. Every time we expand
a node, we extend the set H, which stores the labels that
have been removed on the path in the tree to reach the
current node. If we reach normal termination, it means
that the consequence does not follow anymore from the
reduced ontology. Thus, any H stored in H is such that,
if all the axioms having a label less than or equal to an
element in H are removed from O, then c does not follow
anymore. Lines 1 to 4 of expand-HST are used to reduce
the number of calls to the subroutine min-lab and the total

8

search space. We describe them now in more detail.

The first optimization, early path termination, prunes
the tree once we know that no new information can be
obtained from further expansion. There are two condi-
tions that trigger this optimization. The first one tries to
decide whether O ̸≤ν |= c without executing the decision
procedure. As said before, we know that for each H ′ ∈ H,
if all labels less than or equal to any in H ′ are removed,
then the consequence does not follow. Hence, if the current
list of removal labels H contains a set H ′ ∈ H we know
that enough labels have been removed to make sure that
the consequence does not follow. It is actually enough to
test whether {h ∈ H ′ | h 6≤ ν} ⊆ H since the consequence
test we need to perform is whether O ̸≤ν |= c. The second
condition for early path termination asks for a prefix-path
P of H ′ such that P = H. If we consider H ′ as a list
of elements, then a prefix-path is obtained by removing
a final portion of this list. The idea is that, if at some
point we have noticed that we have removed the same ax-
ioms as in a previous branch of the search, we know that
all possibilities that arise from that search have already
been tested before, and hence it is unnecessary to repeat
the work. The tree can then be pruned at this node. As
an example, consider a subtree reachable from the root by
going along the edges `1, `2 which has been expanded com-
pletely. Then all Hitting Sets of its leaf nodes share the
common prefix-path P = {`1, `2}. Now suppose the tree is
expanded by expand-HST(O, c,H) with H = {`2, `1}. The
expansion stops with early termination since P = H.

The second optimization avoids a possibly expensive call
to min-lab by reusing a previously computed minimal label
set. Notice that our only requirement on min-lab is that it
produces a MinLab. Hence, any MinLab for the ontology
obtained after removing all labels less than or equal to any
h ∈ H or to ν would work. The MinLab-reuse optimiza-
tion checks whether there is such a previously computed
MinLab. If this is the case, the algorithm uses this set
instead of computing a new one by calling min-lab. If we
left out the prefix-path condition for early termination,
the MinLab reuse condition would still hold. That means
leaving out the prefix-path condition leads to no more min-

lab calls but leads to copying several branches in the tree
without obtaining new information.

Before showing that the algorithm is correct, we illus-
trate its execution through a small example.

Example 4.7. We continue Example 4.4 with the same
consequence SPrIncr(ecoCalc). Figure 2 shows a possi-
ble run of the HST-boundary algorithm. The algorithm
first calls the routine min-lab(O, c). Consider that the
for loop of min-lab is executed using the labels in the or-
der `1, `2, `4, `3, `5 since Line 5 requires no specific order.
Thus, we try first to remove a1 labelled with `1. We see
that O ̸=`1 6|= c; hence a1 is not removed from O, and ML

is updated to ML = {`1}. We then see that O ̸=`2 |= c,
and thus a2 is removed from O. Again, O ̸=`4 |= c, so a4
is removed from O. At this point, O = {a1, a3, a5}. We

Figure 2: An expansion of the HST method

test then whether O ̸=`3 |= c and receive a negative answer;
thus, `3 is added to ML; additionally, since `3 < `1, the
latter is removed from ML. Finally, O ̸=`5 6|= c, and so we
obtain ML = {`3, `5} as an output of min-lab.

The MinLab {`3, `5}, is used as the root node n0, set-
ting the value of ν = `3⊗ `5 = `0. We then create the first
branch on the left by removing all the axioms with a la-
bel ≤ `3, which is only a3, and computing a new MinLab.
Assume, for the sake of the example, that min-lab returns
the MinLab {`2, `4}, and ν is accordingly changed to `3.
When we expand the tree from this node, by removing
all the axioms below `2 (left branch) or `4 (right branch),
the instance relation c does not follow any more, and hence
we have a normal termination, adding the sets {`3, `2} and
{`3, `4} to H. We then create the second branch from the
root, by removing the elements below `5. We see that the
previously computed minimal label set of node n1 works
also as a MinLab in this case, and hence it can be reused
(MinLab reuse), represented in the figure as an under-
lined set. The algorithm continues now by calling expand-

HST(O ̸≤`2 , c, {`5, `2}). At this point, we detect that there
is H ′ = {`3, `2} satisfying the first condition of early path
termination (recall that ν = `3), and hence the expansion
of that branch stops at that point. Analogously, we obtain
an early path termination on the second expansion branch
of the node n4. The algorithm then outputs ν = `3, which
is the margin-based boundary as computed before.

Theorem 4.8. Let O and c be such that O |= c. Then
Algorithm 2 computes the margin-based boundary of c.

Proof. Let η be the margin-based boundary which, by
Lemma 4.1, must exist. Notice first that the procedure
expand-HST keeps as invariant that ν ≤ η as whenever
ν is modified, it is only to join it with the infimum of
a MinLab (Line 9), which by definition is the label of a
MinA and, by Theorem 4.3, is ≤ η. Thus, when the al-
gorithm terminates, we have that ν ≤ η. Assume now
that ν 6= η. Then, there must exist a MinA S such that
λS 6≤ ν; in particular, this implies that none of the ax-
ioms in S has a label ≤ ν and thus S ⊆ O ̸≤ν . Let M0 be
the MinLab obtained in Line 2 of HST-boundary. There
must then be a h0 ∈ M0 such that S ⊆ O ̸≤h0

; otherwise,
λS ≤

⊗

`∈ℳ0
` ≤ ν. There will then be a call to the

process expand-HST with parameters O ̸≤h0
, c, and {h0}.

Suppose first that early path termination is not triggered.
A MinLab M1 is then obtained, either by MinLab reuse

9

(Line 4) or by a call to min-lab (Line 6). As before, there
is a h1 ∈ M1 with S ⊆ (O ̸≤h0

) ̸≤h1
. Additionally, since

O ̸≤h0
does not contain any axiom labelled with h0, we

know h0 /∈ M1. While iterating this algorithm, we can
find a sequence of MinLabs M0,M1, . . . ,Mn and labels
h0, h1, . . . , hn such that (i) hi ∈ Mi, (ii) S ⊆ O ̸≤hi

, and
(iii) hi /∈ Mj for all i, j, 1 ≤ i < j ≤ n. In particular,
this means that the Mis are all different, and since there
are only finitely many MinLabs, this process must termi-
nate. Let Mn be the last set found this way. Then, when
expand-HST is called with R := (((O ̸≤h0

) ̸≤h1
)...) ̸≤hn

, c and
H = {h1, . . . , hn}, no new MinLab is found. Suppose first
that this is due to a normal termination. Then, R ̸≤ν 6|= c.
But that contradicts the fact that S is a MinA for c since
S ⊆ R ̸≤ν . Hence, it must have finished by early termina-
tion.
Early termination can be triggered by two different

causes. Suppose first that there is a H ′ ∈ H such that
{h ∈ H ′ | h 6≤ ν} ⊆ H. Then it is also the case that, for
every h ∈ H ′ and S ⊆ O ̸≤h the following holds: if h ∈ H,
then R ⊆ O ̸≤h; otherwise, h ≤ ν and hence O ̸≤ν ⊆ O ̸≤h.
Let R′ := {a ∈ O | there is no h ∈ H ′ with lab(a) ≤ h}.
As H ′ ∈ H, it was added after a normal termination; thus,
c does not follow from R′

̸≤ν . As S ⊆ R ̸≤ν , we obtain once
again a contradiction.
The second cause for early path termination is the ex-

istence of a prefix-path P with {h ∈ P | h 6≤ ν} = H.
This means that in a previously explored path we had
concluded that R ̸≤ν |= c, and a new MinLab Mn+1 was
found. As in the beginning of this proof, we can then
compute sets Mn+1, . . . ,Mm and hn+1, . . . , hm (n < m)
such that S ⊆ O ̸≤hi

for all i, 1 ≤ i ≤ m and the Mis are
all different. Hence this process terminates. As before,
the cause of termination cannot be normal termination,
nor the first condition for early path termination. Thus,
there must exist a new H ′′ ∈ H that fulfills the second
condition for early termination. As H is a finite set, and
each of its elements is itself a finite list, this process also
terminates. When that final point is reached, there are
no further causes of termination that do not lead to a
contradiction, which means that our original assumption
that ν 6= η cannot be true. Hence, ν is the margin-based
boundary of c.

4.3. Using Binary Search for Linear Ordering

Assume now that the context lattice (L,≤) is a linear
order, i.e., for any two elements `1, `2 of L either `1 ≤ `2
or `2 ≤ `1. We show that in this case, the computation of
the boundary can be further optimized through a variant
of binary search. First, we give a characterization of the
boundary in this setting.

Lemma 4.9. Let O and c be such that O |= c. Then the
unique boundary of c is the maximal element µ of Llab with
O≥µ |= c.

Proof. Let µ be the maximal element of Llab such that
O≥µ |= c. Such a maximal element exists since Llab is a

Algorithm 3 Compute a boundary by binary search.

Input: O: ontology; c: consequence
Output: ν: (O, c)-boundary

1: if O 6|= c then

2: return no boundary
3: ` := 0lab;h := 1lab

4: while l < h do

5: set m, ` < m ≤ h, such that |δ(`,m)− δ(m,h)| ≤ 1
6: if O≥m |= c then

7: ` := m
8: else

9: h := pred(m)
10: return ν := `

finite total order. We need to show that ` ≤ µ iff O≥` |= c.
Obviously, ` ≤ µ implies O≥` ⊇ O≥µ, and thus O≥µ |= c
yields O≥` |= c. Assume now that O≥` |= c. Then the
fact that µ is maximal with this property together with
the fact that ≤ is a linear order implies ` ≤ µ. Thus, µ is
a boundary.

A direct way for computing the boundary in this re-
stricted setting thus consists of testing, for every element
in ` ∈ Llab, in order (either increasing or decreasing)
whether O≥` |= c until the desired maximal element is
found. This process requires in the worst case n := |Llab|
iterations. This can be improved using binary search,
which requires a logarithmic number of steps measured
in n. Algorithm 3 describes the binary search algorithm.
In the description of the algorithm, the following abbre-
viations have been used: 0lab and 1lab represent the min-
imal and the maximal elements of Llab, respectively; for
`1 ≤ `2 ∈ Llab, δ(`1, `2) := |{`′ ∈ Llab | `1 < `′ ≤ `2}|
is the distance function in Llab and for a given ` ∈ Llab,
pred(`) is the maximal element `′ ∈ Llab such that `′ < `.
The variables ` and h are used to keep track of the rel-

evant search space. At every iteration of the while loop,
the boundary is between ` and h. At the beginning, these
values are set to the minimum and maximum of Llab and
are later modified as follows: we first find the middle ele-
mentm of the search space; i.e., an element whose distance
to ` differs by at most one from the distance to h. We then
test whether O≥m |= c. If that is the case, we know that
the boundary must be larger or equal to m, and hence the
lower bound ` is updated to the value of m. Otherwise,
we know that the boundary is strictly smaller than m as
m itself cannot be one; hence, the higher bound h is up-
dated to the maximal element of Llab that is smaller than
m; i.e., pred(m). This process terminates when the search
space has been reduced to a single point, which must be
the boundary.

We have thus shown methods to compute a boundary
and different optimizations techniques that can be used to
improve their efficiency, as will be later shown in Section 6
in an empirical evaluation. Once this boundary has been
computed, the knowledge engineer may notice that the

10

consequence belongs to an unwanted set of contexts. In
that case, she would like to change the labelling function
to correct the contexts to which this consequence belongs.
In the next section we will describe methods for finding
minimal changes for obtaining the desired boundary.

5. Repairing a Boundary

Just as ontology development and maintenance is an er-
ror prone activity, so is the adequate labelling of axioms.
Indeed, several seemingly harmless axioms might possi-
bly be combined to deduce knowledge that is considered
to be out of the scope of a context. On the other hand,
an over-restrictive labelling of axioms may cause harmless
or fundamental knowledge to be inaccessible to some con-
texts.

Example 5.1. We continue Example 2.5. The ontology
entails the consequence c = SPrIncr(ecoCalc) and the
computed boundary of c is `3 (see Example 4.4), which
implies that only for contexts labelled with `0 and `3, c is
visible. That means the consequence c can only be seen
by the development engineers and customer service em-
ployees (see Figure 1). It could be, however, that c is not
expected to be accessible to customer service employees
and development engineers, but rather to customer ser-
vice employees and customers. In that case, we wish to
modify the boundary of c to `5.

If the knowledge engineer notices that the boundary for
a given consequence differs from the desired one, then it
would be helpful if she could use automatically generated
suggestions for how to modify the labelling function in
order to correct this error. This problem can be formalized
and approached in several different ways. Here, we assume
that the knowledge engineer knows the exact boundary `g
that the consequence c should receive, and we try to find
a set S of axioms of minimal cardinality such that, if all
the axioms in S are relabelled to `g, then the boundary of
c will be `g.

Definition 5.2 (Change set). Let O be an ontology, c a
consequence, lab a labelling function, S ⊆ O and `g ∈ L
the goal label. The modified assignment labS,`g is given by

labS,`g (a) :=

{

`g, if a ∈ S,

lab(a), otherwise.

A sub-ontology S ⊆ O is called a change set (CS) for `g if
the boundary for O,c under the labelling function labS,`g
equals `g. It is a minimal CS (MinCS) if the set is minimal
(w.r.t. set inclusion) with this property.

Obviously, the original ontology O is always a change
set for any goal label if O |= c. However, we are interested
in performing minimal changes to the labelling function.
Hence, we search first for minimal change sets, and later
for a change set of minimum cardinality. A change set

L

L
c

L
g

!
g

!
c

L

L
c

L
g

!
g

!
c

L

L
g

L
c

!
c

!
g

Figure 3: Hide consequence from some contexts (left), allow addi-
tional contexts to see consequence (right), and both at the same time
(middle)

of minimum cardinality, or smallest CS for short, is obvi-
ously also a MinCS. However, the reverse is not necessarily
true. A MinCS is minimal with respect to set inclusion but
is not necessarily a smallest CS since there might be sev-
eral MinCS of different cardinality. This is similar to the
minimality of MinA (see Definition 2.1), where a MinA is
also not necessarily a MinA of minimum cardinality. It
follows from results in [22] that it is NP-complete to de-
termine whether the cardinality of a smallest CS is equal
to a given natural number, and thus smallest change sets
cannot be computed in polynomial time (unless P=NP).

Let `g denote the goal label and `c the margin-based
boundary for c. If `g 6= `c, we have three cases which are
illustrated in Figure 3: either (1) `g < `c (left), (2) `c < `g
(right), or (3) `g and `c are incomparable (middle). In our
example, where `c = `3, the three cases can be obtained
by `g being `0, `4, and `5, respectively. The sets Lc and Lg

contain the labels defining contexts that can respectively
deduce the consequence before and after the label changes.
Consider first the case where `c < `g. From Theorem 4.3
it follows that any MinA S is a change set for `g: since
`c < `g, then for every MinA S′, it follows that λS′ < `g.
But then, under the new labelling labS,`g it follows that

⊗

a∈S

labS,`g (a) =
⊗

a∈S

`g = `g,

and hence when the least upper bound of all the labels
of all MinAs is computed, we obtain the boundary `g, as
desired.
For the case where `g < `c, we will use a similar ar-

gument as before, based on a result dual to the result in
Theorem 4.3:

Theorem 5.3. If S1, . . . , Sn are all diagnoses for O,c,
then

⊗n
i=1(

⊕

a∈Si
lab(a)) is a boundary for c.

Proof. Let first ` ∈ L be such that O≥` |= c, and let
Si, 1 ≤ i ≤ n be a diagnosis for O,c. Since O≥` |= c, there
must be an axiom a ∈ Si such that a ∈ O≥`. This means
that lab(a) ≥ ` and hence

⊕

a∈Si
lab(a) ≥ `. As this is true

for each diagnosis, it holds that
⊗n

i=1(
⊕

a∈Si
lab(a)) ≥ `.

For the converse, let ` ∈ L be a join prime element
relative to Llab such that ` ≤

⊗n
i=1(

⊕

a∈Si
lab(a)). This

in particular means that, for every diagnosis Si for O,c,
` ≤

⊕

a∈Si
lab(a). But since ` is join prime relative to Llab

and for each a ∈ Si lab(a) is an element of Llab, it holds

11

that there must exist some ai ∈ Si such that ` ≤ lab(ai).
Thus, O≥`∩Si 6= ∅ for every i, 1 ≤ i ≤ n. Since S1, . . . , Sn

are all diagnoses for O,c, it follows that O≥` |= c.

Notice that, due to the duality between MinAs and di-
agnoses, if the lattice L is distributive, then the boundary
given by this theorem is the same as the margin-based
boundary. From Theorem 5.3, it follows that, if `g < `c,
then every diagnosis is a change set for `g.

The third case can be addressed using a combination of
the previous two approaches: if `g and `c are incompara-
ble, we can first set as a partial goal `′g = `g ⊗ `c. Thus,
we can first apply the method dealing with the first case,
to set the boundary to `′g, and then, using the second ap-
proach, modify this new boundary once more to `g. Rather
than actually performing this task as a two-step compu-
tation, we can simply compute a MinA and a diagnosis.
The union of these two sets yields a CS.

Unfortunately, the CS computed as described above is
not necessarily a MinCS, even if a smallest diagnosis or a
smallest MinA is used, as shown in the following example.

Example 5.4. Let O,c and lab be as in Example 2.5 with
the consequence SPrIncr(ecoCalc). We then know that
`c := `3 is a boundary for O,c. Suppose now that c shall
remain visible for those who see it already and additionally
made available to customers, i.e. the goal label is `g := `4.
Since `c < `g, we know that any MinA is a change set.
Since all MinAs for O,c have exactly three elements, any
change set produced this way will have cardinality three.
However, {a2} is also a CS. More precisely it is a MinCS.

To understand why the minimality of MinAs is not suf-
ficient for obtaining a MinCS, we can look back to The-
orem 4.3. This theorem states that, in order to find a
boundary, we need to compute the join of all λS , with S
a MinA, and λS the meet of the labels of all axioms in
S. But then, for any axiom a ∈ S such that `g ≤ lab(a),
modifying this label to `g will have no influence on the
result of λS . In Example 5.4, there is a MinA {a1, a2, a4},
where two axioms, namely a1 and a4 have a label greater
or equal to `g = `4. Thus, the only axiom that needs to
be relabelled is in fact a2, which yields the MinCS {a2}
shown in the example. Basically, we can consider every
axiom a ∈ O such that `g ≤ lab(a) as fixed in the sense
that it is superfluous for any change set. Analogously, one
can view some of the axioms in a diagnosis as being fixed
when trying to compute a change set for decreasing the
boundary. For this reason, we will introduce generaliza-
tions of MinAs and diagnoses, which we call IAS and RAS,
respectively.

Definition 5.5 (IAS, RAS). A minimal inserted axiom
set (IAS) for `g is a subset I ⊆ O ̸≥`g such that O≥`g∪I |= c
and for every I ′ ⊂ I : O≥`g ∪ I ′ 6|= c.

A minimal removed axiom set (RAS) for `g is a subset
R ⊆ O ̸≤`g such that O ̸≤`g \ R 6|= c and for every R′ ⊂ R :
O ̸≤`g \R′ |= c.

In the following, we will say that a set S is a minimal
union of a RAS and an IAS if (i) there exist a RAS R and
an IAS I such that S = R∪I and (ii) for every RAS R′ and
IAS I ′, R′∪I ′ is not strictly contained in S. The following
theorem justifies the use of IAS and RAS when searching
for the minimal change sets and a smallest change set.

Theorem 5.6. Let `c be a boundary for O,c, `g the goal
label, and S ⊆ O. Then, the following holds:

• if `c < `g then S is a MinCS iff S is an IAS,

• if `g < `c then S is a MinCS iff S is a RAS,

• if `c and `g are incomparable then S is a MinCS iff S
is a minimal union of a RAS and an IAS.

Proof. We prove only the first result. The other two can
be shown analogously. Let first S be a MinCS. From The-
orem 4.3 it follows that S ⊆ O ̸≥`g since otherwise S would
not be minimal. Since S is a change set, there is a MinA
S′ such that

⊗

a∈S′ labS,`g (a) ≥ `g; that is, labS,`g (a) ≥ `g
for every a ∈ S′. This means that S′ ⊆ O≥` ∪ S and thus
O≥` ∪ S |= c. Hence S is an IAS.

Conversely, let S be an IAS; then S is clearly also a
change set. If it was not a MinCS, then there would exist
an axiom a ∈ S such that S \ {a} is also a change set, but
as shown before, this would imply that S \ {a} is an IAS,
which violates the minimality condition.

Obviously, this theorem also yields a direct approach for
computing a CS of minimal cardinality.

Corollary 5.7. Let `c be a boundary for O,c, and `g the
goal label. Then a CS of minimal cardinality can be found
by computing a RAS, an IAS and a union of an IAS and
a RAS of minimal cardinality.

The cardinality of a smallest union of an IAS and a RAS
cannot be computed from the cardinalities of a smallest
RAS and a smallest IAS since combining the smallest IAS
and RAS does not necessarily yield a smallest CS. The
following example illustrates this.

Example 5.8. Assume {a1, a2}, {a2, a3} are the smallest
RAS and {a1, a4} is the smallest IAS, then {a1, a2, a4} is
the smallest CS and has cardinality 3. However, combining
a smallest IAS and a smallest RAS might yield a MinCS
(but not a smallest CS) of cardinality 4.

We now describe how to compute a smallest change set.
As in the previous section, we first present the most ob-
vious approach that is based on the computation of all
MinAs and diagnoses. Afterwards, we show how this idea
can be improved by considering fixed portions of the ontol-
ogy and computing the set of IAS and RAS, as described
before. These methods compute all minimal change sets,
from which those with the smallest cardinality can be eas-
ily extracted. If one is only interested in a smallest CS,
then we can further improve this approach showing that it

12

suffices to compute only partial MinCS by putting a cardi-
nality limit, thus reducing the search space and execution
time of our method.

Although we have shown in Example 5.4 that MinAs
and diagnoses do not yield MinCS or even smallest CS
directly, both of these change sets can still be deduced
from the set of all MinAs and diagnoses, as shown by the
following lemma.

Lemma 5.9. Let I (R) be an IAS (RAS) for `g, then
there is a MinA (diagnosis) S such that I = S \ O≥`g

(R = S \O≤`g).

Proof. Let I be an IAS. Then O≥`g ∪ I |= c, and hence
there is a MinA S ⊆ O≥`g ∪ I. As O≥`g ∩ I = ∅ it follows
that I = S \O≥`g . The case for RAS is analogous.

Lemma 5.9 shows that we can compute the set of all IAS
by first computing all MinAs and then removing the set
of fixed elements O≥`g from it. Thus, the most näıve ap-
proach for computing a change set of minimum cardinality
is to first find all MinAs, then compute the set of all IAS
by removing all elements in O≥`g , and finally search for
the IAS having the least elements. The same procedure
applies to RAS, using diagnoses instead of MinAs.

As explained before, all MinAs can be computed using
a HST-based algorithm. Although not stated explicitly in
the axiom pinpointing literature, it is clear that the same
HST algorithm can be used for computing all diagnoses.
The only variant necessary is to have a subroutine capable
of computing one such diagnosis, which can be obtained
by dualizing the algorithm for computing one MinA (see
Algorithms 4 and 5 for an example on how this dualiza-
tion works). In our experiments, we used this approach
as a basis to measure the improvement achieved by the
optimizations that will be introduced next.

Näıvely a CS with the lowest cardinality can be found
by computing all MinCS and selecting one of minimal size.
To find all MinCS, we can use a HST algorithm that uses
an auxiliary procedure that computes a single MinCS. For
this auxiliary procedure, we can use two subprocedures ex-
tracting RAS and IAS, respectively, as evidenced by The-
orem 5.6. We now describe an approach for computing
a smallest CS directly, which again uses a variant of the
HST algorithm.

In Algorithm 4 we present a variation of the logarithmic
MinA extraction procedure presented in [21] that is able
to compute an IAS or stop once this has reached a size n,
in which case it returns the partial IAS computed so far.
In this algorithm, the auxiliary procedure halve partitions
an ontology into two disjoint subsets of axioms whose dif-
ference in cardinality is at most 1. We also show the dual
variant for computing a RAS in Algorithm 5.

Given a goal label `g, if we want to compute an IAS or a
partial IAS of size at most n for a consequence c, then we
would make a call to extract-partial-IAS(O≥`g , O ̸≥`g , c, n).
Similarly, a call to extract-partial-RAS(O ̸≤`g , O ̸≤`g , c, n)
yields a RAS of size ≤ n or a partial RAS of size exactly

Algorithm 4 Compute a (partial) IAS

Procedure extract-partial-IAS(Ofix, Otest, c, n)
Input: Ofix: fixed axioms; Otest: axioms; c: consequence;
n: limit
Output: first n elements of a minimal S ⊆ Otest such
that Ofix ∪ S |= c

1: Global l := 0, n
2: return extract-partial-IAS-r(Ofix, Otest, c)

Subprocedure extract-partial-IAS-r(Ofix, Otest, c)

1: if n = l then
2: return ∅
3: if |Otest| = 1 then

4: l := l + 1
5: return Otest

6: S1, S2 := halve(Otest)
7: if Ofix ∪ S1 |= c then

8: return extract-partial-IAS-r(Ofix, S1, c)
9: if Ofix ∪ S2 |= c then

10: return extract-partial-IAS-r(Ofix, S2, c)
11: S′

1 := extract-partial-IAS-r(Ofix ∪ S2, S1, c)
12: S′

2 := extract-partial-IAS-r(Ofix ∪ S′
1, S2, c)

13: return S′
1 ∪ S′

2

n. The cardinality limit will be used to avoid unnecessary
computations when looking for a smallest CS.

With the help of the procedures to extract RAS and
IAS, Algorithm 6 describes how to compute a MinCS with
a cardinality limit. In the first lines of this algorithm, lbl(c)
expresses the margin-based boundary of the consequence
c. In order to label a node, we compute a MinCS with
extract-partial-MinCS(O, lab, c, `g, H, n), where H is the set
of all labels attached to edges on the way from the node
to the root of the tree. Note that all the axioms in H
are removed from the search space to extract the new IAS
and RAS. Furthermore, axioms in the IAS computed in
Line 4 of this algorithm are considered as fixed for the
RAS computation. The returned set is a MinCS of size
≤ n or a partial MinCS of size n.

Example 5.10. Returning to our running example, sup-
pose now that we want to hide c from development engi-
neers and make it available to customers, i.e. modify the
label of consequence c to `g = `5. Algorithm 6 starts by
making a call to extract-partial-IAS(O≥`5 , O ̸≥`5 , c,∞).7 A
possible output for this call is I = {a3}. We can then call
extract-partial-RAS(O ̸≤`5\I,O ̸≤`5\I, c,∞), which may out-
put e.g. the set R = {a1}. Thus, globally the algorithm
returns {a3, a1}, which can be easily verified to be a MinCS
for `5.

One of the advantages of the HST algorithm is that
the labels of any node are always ensured not to contain

7For the sake of this example, we ignore the cardinality limit, as
we want to describe only how one MinCS is computed.

13

Algorithm 5 Compute a (partial) RAS

Procedure extract-partial-RAS(Ononfix, Otest, c, n)
Input: Ononfix: axioms; Otest ⊆ Ononfix: axioms; c: con-
sequence; n: limit
Output: first n elements of a minimal S ⊆ Otest such
that Ononfix \ S 6|= c

1: Global l := 0, Ononfix, n
2: return extract-partial-RAS-r(∅, Otest, c)

Subprocedure extract-partial-RAS-r(Ohold, Otest, c)

1: if n = l then
2: return ∅
3: if |Otest| = 1 then

4: l := l + 1
5: return Otest

6: S1, S2 := halve(Otest)
7: if Ononfix \ (Ohold ∪ S1) 6|= c then

8: return extract-partial-RAS-r(Ohold, S1, c)
9: if Ononfix \ (Ohold ∪ S2) 6|= c then

10: return extract-partial-RAS-r(Ohold, S2, c)
11: S′

1 := extract-partial-RAS-r(Ohold ∪ S2, S1, c)
12: S′

2 := extract-partial-RAS-r(Ohold ∪ S′
1, S2, c)

13: return S′
1 ∪ S′

2

the label of any of its predecessor nodes. In particular
this means that even if we compute a partial MinCS, the
algorithm will still correctly find all MinCS that do not
contain any of the partial MinCS found during the exe-
cution. Since we are interested in finding the MinCS of
minimum cardinality, we can set the limit n to the size of
the smallest CS found so far. This limit is initially fixed to
the size of the ontology. If extract-partial-MinCS outputs
a set with fewer elements, we are sure that this is indeed
a full MinCS, and our new smallest known CS. The HST
algorithm will not find all MinCS in this way, but we can
be sure that one MinCS with the minimum cardinality will
be found. The idea of limiting the cardinality in order to
find a smallest MinCS can be taken a step further by not
expanding each node for all the axioms in it, but rather
only on the first n− 1, where n is the size of the smallest
CS found so far. This further reduces the search space by
decreasing the branching factor of the search tree. Notice
that the highest advantage of this second optimization ap-
pears when the HST is constructed in a depth-first fashion.
In that case, a smaller MinCS found further below in the
tree will reduce the branching factor of all its predeces-
sors. Hence, the cardinality limit reduces the search space
in two dimensions: (1) the computation of a single MinCS
is limited to n axioms and (2) only n − 1 axioms are ex-
panded from each node. Algorithm 7 is the resulting HST
algorithm. The following theorem states that it is correct.

Theorem 5.11. Let O be an ontology, c a consequence
with O |= c, and `g a goal label. If m is the minimum
cardinality of all CS for `g, then Algorithm 7 outputs a
CS S such that |S| = m.

Algorithm 6 Compute a (partial) MinCS

Procedure extract-partial-MinCS(O, lab, c, `g, H, n)

1: iI := `g 6< lbl(c) ∧O≥`g 6|= c
2: iR := `g 6> lbl(c) ∧O ̸≤`g |= c
3: return extract-partial-MinCS(O, lab, c, `g, iI , iR, H, n)

Procedure extract-partial-MinCS(O, lab, c, `g, iI , iR, H, n)
Input: O, lab: labelled ontology; c: consequence; `g: goal
label; iI : decision to compute IAS; iR: decision to compute
RAS; H: HST edge labels; n: limit
Output: first n elements of a MinCS S ⊆ O

1: if iI ∧O≥`g ∪ (O ̸≥`g \H) 6|= c or iR ∧H |= c then

2: return ∅ (HST normal termination)
3: if iI then

4: I := extract-partial-IAS(O≥`g , O ̸≥`g \H, c, n)
5: if iR and O ̸≤`g \ I |= c then

6: R := extract-partial-RAS(O ̸≤`g \ I,O ̸≤`g \ (I ∪
H), c, n− |I|)

7: return I ∪R

Proof. The described algorithm outputs a CS since the
globally stored and finally returned S is only modified
when the output of extract-partial-MinCS has size strictly
smaller than the limit n, and hence only when this is in-
deed a CS itself. Suppose now that the output S is such
that m < |S|, and let S0 be a MinCS such that |S0| = m,
which exists by assumption. Then, every set obtained by
calls to extract-partial-MinCS has size strictly greater than
m, since otherwise, S and n would be updated. Consider
now an arbitrary set S′ found during the execution through
a call to extract-partial-MinCS, and let S′

n := {a1, . . . , an}
be the first n elements of S′. Since S′ is a (partial) MinCS,
it must be the case that S0 6⊆ S′

n since every returned
MinCS is minimal in the sense that no axiom might be
removed to obtain another MinCS. Then, there must be
an i, 1 ≤ i ≤ n such that ai /∈ S0. But then, S0 will still be
a MinCS after axiom {ai} has been removed. Since this
argument is true for all nodes, it is in particular true for all
leaf nodes, but then they should not be leaf nodes, since
a new MinCS, namely S0 can still be found by expanding
the HST, which contradicts the fact that S is the output
of the algorithm.

Example 5.12. Coming back to our running example,
suppose that we want to hide c from development engi-
neers, i.e. set the label of c to `g = `0. Algorithm 6 first
calls extract-partial-RAS(O ̸≤`0 , O ̸≤`0 , c, 5). A possible out-
put of this call is R = {a2, a3}. The tree now branches
through a2 and a3. In the first case it calls extract-partial-
RAS(O ̸≤`0 , O ̸≤`0 \ {a2}, c, 2), which could yield the RAS
R = {a4, a5}. This might be a partial MinCS since its size
equals the cardinality limit. The next call extract-partial-
RAS(O ̸≤`0 , O ̸≤`0 \{a2, a4}, c, 2) yields a smallest R = {a1},
and the HST terminates. Notice that if {a1} had been the
first MinCS found, the process would have immediately
terminated.

14

Figure 4: Hitting Set Trees to compute all MinAs (left) and a smallest change set for `g = `5 (right)

Algorithm 7 Compute a smallest CS by a HST algorithm

Procedure HST-extract-smallest-CS(O, lab, (L,≤), c, `g)
Input: O,lab: labelled ontology; (L,≤): lattice; c: conse-
quence; `g: goal boundary
Output: a smallest CS S

1: Global C,H, S := O,n := |O|, c,
isI := `g 6< lbl(c) ∧O≥`g 6|= c;
isR := `g 6> lbl(c) ∧O ̸≤`g |= c

2: expand-HST-CS(∅)
3: return S

Procedure expand-HST-CS(H)
Input: H: list of edge labels
Side effects: modifications to C and H

1: if there exists some H ′ ∈ H such that H ′ ⊆ H or

H ′ contains a prefix-path P with P = H then

2: return (early termination ⊗)
3: else if there exists some Q′ ∈ C such that H ∩Q′ = ∅

then

4: Q := Q′ (MinCS reuse)
5: else

6: Q := extract-partial-MinCS(O, lab, c, `g, isI , isR, H, n)
7: if ∅ = Q then

8: H := H ∪ {H} (normal termination �)
9: return

10: if |Q| < |S| then
11: n := |Q|
12: S := Q
13: C := C ∪ {Q}
14: for the first (n− 1) axioms a ∈ Q do

15: expand-HST-CS(H ∪ {a})

Efficient implementations of the original version of the
HST algorithm rely on several optimizations. Two stan-
dard optimizations described in the literature are node-
reuse and early path termination (see, e.g. [11, 12, 14]).
Node-reuse keeps a history of all nodes computed so far
in order to avoid useless (and usually expensive) calls to
the auxiliary procedure that computes a new node. Early
path termination, on the other hand, prunes the Hitting
Set Tree by avoiding expanding nodes when no new infor-
mation can be derived from further expansion. In order to
avoid unnecessary confusion, we have described the modi-
fied HST algorithm without including these optimizations.

However, it should be clear that both, node-reuse and early
path termination, can be included in the algorithm with-
out destroying its correctness. The implementation used
in our experiments applies these two optimizations.

Example 5.13. We continue Example 2.5 with the same
consequence SPrIncr(ecoCalc). For goal label `g = `5,
Figure 4 shows the expansion of the HST trees comput-
ing all MinAs and all diagnoses (left), in comparison with
the one obtained for computing a smallest change set us-
ing both optimizations: fixed axioms and cardinality limit
(right). Obviously, the number of nodes, the node cardi-
nality and the number of tree expansions is lower.

6. Empirical Evaluation

On large real-world ontologies, we empirically evalu-
ated implementations of the algorithms to (1) compute a
boundary for a consequence and (2) repair this boundary if
needed. The following sections describe the test data and
the test environment first, and then present the empirical
results, which show that our algorithms perform well in
practical scenarios.

6.1. Test Data and Test Environment

We performed our tests on a PC with 2GB RAM and
Intel Core Duo CPU 3.16GHz. We implemented all ap-
proaches in Java 1.6 and for convenient OWL file format
parsing and reasoner interaction we used the OWL API for

OWL2 [24] in trunk revision 1150 from 21.5.2009.8

6.1.1. Context Lattices

Although we focus on comparing the efficiency of the
presented algorithms, and not on practical applications
of these algorithms, we have tried to use inputs that are
closely related to ones encountered in applications. The
two context lattices (Ld,≤d) and (Ll,≤l) are similar to
ones encountered in real-world applications. The con-
text lattice (Ld,≤d), already introduced in Figure 1, was
developed and applied in an access policy scenario [19].

8Subversion Repository https://owlapi.svn.sourceforge.net/

svnroot/owlapi/owl1_1/trunk

15

The context lattice (Ll,≤l) is a linear order with 6 ele-
ments Ll = Ld = {`0, . . . , `5} with the obvious ordering
≤l := {(`n, `n+1) | `n, `n+1 ∈ Ll ∧ 0 ≤ n ≤ 5}. This lattice
could represent an order of trust values as in [25] or dates
from a revision history, to name just two applications.

6.1.2. Ontologies, Label Assignment and Reasoners

We used the two ontologies OSnomed and OFunct with
different expressivities and types of consequences for our
experiments.

The Systematized Nomenclature of Medicine, Clinical
Terms (Snomed ct) is a comprehensive medical and clin-
ical ontology which is built using the DL EL++. Our
version of OSnomed is the January/2005 release of the DL
version, which contains 379,691 concept names, 62 object
property names, and 379,704 axioms. Since more than five
million subsumptions are consequences of OSnomed, testing
all of them was not feasible and we used the same sample
subset as described in [21], i.e., we sampled 0.5% of all
concepts in each top-level category of OSnomed. For each
sampled concept A, all subsumptions A v B following
from OSnomed with A as subsumee were considered. Over-
all, this yielded 27,477 subsumptions. Following the ideas
of [21], we pre-computed the reachability-based module for
each sampled concept A with the reasoner CEL 1.0 [26] and
stored these modules. The module for A is guaranteed to
contain all axioms of any MinA and any diagnosis, thus
also any IAS and RAS, for each subsumption A v B with
A the considered subsumee. This module was then used
as the start ontology when considering subsumptions with
subsumee A, rather than using the complete ontology.

The OWL ontology OFunct has been designed for func-
tional descriptions of mechanical engineering solutions and
was presented in [27, 28]. It has 115 concept names, 47
object property names, 16 data property names, 545 indi-
vidual names, 3,176 axioms, and the DL expressivity used
in the ontology is SHOIN (D). Its 716 consequences are
12 subsumption and 704 instance relationships (concept
assertions).

To obtain labelled ontologies, axioms in both ontologies
received a random label assignment of elements from the
set Ll = Ld. Our test suite provides a great variety of
cases: consequences with many or few MinAs, with very
large or very small MinAs, cases with a high or low bound-
ary, etc. Hence, our results should not differ greatly if a
different label assignment is used. As black-box subsump-
tion and instance reasoner we used Pellet 2.0 [29], since it
can deal with the expressivity of both ontologies. For the
expressive DL SHOIN (D) it uses a tableau-based algo-
rithm and for EL++ it uses an optimized classifier for the
OWL2EL profile that is based on the algorithm described
in [30].

6.1.3. Test Setting for Computing a Boundary

The boundary computation with full axiom pinpointing
(FP) uses log-extract-MinA (Algorithm 2 from [21], which
is identical to Algorithm 8 from [12]) and the HST based

HST-extract-all-MinAs procedure (Algorithm 9 from [12]).
The set of extracted MinAs is then used to calculate the
label of the consequence. We stop the execution after 10
MinAs have been found in order to limit the runtime;
thus, some of the labels found may not be the final re-
sult. The boundary computation with label-optimized ax-
iom pinpointing (LP) with min-lab and HST-boundary are
implementations of Algorithm 1 and Algorithm 2. The
boundary computation with binary search for linear or-
dering (BS in the following) implements Algorithm 3.
We tested 8 combinations resulting from the 2 ontologies
OSnomed and OFunct, with the two approaches FP and LP
over the lattice (Ld,≤d) and the two approaches LP and
BS over the lattice (Ll,≤l).

6.1.4. Test Setting for Repairing a Boundary

We tested repairing access restrictions to implicit knowl-
edge in the following setting. We took the computed
boundary `c of each consequence c of the ontologies from
the first experiment and then computed the MinCS to
reach the goal boundary `g which is constantly `3 in all
experiments. Consequences were not considered if `c = `g.
Thus, from the 716 consequences in OFunct, we have 415
remaining with context lattice (Ld,≤d) and 474 remaining
with (Ll,≤l). From the 27,477 consequences in OSnomed

we have 23,695 remaining with context lattice (Ld,≤d)
and 25,897 with (Ll,≤l). The MinCS computation with
FP uses the procedures log-extract-MinA and the HST
based HST-extract-all-MinAs, implemented by the algo-
rithms mentioned above. The MinCS computation with
extract-partial-MinCS and the smallest CS computation
with HST-extract-smallest-CS including optimizations for
fixed axioms and cardinality limit are implementations of
Algorithm 6 and Algorithm 7. The required IAS and RAS
extraction with extract-partial-IAS, extract-partial-RAS are
implementations of Algorithms 4 and 5, respectively. We
stop after 10 MinAs (or respectively MinCS or partial
MinCS) have been found in order to limit the runtime;
hence there might be no computed MinCS at all or a non-
smallest MinCS returned. We tested 12 combinations re-
sulting from the two ontologies OSnomed and OFunct, two
context lattices (Ld,≤d) and (Ll,≤l) and three algorithm
variants (FP, fixed axioms, and fixed axioms in combi-
nation with cardinality limit). Running the fixed axioms
optimization without cardinality limit can be done easily
by skipping Line 11 in Algorithm 7.

6.2. Experimental Results

Our experiments show that our algorithms perform well
on practical large-scale ontologies. In the following we
describe our empirical results for each of the two discussed
tasks with labelled ontologies, i.e. computing a boundary
to discover access restrictions to a given consequence and
repair the boundary of a single consequence by changing
axiom labels.

16

6.2.1. Computing a Boundary

The results for boundary computation by FP and LP,
using lattice (Ld,≤d) and the two ontologies OSnomed and
OFunct are given in Table 1. The table is divided into two
parts. The upper part contains a set of consequences that
are “easy,” in the sense that each consequence has fewer
than 10 MinAs. This contains 21,001 subsumptions from
OSnomed and 307 consequences from OFunct. The lower
part contains a set of consequences that are “hard,” in
the sense that each consequence has at least 10 MinAs.
This contains 6,476 subsumptions from OSnomed and 409
consequences from OFunct.

While LP computed the boundary for each consequence
following from the easy and the hard set, FP computed
the boundary for each consequence following from the easy
but not for each following from the hard set. As described
above, we stop the execution after 10 MinAs have been
found. A label computed for a consequence following from
the hard set, called non-final label, might be lower than the
boundary since there might be further MinAs providing a
higher label. For a practical system, a lower label puts an
unnecessarily strong access restriction to a consequence,
resulting in an overrestrictive policy.

For the easy set of OSnomed, the overall labelling time for
all 21,001 subsumptions with FP was 50.25 minutes. For
LP it was 1.50 minutes, which means that LP was about
34 times faster than FP. For the hard set of OSnomed, the
non-final labels of FP were identical to the boundaries of
LP in 6,376 of the 6,476 cases (98%), i.e., in most cases
the missing MinAs would not have changed the already
computed label. FP took 2.5 hours without final results,
whereas LP took 0.6% (a factor of 155) of that time and
returned final results after 58 seconds. We started a test
series limiting runs of FP to <30 MinAs, which did not
terminate after 90 hours, with 1,572 labels successfully
computed and 30 subsumptions skipped since they had
≥30 MinAs. Interestingly, in both the easy and the hard
set, LP rarely takes advantage of the optimizations early
termination and reuse, which might be due to the simple
structure of the lattice.

Similar results have been observed for the easy and the
hard sets of OFunct. Again, the computation of FP was
restricted to <10 MinAs. This time, only 363 out of 409
(88%) non-final labels of FP were equal to the boundaries
of LP. Although the ontology is quite small, LP again per-
forms much better than FP. The reason could be that, in
this ontology, consequences frequently have a large set of
MinAs.

For a system designer, a question to decide could be to
use either (a) our approach of keeping one large ontology
with labelled axioms and pre-compute all consequences9

9When we say “all consequences” we always mean “all conse-
quences the user is interested in.” These might be, e.g., all con-
cept assertions of named individuals to named concepts and all sub-
sumptions between two named concepts. This restriction is neces-
sary since already from simple axioms, infinitely many nonequiva-

and their labels or (b) the näıve approach of managing sep-
arate ontologies and computing all consequences of each
separate ontology independently. We can make the fol-
lowing rough estimate while we assume that the lattice is
nonlinear but the details of its structure would not have
any influence. Based on our test results with OSnomed,
an estimate for the time needed to compute a label for
all of the more than 5 million subsumptions in OSnomed

with LP would be 2.47 · 5·106

27477 ≈ 449 minutes. Assuming
20 minutes to compute all consequences with the current
CEL reasoner [12], our approach to compute and label all
consequences would be as expensive as computing all con-
sequences 20+449

20 ≈ 23 times. However, two remarks need
to be made here:

1. Taking the fast computation time of 20 minutes,
achieved by CEL is to some extent unfair, since the
slower (see [12] for a comparison) Pellet is used in our
experiments for reasons explained above. However, at
the time of these experiments, Pellet fails to classify
the complete OSnomed because of memory exhaustion.
For this reason we process only the reachability-based
modules with Pellet and not the complete OSnomed, as
described above. On average, our reachability-based
modules contain 53.21 axioms, with a maximum size
of 146 axioms; that is, their size is 0.01% (maximum
0.04%) of the total size of OSnomed [21]. Presumably,
the realistic ratio is actually below 23.

2. The preparation step computing the reachability-
based modules as described above took< 0.21 seconds
[21] and can be neglected here.

Our approach is as expensive as computing 23 views if
we assume that computing all consequences for each of
the views requires 20 minutes. For incomparable user la-
bels, e.g. representing user roles which do not inherit per-
missions from each other while one user can have several
roles, already the considerably low number of 5 incompa-
rable user labels implies 25 = 32 sub-ontologies (views),
and thus our approach is already faster. For fewer user
labels, the näıve approach is faster, but then separate sub-
sumption hierarchies would need to be stored for each of
the views, whereas in our approach only one labelled hier-
archy needs to be stored. Based on our test results with
OFunct, a similar estimate can be made. Computing all
consequences requires 5 seconds and labelling all conse-
quences with LP requires 146 seconds. In this case our
approach is as expensive as computing all consequences
30 times. Again with 5 or more user labels, our approach
is faster.
In statistics, histograms are often used to roughly assess

probability distributions. The range of values on the x-axis
is divided into non-overlapping intervals and the y-axis
provides the number of observations. The histogram in

lent consequences may follow, e.g. from M v ∃l.M it follows that
M v ∃l.M,M v ∃l.(∃l.M), etc.

17

]early
termination

]reuse]calls to
extract
MinA

(MinLab)

]MinA
(]MinLab)

]axioms
(]labels)

per MinA
(MinLab)

Lattice
operations
time in ms

Total
labelling

time in ms

O
S
n
o
m
e
d
ea
sy

F
P

avg 81.05 9.06 26.43 2.07 5.40 0.25 143.55
max 57,188.00 4,850.00 4,567.00 9.00 28.67 45.00 101,616.00

stddev 874.34 82.00 90.48 1.86 3.80 0.86 1,754.03

L
P

avg 0.01 0.00 2.76 1.03 1.73 0.35 4.29
max 2.00 1.00 6.00 3.00 3.00 57.00 70.00

stddev 0.13 0.02 0.59 0.16 0.56 0.98 3.62

O
F
u
n
c
t
ea
sy

F
P

avg 43.59 29.52 26.56 4.26 3.05 0.49 3,403.56
max 567.00 433.00 126.00 9.00 6.50 41.00 13,431.00

stddev 92.16 64.04 30.90 2.84 1.01 2.38 3,254.25

L
P

avg 0.09 0.02 2.80 1.33 1.40 0.76 207.32
max 2.00 1.00 7.00 4.00 3.00 22.00 1,295.00

stddev 0.34 0.13 0.90 0.54 0.48 1.56 87.29

O
S
n
o
m
e
d
h
a
rd

F
P

avg 432.11 42.25 126.54 10.20 16.38 0.30 1,378.66
max 42,963.00 5,003.00 4,623.00 16.00 37.80 14.00 148,119.00

stddev 1,125.06 121.15 186.33 0.49 5.00 0.54 3,493.02

L
P

avg 0.04 0.00 3.12 1.06 2.05 0.32 8.88
max 3.00 2.00 6.00 3.00 3.00 46.00 86.00

stddev 0.21 0.04 0.50 0.25 0.44 1.04 4.26

O
F
u
n
c
t
h
a
rd

F
P

avg 30.01 16.00 26.44 10.04 4.41 0.56 8,214.91
max 760.00 511.00 411.00 11.00 6.50 3.00 25,148.00

stddev 85.33 47.79 40.61 0.20 1.08 0.55 3,428.97

L
P

avg 0.09 0.01 2.76 1.38 1.32 0.77 200.55
max 3.00 2.00 7.00 4.00 2.00 16.00 596.00

stddev 0.33 0.12 0.91 0.64 0.43 1.40 61.11

Table 1: Boundary computation by FP vs. LP, using lattice (Ld,≤d) and two ontologies with an easy and a hard set of consequences

Figure 5: Histogram of required]MinAs (]MinLabs) to compute a
boundary (respectively non-final label)

Figure 5 shows, for all 4 combinations of the 2 ontologies
and the 2 computation methods, the number of MinAs
(respectively MinLabs) required to compute a boundary or
non-final label. From this histogram and also from Table 1,
one can see that LP requires at most three MinLabs for
OSnomed, at most four for OFunct, and usually just one
MinLab whereas FP usually requires more MinAs.

The histograms in Figure 6 compare the distribution of
time needed with FP vs. LP to compute a boundary of a
consequence from the union of the above described easy

and hard sets. The required time is given on the logarith-
mic x-axis, where the number below each interval defines
the maximum contained value. As can be seen, FP takes
more time than LP in general. Note that moving to the
left on the x-axis means a relatively high performance im-
provement, due to the logarithmic scale. It can be further
seen that LP covers a few intervals while FP covers more.
This indicates that FP has a higher variability and the
standard deviation values in Table 1 confirm this.

Table 2 provides results for LP and BS using the total or-
der (Ll,≤l) as context lattice. For O

Snomed, LP takes 130.4
and BS takes 77.1 seconds to label all 27,477 subsump-
tions. For OFunct, LP takes 133.9 and BS takes 68.6 sec-
onds to label all 716 consequences. Interestingly, labelling
all consequences of OFunct or all consequences of OSnomed

takes roughly the same time, perhaps due to a trade-off
between ontology size and expressivity. Roughly, BS is
twice as fast (factor 1.7 with OSnomed, 1.9 with OFunct)
compared to LP.

Above, we already discussed the decision of a system de-
signer whether to use our approach or the näıve approach
for nonlinear lattices. Based on our test results a simi-
lar estimate can be made for linear lattices. Labelling all

consequences of OSnomed would require 77.1
60 · 5·106

27477 ≈ 234
minutes. Similar to the explanation above, our approach
is as expensive as computing all consequences 20+234

20 ≈ 13

18

Figure 6: Histograms of time needed to compute a consequence’s
boundary in OSnomed (upper part) and OFunct (lower part) with the
methods FP vs. LP

times, i.e. with 13 or more context labels our approach is
faster. For OFunct, our approach is as expensive as com-
puting all consequences 68.8

5 ≈ 14 times, i.e. with 14 or
more user labels our approach is faster.

The histograms in Figure 7 compare the distribution
of time needed to compute a boundary with BS and LP.
Again the required time is given on the logarithmic x-axis.
They show that the performance gain with BS over LP
is higher with OFunct compared to OSnomed, as discussed
already. They further show that there is no clear winner
with respect to variability, as was the case comparing FP
with LP; Table 2 confirms that observation.

6.2.2. Repairing a Boundary

Table 3 contains results for the 4 combinations of the
2 ontologies and the 2 context lattices. For each of them
we tested 3 variants, leading to 12 test series overall. As
described above, we limit the number of computed MinAs
and MinCS to 10, so our algorithms might not find any,
or not a smallest change set before reaching the limit. We
measure the quality of the presented variants given this
limitation at execution time in the following sense. Table 3
lists the ratio of correct solutions where at least 1 correct
MinCS was computed, and the ratio of optimal solutions
where the limit was not reached during the computation
and thus yielded the smallest change set possible. Notice
however that the ratio of cases with the smallest change
set successfully computed might be higher, including those
where the limitation was reached but the smallest change
set was already found.

Figure 8 depicts a time-quality diagram of all variants

Figure 7: Histograms of time needed to compute a boundary for a
consequence in OSnomed (upper part) and OFunct (lower part) with
the methods BS vs. LP

Figure 8: Time-quality diagram comparing variants to compute a
smallest CS

from Table 3, where quality is the ratio of correct solu-
tions multiplied by the ratio of optimal ones. Obviously, a
desirable variant is in the upper left corner yielding max-
imum quality in minimal time. It can be seen that FP
is clearly outperformed by our optimizations. The exper-
iment shows that fixed axioms and cardinality limit, es-
pecially in their combination, are optimizations yielding
significantly higher quality and lower runtime.

Instead of providing histograms of time needed to repair
a boundary for a consequence, we provide the cumulative
distribution in Figures 9 and 10. The difference to the his-
tograms is that not discrete intervals, but instead the con-
tinuous spectrum of time needed is depicted, and the num-
ber of consequences is cumulated over time until it reaches
the number of all considered consequences. For this rea-
son, the maximum values on the y-axis are 415, 474, 23695
and 25897. The reason for those numbers of consequences
has been explained above. The x-axis is again logarithmic,
as it has been the case with the previous histograms. It
can be seen that in general a consequence from OSnomed

19

LP BS
]early
term.

]reuse]calls to
extract
MinLab

]MinLab]labels
per

MinLab

Lattice
oper.
time

Total
labelling

time

Iterations Total
labelling

time

O
S
n
o
m
e
d avg 0.03 0.00 2.24 1.03 1.23 0.37 4.75 2.41 2.81

max 1.00 0.00 5.00 3.00 2.00 329.00 330.00 3.00 75.00
stddev 0.18 0.00 0.45 0.19 0.42 4.85 6.37 0.49 2.94

O
F
u
n
c
t avg 0.09 0.00 2.50 1.27 1.24 0.82 186.98 2.55 95.80

max 1.00 0.00 5.00 3.00 2.00 62.00 1147.00 3.00 877.00
stddev 0.28 0.00 0.72 0.49 0.40 2.74 69.55 0.50 45.44

Table 2: Boundary computation by LP vs. BS on a sampled set of 27,477 subsumptions in OSnomed/ all 716 consequences of OFunct with
lattice (Ll,≤l) (time in ms)

O
n
t. Lattice Variant Runtime limit Time Ratio of Ratio of

per goal in correct optimal
minutes solutions solutions

O
F
u
n
c
t

(Ld,≤d) FP ≤ 10 MinA 44.05 96% 47%
fixed axioms ≤ 10 MinCS 17.56 100% 90%
fixed axioms, card. lim. ≤ 10 (partial) MinCS 8.65 100% 98%

(Ll,≤l) FP ≤ 10 MinA 54.46 98% 49%
fixed axioms ≤ 10 MinCS 15.97 100% 96%
fixed axioms, card. lim. ≤ 10 (partial) MinCS 8.61 100% 99%

O
S
n
o
m
e
d

(Ld,≤d) FP ≤ 10 MinA 184.76 100% 75%
fixed axioms ≤ 10 MinCS 15.87 100% 99%
fixed axioms, card. lim. ≤ 10 (partial) MinCS 10.51 100% 100%

(Ll,≤l) FP ≤ 10 MinAs 185.35 100% 75%
fixed axioms ≤ 10 MinCS 40.83 100% 95%
fixed axioms, card. lim. ≤ 10 (partial) MinCS 28.14 100% 98%

Table 3: Results comparing variants to compute a smallest CS

is repaired much faster than one from OFunct. Interest-
ingly, even at the start of the logarithmic x-axis, some
consequences are repaired already. In our test result log,
the reported time for several consequences was even 0 ms.
The reason is Java’s limitation with respect to measuring
fractions of milliseconds. It can be seen, as already known
from Table 3, that for the two diagrams of OSnomed and the
upper right diagram of OFunct, most of the consequences
are repaired roughly one order of magnitude faster with
both of our optimizations enabled compared to the näıve
FP approach.

7. Conclusions

We have presented a general approach for defining and
reasoning with contexts in large scale ontologies. Our ap-
proach assumes that every axiom in the ontology is la-
belled with an element of a context lattice. The different
contexts of this ontology are then expressed by elements
of this lattice: each10 such element ` yields a sub-ontology

10For technical reasons, only elements that are join prime relative
to the axiom labels can be used as context labels.

consisting of the axioms whose label is greater or equal
to `. This general framework can be instantiated to any
notion of context that can be expressed using a context lat-
tice. Examples of such instances are access control to on-
tological knowledge, trust management, provenance, and
granularity, among many others. The main advantage of
this approach is that it allows the knowledge engineer to
maintain only one large ontology that is usable in all differ-
ent contexts, rather than separate sub-ontologies for each
context.

We have shown that we can extend the labelling func-
tion to arbitrary consequences of the ontology, in the sense
that every implicit consequence can be assigned a label,
called its boundary, which fully characterizes the set of all
contexts in which the consequence can be derived. In this
way, one can solve reasoning tasks for all contexts simul-
taneously. For instance, if one is interested in computing
the concept hierarchy, one can compute the boundary for
each of the subsumption relations between concept names
holding in the full ontology. From this information one
can easily deduce the concept hierarchy derivable in each
of the contexts. Our algorithms are inspired by ideas from

20

Figure 9: Cumulative distribution of time needed to repair a bound-
ary in OFunct with lattices (Ld,≤d) and (Ll,≤l)

axiom pinpointing, but are optimized to take advantage of
the additional information provided by the lattice and the
labelling function.

The principal assumption for our framework is that the
axioms have been assigned the correct label. However,
assigning these labels to all the axioms in the ontology
is an error-prone task. Indeed, a small change in the la-
belling function may hide relevant consequences from a
context, or apparently innocuous axioms may in combi-
nation produce consequences not intended to be visible in
some contexts. To alleviate this problem, we propose a
method for finding minimal changes that should be made
to the labelling function, in order to repair the boundary
of a given consequence. Here, we use two different notions
of minimality. First we consider the task of finding all
the minimal (w.r.t. set inclusion) sets of axioms that need
to be relabelled to correct the boundary, i.e. all minimal
change sets. This information can be then given to the
knowledge engineer, who can decide which change set is
the best option. However, the large number of minimal
change sets available may be overwhelming for the knowl-
edge engineer, and hence finding only one of these sets of
minimal size can sometimes be more desirable. We show
how to improve the algorithms to find only one change set
of minimal cardinality, by including a cardinality limit in

Figure 10: Cumulative distribution of time needed to repair a bound-
ary in OSnomed with lattices (Ld,≤d) and (Ll,≤l)

the Hitting Set Tree construction.

An interesting property of our framework is that it is
independent of the ontology language used. That is, it
can be used for finding the boundary of subsumption rela-
tions in the DL SROIQ(D), as well as unsatisfiability of
concepts w.r.t. acyclic TBoxes in ALC, for example. This
is the case since all our algorithms follow a black-box ap-
proach. This means that they do not depend on a specific
implementation of a reasoner, but can be used together
with any reasoner available. In particular, this allows us
to take advantage of the many optimizations of state-of-
the-art DL reasoners.

We have evaluated implementations of our algorithms
empirically, using two large-scale ontologies that are used
in real-life scenarios, and a context lattice developed for
an access control application. Our experimental results
show that our implementations perform well in practical
scenarios with large-scale ontologies.

For computing a boundary for a consequence, the full
axiom pinpointing approach is clearly outperformed by
the label-optimized axiom pinpointing approach, which is
faster up to a factor of 155. For the special case where
the context lattice is a total order, label-optimized axiom
pinpointing is itself outperformed by the Binary Search ap-
proach by roughly a factor of 2. We have provided an esti-

21

mate from the point of view of a system designer, compar-
ing our approach of labelled ontologies and consequences
to a näıve approach of reasoning over separate ontologies.
It showed that our approach is faster when more than four
incomparable user labels are present in a nonlinear lattice
or when more than 12 user labels are present in a linear
lattice.

For repairing a boundary, which is only possible by
changing axiom labels, our experiments show that our al-
gorithms and optimizations yield tangible improvements
in both the execution time and the quality of the pro-
posed smallest CS defining a new axiom labelling. In order
to compute a CS of minimal cardinality, the approach of
computing all MinAs is outperformed up to a factor of 12
by our optimized approach of computing IAS and RAS.
Limiting cardinality further reduces computation time by
up to a factor of 2. In combination we observed a per-
formance increase by up to a factor of 18. But not only
performance is improved, at the same time both optimiza-
tions increase the quality of the computed smallest CS
under limited resources at runtime.

As future work, we plan to extend our methods for re-
pairing a boundary. In the current setting, the knowledge
engineer must specify the exact boundary that the conse-
quence must receive. However, it is sometimes desirable to
set a constraint in the form of an inequality, for instance,
specifying that the consequence should be visible from a
given context, but without restricting its visibility w.r.t.
other contexts. Additionally, we plan to explore other no-
tions of minimality of the change sets, like the distance
that a label is moved, the number of users affected, or the
number of consequences that receive a new boundary.

[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F.
Patel-Schneider (Eds.), The Description Logic Handbook: The-
ory, Implementation and Applications, 2nd Edition, Cambridge
University Press, 2007.

[2] G. Qi, J. Z. Pan, A tableau algorithm for possibilistic descrip-
tion logic, in: J. Domingue, C. Anutariya (Eds.), Proceedings
of the 3rd Asian Semantic Web Conference (ASWC 2008), Vol.
5367 of Lecture Notes in Computer Science, Springer-Verlag,
2008, pp. 61–75.

[3] M.-J. Lesot, O. Couchariere, B. Bouchon-Meunier, J.-L. Rogier,
Inconsistency degree computation for possibilistic description
logic: An extension of the tableau algorithm, in: Proceedings of
the Annual Meeting of the North American Fuzzy Information
Processing Society (NAFIPS 2008), IEEE Computer Society
Press, 2008, pp. 1–6.

[4] S. Schlobach, R. Cornet, Non-standard reasoning services for
the debugging of description logic terminologies, in: Proceed-
ings of the 17th International Joint Conference on Artificial In-
telligence (IJCAI 2003), 2003, pp. 355–362.

[5] T. Meyer, K. Lee, R. Booth, J. Z. Pan, Finding maximally satis-
fiable terminologies for the description logic ALC, in: Proceed-
ings of the 21st National Conference on Artificial Intelligence
(AAAI 2006), AAAI Press/The MIT Press, 2006.

[6] A. Kalyanpur, B. Parsia, E. Sirin, J. A. Hendler, Debugging
unsatisfiable classes in OWL ontologies, Journal of Web Seman-
tics: Science, Services and Agents on the World Wide Web 3 (4)
(2005) 268–293.

[7] F. Baader, R. Peñaloza, Axiom pinpointing in general tableaux,
Journal of Logic and Computation 20 (1) (2010) 5–34.

[8] F. Baader, R. Peñaloza, Automata-based axiom pinpointing,
in: A. Armando, P. Baumgartner, G. Dowek (Eds.), Proceed-

ings of the 4th International Joint Conference on Automated
Reasoning (IJCAR 2008), no. 5195 in Lecture Notes in Artifi-
cial Intelligence, Springer, 2008, pp. 226–241.

[9] A. Jain, C. Farkas, Secure resource description framework:
an access control model, in: Proceedings of the 11th ACM
symposium on Access control models and technologies (SAC-
MAT 2006), ACM, New York, NY, USA, 2006, pp. 121–129.
doi:http://doi.acm.org/10.1145/1133058.1133076.

[10] G. Flouris, I. Fundulaki, P. Pediaditis, Y. Theoharis,
V. Christophides, Coloring RDF triples to capture provenance,
in: A. Bernstein, D. R. Karger, T. Heath, L. Feigenbaum,
D. Maynard, E. Motta, K. Thirunarayan (Eds.), Proceedings of
the 8th International Semantic Web Conference (ISWC 2009),
Vol. 5823 of Lecture Notes in Computer Science, Springer, 2009,
pp. 196–212.

[11] A. Kalyanpur, B. Parsia, M. Horridge, E. Sirin, Finding all jus-
tifications of OWL DL entailments, in: Proceedings of the 6th
International Semantic Web Conference and 2nd Asian Seman-
tic Web Conference (ISWC+ASWC 2007), Vol. 4825 of Lec-
ture Notes in Computer Science, Springer-Verlag, Busan, Ko-
rea, 2007, pp. 267–280.

[12] B. Suntisrivaraporn, Polynomial-time reasoning support
for design and maintenance of large-scale biomedical on-
tologies, Ph.D. thesis, Technische Universität Dresden,
available at http://nbn-resolving.de/urn:nbn:de:bsz:

14-ds-1233830966436-59282 (2008).
[13] G. Qi, J. Z. Pan, Q. Ji, Extending description logics with un-

certainty reasoning in possibilistic logic, in: K. Mellouli (Ed.),
Proceedings of the 9th European Conference on Symbolic and
Quantitative Approaches to Reasoning with Uncertainty (EC-
SQARU 2007), Vol. 4724 of Lecture Notes in Computer Science,
Springer-Verlag, 2007, pp. 828–839.

[14] F. Baader, M. Knechtel, R. Peñaloza, A generic approach for
large-scale ontological reasoning in the presence of access re-
strictions to the ontology’s axioms, in: A. Bernstein, D. R.
Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta,
K. Thirunarayan (Eds.), Proceedings of the 8th International
Semantic Web Conference (ISWC 2009), Vol. 5823 of Lecture
Notes in Computer Science, 2009, pp. 49–64.

[15] M. Knechtel, R. Peñaloza, A generic approach for correcting
access restrictions to a consequence, in: L. Aroyo, G. Anto-
niou, E. Hyvönen, A. ten Teije, H. Stuckenschmidt, L. Cabral,
T. Tudorache (Eds.), Proceedings of the 7th Extended Seman-
tic Web Conference (ESWC 2010), Vol. 6088 of Lecture Notes
in Computer Science, 2010, pp. 167–182.

[16] THESEUS Joint Research, THESEUS application sce-
nario PROCESSUS, http://www.theseus.joint-research.

org/processus-en/ (2010).
[17] B. A. Davey, H. A. Priestley, Introduction to Lattices and Or-

der, 2nd Edition, Cambridge University Press, 2002.
[18] B. Lampson, Protection, in: Proceedings of the 5th Annual

Princeton Conference on Information Sciences and Systems,
1971, pp. 437–443.

[19] F. Dau, M. Knechtel, Access policy design supported by FCA
methods, in: F. Dau, S. Rudolph (Eds.), Proceedings of the
17th International Conference on Conceptual Structures (ICCS
2009), Vol. 5662 of Lecture Notes in Computer Science, 2009,
pp. 141–154.

[20] B. Ganter, R. Wille, Formal Concept Analysis - mathematical
foundations, Springer, 1999.

[21] F. Baader, B. Suntisrivaraporn, Debugging SNOMED CT us-
ing axiom pinpointing in the description logic EL+, in: Pro-
ceedings of the International Conference on Representing and
Sharing Knowledge Using SNOMED (KR-MED 2008), Phoenix,
Arizona, 2008.

[22] F. Baader, R. Peñaloza, B. Suntisrivaraporn, Pinpointing in
the description logic EL, in: Proceedings of the 30th German
Conference on Artificial Intelligence (KI 2007), Vol. 4667 of
Lecture Notes in Artificial Intelligence, Springer-Verlag, Os-
nabrück, Germany, 2007, pp. 52–67.

[23] R. Reiter, A theory of diagnosis from first principles, Artificial

22

Intelligence 32 (1) (1987) 57–95.
[24] M. Horridge, S. Bechhofer, The owl api: A java api for owl

ontologies, Semantic Web 2 (1) (2011) 11–21.
[25] S. Schenk, On the semantics of trust and caching in the Seman-

tic Web, in: Proceedings of the 7th International Semantic Web
Conference (ISWC 2008), 2008, pp. 533–549.

[26] F. Baader, C. Lutz, B. Suntisrivaraporn, CEL—a polynomial-
time reasoner for life science ontologies, in: U. Furbach,
N. Shankar (Eds.), Proceedings of the 3rd International Joint
Conference on Automated Reasoning (IJCAR 2006), Vol. 4130
of Lecture Notes in Artificial Intelligence, Springer-Verlag, 2006,
pp. 287–291.

[27] A. Gaag, A. Kohn, U. Lindemann, Function-based solution re-
trieval and semantic search in mechanical engineering, in: Pro-
ceedings of the 17th International Conference on Engineering
Design (ICED 2009), 2009.

[28] A. Gaag, Entwicklung einer Ontologie zur funktionsorientierten
Lösungssuche in der Produktentwicklung, Ph.D. thesis, Munich
University of Technology (2010).

[29] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, Y. Katz, Pellet:
A practical OWL-DL reasoner, Journal of Web Semantics 5 (2)
(2007) 51–53.

[30] F. Baader, S. Brandt, C. Lutz, Pushing the EL envelope, in:
Proceedings of the 19th International Joint Conference on Arti-
ficial Intelligence (IJCAI 2005), Morgan-Kaufmann Publishers,
Edinburgh, UK, 2005.

23

